
International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.10, July 2015

5

Real-Time Horizon Line Detection based on Fusion of

Classification and Clustering

Ali Pour Yazdanpanah

Electrical and Computer
Engineering Department

University of Nevada, Las Vegas
4505 South Maryland Parkway Las

Vegas, NV, 89154

Emma E. Regentova
Electrical and Computer
Engineering Department

University of Nevada, Las Vegas
4505 South Maryland Parkway Las

Vegas, NV, 89154

George Bebis

Computer Science and
Engineering Department.

University of Nevada, Reno, 1664
N. Virginia Street, Reno, NV

89557NV, 89557
bebis@cse.unr.edu

Venkatesan Muthukumar
Electrical and Computer
Engineering Department

University of Nevada, Las Vegas
4505 South Maryland Parkway Las

Vegas, NV, 89154

ABSTRACT

Horizon line detection is a demanding problem in various

tasks associated with planet exploration, because no standard

approaches such as global positioning system is available.

Horizon line is a boundary line defined between a sky and

non-sky region in 2D images, and it is an important visual

clue that can be utilized for calculating the rover’s position

and orientation during planetary missions. The problem of

segmenting an image into sky and non-sky regions is

classically referred as “horizon line detection”. Subsequently,

the localization problem can be solved by matching the

detected horizon line in 2D images with virtually generated

horizon lines from 3D terrain patterns. In this paper, we

propose a new real-time horizon line detection (HLD) method

by coupling clustering and classifications, as well as

implementing the algorithm on the NVIDIA’s compute

unified device architecture (CUDA). The proposed method

has been evaluated on NASA Basalt Hill dataset and on a set

of mountainous images that have been collected from the web.

The experiments demonstrate high accuracy in determining

the horizon line that is proven by provided Receiver

Operating Characteristic (ROC) curves.

General Terms

Computer vision, machine learning, CUDA

Keywords

Horizon line detection, skyline extraction, sky segmentation,

CUDA, k-means clustering, neural network, fusion.

1. INTRODUCTION
Horizon line detection or sky segmentation is the problem of

finding a boundary between sky and non-sky regions in still

images or video sequences. This task is of demand in

navigating small unmanned aerial vehicles (UAVs) [1, 2, 3]

and micro air vehicles (MAVs) [4, 5, 6], visual geo-

localization [7, 8], ship detection [9, 10] and outdoor

robot/vehicle localization [11, 12, 13]. The horizon line can be

detected by (i) modeling sky and non-sky regions using

machine learning [1, 2, 4, 5, 6, 9, 22] and (ii) employing edge

detection [14, 15]. McGee et al. [2] used SVM classifier

trained on color information for detecting sky and non-sky

regions. They have used horizon line segmentation for

obstacle detection in UAV flight. Their underlying

assumption was a linearity of the horizon boundary; this is

frequently violated and probably is acceptable only for UAVs

navigation. Ettinger et al. [5] proposed a flight stability and

control system for micro air vehicles (MAVs) that relies on

the horizon line detection. The authors model the sky and

non-sky regions by Gaussian distributions and found an

optimum boundary between them. Two assumptions made are

a) the horizon boundary is linear and b) there are only two

regions significantly different in appearance (i.e., sky and

non-sky). However, these assumptions might not always be

true. The approach of Fefilatyev et al. [9] also assumed a

linear horizon boundary and used color and texture features,

specifically, mean intensity, entropy, smoothness, uniformity

and other features to train various classifiers. Croon et al. [4]

extended the features used in [9] by including cornerness,

grayness to train a shallow decision tree classifier. The

proposed method was able to detect non-linear horizon

boundaries, and has been tested in the context of MAVs

obstacle avoidance. Todorovic et al. [6] circumvented the

assumption of the horizon boundary being linear in [5] by

building priors for sky and non-sky regions based on color

hue and texture features derived by complex wavelet

transform to model the priors. The latter was a required step

because of great appearance variations between sky and non-

sky regions. A Hidden Markov Tree model has been able to

detect non-linear horizon boundaries. Authors of [1] presented

a clustering based approach for the horizon line detection for

UAV navigation. The main assumption was the presence of a

dominant light field between sky and ground regions, which

they detect by clustering the intensity information. The

authors identified cases when their method requires

modifications of clustering process, because the assumption

about the light field does not hold in general. Thurrowgood et

al. [3] has found an optimum threshold to segment

preliminary transformed from RGB space images based on

histograms and priors about sky and non-sky regions. Their

approach is applicable only to UAV navigation due to the

assumption that sky and ground pixels are equiprobable.

mailto:bebis@cse.unr.edu

International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.10, July 2015

6

Among methods which employ edge detection approach, a

most prominent method is that of Lie et al. [14]. The horizon

detection is formulated as a graph search problem. The

method assumes a consistent edge boundary between sky and

non-sky regions. The detected edge map is represented as a

multi-stage graph where each column of the image is a stage

of the graph and each edge pixel is a node. The shortest path

is then found extending from the left-most column to the

right-most one using dynamic programming. Since the edge

boundaries are not consistent, the method in [14] suggests a

gap-filling parameterized approach which makes assumptions

that a full horizon line across the image does exist and that it

lies in the upper half of the image. The complexity of the

algorithm depends on the number of edges detected in an

image and the performance can be affected greatly by nearby

edges or by edge gaps. Dynamic programming hinders the

real-time implementation of this method.

The rest of this paper is organized as follows: Section 2

describes the proposed HLD algorithm. Section 3 presents the

parallel implementation of the HLD algorithm and the

architecture behind it. Section 4 discusses implementation and

presents testing results. Section 5 concludes the work and

highlights perspectives of the future work.

2. HLD- HORIZON LINE DETECTION

ALGORITHM
The proposed HLD method is based on fusion of results of

clustering and classification. The complete algorithm

comprises texture feature calculation, classification using a

Neural Network (NN), pixel intensity clustering, and fusion of

the results of the last two steps followed by a post-processing

as depicted in Figure 1, which shows the processing flow. In

the next section a detailed description is provided for each

step of the proposed method.

2.1 Feature Extraction
The sky and non-sky regions of images are characterized by

different textures, and thus texture features are chosen for the

classifier input. The gray level co-occurrence probabilities

show a second order statistics for calculating the texture

features. The co-occurrence matrix (GLCM) introduced by

Haralick [16, 17] includes the conditional joint probabilities

of all pair-wise mixtures of gray levels given these

parameters: inter-pixel distance (d) and inter-pixel orientation

(θ). The probability can be introduced as [18]:

Where is defined as:

.

 denotes the number of occurrences of gray levels and

 , and is the total number of gray levels. The sum in the

denominator of denotes the total number of gray level

pairs within a window given (d, θ). A different GLCM is

required for each (d, θ). Typically only four orientations, i.e.,

0, 45, 90 and 135 degrees are used for computation. Various

features are extracted from GLCM, such as - the mean value

of , - means of . - defined as the ith entry

obtained by summing the rows of .

 and

 and

 .

 are the entropies of and

A number of statistical measures can be determined from each

GLCM, those used in our method are listed in Table 1. These

features are fed to the NN and image is labeled accordingly.

Fig 1: Flow diagram of the proposed HLD method.

2.2 Clustering
The assumption that the horizon boundary is a consistent edge

boundary is not always true in practice due to environmental

conditions (e.g., clouds) and foreground variations. Clustering

partially addresses this problem as a means for obtaining a

consistent edge boundary in the clusters boundaries.

Table 1. Texture statistics

Energy

Dissimilarity

Information Measure

of Correlation

Cluster Shade

Cluster Prominence

K-means clustering partitions n observations into k clusters,

where each observation belongs to the cluster with a nearest

mean [19]. For images, each pixel is assigned a label of the

cluster it belongs to.

In order to have an accurate consistent edge in cluster

boundaries, the value of means is supposed to be chosen

correctly; this number mostly depends on the resolution of

images under processing.

A number of disjoint clusters can be assigned the same label
 , where is a number of clusters), so

generally there could be disjoint regions with the label ,

Calculation of

Texture Features
Query

Image

Sky Classifier

Clustering

Post Processing

Database

Fusion Algorithm

Detected

Horizon

International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.10, July 2015

7

that is, the output of clustering sharing label is

 – disjoint clusters . In Figure 2, the clustering

result with is shown for one of the test images.

Fig 2: Top: input test image, bottom: clustering result.

2.3 Classification
The Neural Network (NN) is used for classifying image

blocks as belonging to sky or to the rest of the image. The

classifier with a single hidden layer of 20 neurons was trained

using the gradient descent method. The features were

extracted from 9 x 9 non-overlapping blocks from 9 test

images selected randomly from our dataset. The classifier was

trained using pixel intensities and 5 texture statistics of Table

1.

Fig 3: Ground truth (red lines) from Basalt Hill data.

For training, we manually labeled the horizon line in each

training image and selected a number of blocks around key

points from the sky image above it. Figure 3 shows a few

images with ground truth marked by a red line. The same

way, negative samples are blocks selected from non-sky

regions. The classification result is a binary map of sky/non-

sky region. Figure 4 shows the classifier output for an

example image.

2.4 Fusion Algorithm and Post-Processing
The fusion algorithm checks the intersection between clusters

and a spatially corresponding region that was classified as

sky. If the latter is a certain part of the cluster, then the

algorithm merges it into the sky, provided that the relative

size of the intersection is a greater than a threshold, Th. We

will show how the performance of the method is affected by

the choice of the threshold in section 4. Next, all sky regions

are merged together to produce the final binary map - . The

following are the parameters defined for implementing the

procedure:

 – Number of clusters. The default value is 10.

 – Final segmentation matrix (initially, zero matrix).

 – Tunable threshold (between 0 and 1). The default

value is .

 – Output matrix for classifier stage after post processing.

 – Clusters in matrix paired

with/one to one relationship with clusters.

 – Clusters in matrix paired with/one

to one relationship with clusters.

 – Total number of pixels in .

P – Total number of pixels in image x.

Figure 5 shows the pseudo-code of the fusion procedure.

The post-processing stage is intended to reducing the number

of faulty regions without affecting actual edges between sky

and non-sky regions. Simple rules defined for this procedure

are as follows:

1. There is a minimum size for the whole sky region (The

default value depends on the image resolution and is 0.05% of

total pixel numbers in image.

2. Any region classified as sky, but surrounded only by non-

sky regions should be labeled as non-sky and vice versa.

Fig 4: Left: input test image, right: classifier output

(binary map).

3. HLD PARALLEL IMPLEMENTATION
We assign each thread process to a single pixel to have all

pixels simultaneously processed. The parallel version was

implemented using four CUDA kernels: (1) feature extraction,

(2) classification, (3) clustering, and (4) fusion. The post-

processing stage is run on the CPU. The flow chart is shown

in Figure 6, where memory transfers are shown using wide

arrows. The kernels running in GPU are invoked by the host.

To increase the performance, we have used two general

optimization techniques including memory management

overhead reduction and the memory transfer overhead

reduction [20].

In CUDA, memory allocations (cudaMalloc and cudaFree) are

more intensive operations than standard C functions (malloc

and free). Therefore we have allocated the GPU memory just

once at the beginning and then we accessed and changed that

memory in any kernel calls, finally at the end we just brought

the results back from the GPU memory to the host just one

time. For overhead reduction in memory transfer, we have to

avoid unnecessary data transfers between GPU and CPU

during execution, therefore we perform most of the

computationally expensive procedures in GPU. In the

following subsections we describe the CUDA implementation

of each stage of the HLD algorithm.

International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.10, July 2015

8

Fig 5: Pseudo code of fusion algorithm

3.1 Parallel Feature Extraction
Due to the data parallelism of feature calculation, which is

calculated per image block, we store block pixel values in 2D

on-chip texture memory. Multiple threads then can run in

parallel. The feature extraction kernel is implemented on a

grid of W/32 × H/32 thread blocks, for H x W images. Before

any arithmetic operation, data accessed by each thread block

are read first from the global into the texture memory, that is

on-chip. For minimizing the repetitive access to off-chip

memory, each thread reads neighborhood pixels in 9 by 9

blocks into texture caches and calculates texture statistics.

3.2 Parallel Clustering
Dhillon et al. [23] presented a parallel implementation of k-

means clustering on multiprocessors. In the labeling stage, the

pixel value set x is divided equally between processors. Each

processor is assigned to find the labels of the subset of x.

Authors in [23] showed that the speedup increases with the

number of processors have been used in the implementation.

The communication cost is defined as a performance metric

between the processors. The method shows high efficiency

and simplicity so we have adopted this implementation.

Fig 6: Flow chart of CUDA-based HLD algorithm.

3.3 Parallel Fusion
To parallelize the fusion procedure, we have used disjoint

blocks corresponding to disjoint regions for each cluster, if

more than one region is defined per cluster. We have assigned

a block to a region and pixels inside the regions to threads

inside the blocks. Figure 7 provides the CUDA-based pseudo

code.

3.4 Parallel Classification
In classification stage we assign a blockID for each feature

and each threadID for each neuron on a feature vector. Every

feature vector is handled by a block and each pixel in it is

handled by a thread. The weights are used as an array for each

network layer. There is a CUDA kernel handling the

computation of neuron values of that layer.

4. EXPERIMENTS AND RESULTS

4.1 HLD Evaluation
We have experimented with two different data sets: NASA

Basalt Hill data and Web data set. . The Basalt Hill data set

consists of 45 grayscale images (1038x1388 pixels) chosen

from a larger data set based on a field study for rovers taken

by two Hazcams (hazard avoidance cameras) cameras on

NASA’s rovers. Hazcams are photographic cameras sensitive

to the visible light. They have a wide field of view

(approximately 120° both horizontally and vertically) to allow

a large amount of terrain to be visible. They are mounted on

the front and rear of NASA's rovers. These images are used by

the rover to autonomously navigate hazards terrains. The Web

data set consists of 80 mountainous images (519x1388 pixels)

that have been randomly collected from the web. This data set

includes various viewpoints, geographical and seasonal

variations. The classifier has been trained on basalt Hill data

and applied to WEB data in our experiments described in the

following section.

Fig 7: CUDA Pseudo code for fusion stage.

In this section, we provide a comparison between the

proposed method and the approach of Lie et. al [14] that

outperforms all previous methods. In each case, the detected

and true horizon lines are compared by calculating a pixel-

wise absolute distances S as shown below.

where and are row indices of the detected and true

horizon pixels in column j, and N is the number of columns in

the test image. For each column, the absolute distance

between the detected and ground truth pixels is computed and

summed over the entire number of columns in the image.

Feature Extraction

Fusion

Clustering

Initialize cluster centroids

Repeat until converge: {

For every k, set

For each l, set

}

 {

 {

 {

 }

 }

}

Classification

Global Memory
Query Image

Device (GPU)

 {
// we have used different blocks

 {

 }

synchronize threads

 {

 }

synchronize threads

}

Host (CPU)

Detected Horizon

Data Transfer

Memory Allocation &

Data Transfer

Post Processing

Kernel Call

Kernel Call

Kernel Call

Kernel Call

International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.10, July 2015

9

Hence, there is a one-to-one correspondence between the pixel

locations in the true and detected horizon pixel locations.

For each method, we compute the average and the standard

deviations over all images in the data set. As it can be

concluded from Table 2, the proposed HLD its counterpart.

Table 2. Average absolute errors for methods under

comparison

Approach
NASA Basalt Hill Web

Mean STD. Dev. Mean STD. Dev.

Lie et al. 5.5548 9.4599 9.1500 17.9195

Proposed 1.6077 2.8493 4.2964 6.1581

The proposed method is evaluated by calculating: true

positive (TP), false negative (FN), false positive (FP), and true

negative (TN) rates. The and rates for images in

the database are calculated as follows:

The ROC curves for NASA Basalt Hill data are shown in

Figure 8. As it can be observed, the proposed HLD method

shows high performance. TPR=0.9956 and FPR=0.0282 are

the max TPR and corresponding FPR obtained for NASA

Basalt Hill dataset. Also, the effect of the number of clusters,

k on the accuracy can be observed in Figure 9. A highest

performance is attained for k = 10, so this value is set for both

experiments. Figure 10 shows the ROC for Web data that are

normalized and histogram-wise equalized. We used for the

experiment same parameters applied towards NASA Basalt

Hill data.

Fig 8: ROC curve obtained by testing the HLD on the

NASA Basalt Hill data set.

Figure 11, displays several examples from each data set where

the HLD method has successfully detected the horizon line.

The complete real-time result for video sequences can be

accessed at [21]. Figure 12 shows examples where our method

fails to detect certain portions of the horizon line. The main

reason for these failures is a small set of training images from

Basalt Hill data (i.e., only 9 images). Adding more data to the

training set including web images would improve the

detection accuracy.

4.2 Parallel Implementation Result
In this section, we present the performance evaluation of the

HLD algorithm on both CPU and GPU. As for the CPU

implementation, the algorithm is tested using single-threaded

implementation in both Matlab and C++. Both CPU and

CUDA implementations of the algorithm run on a machine

with 4 Gigabyte RAM, Intel core 2 Duo E8400 processor and

with the NVIDIA Tesla C2050 GPU board with 448 CUDA

cores. We compare the execution times of the Matlab, C++,

and CUDA versions of the HLD method for two data sets in

Table 3 to illustrate the accelerating performance of CUDA.

Tabulated execution times of CPU and CUDA

implementations are average values over ten executions. The

speedups achieved with the proposed CUDA implementation

range from ~9x to ~70x, as illustrated in Table 3. According

to the experimental results in Table 3, we observe that the

parallel algorithm on the GPU through the CUDA

environment improved the performance significantly

compared to the serial single-threaded algorithm running on

the CPU.

Fig 9: ROCs with three different values of NUM for NASA

Basalt Hill data set

Fig 10: ROC curve obtained by testing the HLD on the

Web data set

For the input image of 1038 x 1388 pixels of Basalt Hill data

set, the speed up is up to 70 times compared to Matlab

implementation and up to 10 times compared to C++

implementation, and for the input image of 513 x 1388 pixels

from Web data set, the speed up is up to 53 times compared to

Matlab implementation and up to 9 times compared to C++

implementation.

International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.10, July 2015

10

5. CONCLUSION
We have designed a real-time horizon line detection (HLD)

method based on fusion of clustering and classification. We

consider local texture features for training sky/non-sky

classifier. Further processing involves fusion of the classifier

outcome with the clustering result. Also we develop the

parallel implementation of the algorithm for CUDA to meet

the requirement for real-time horizon detection in video

sequences. The proposed method has been evaluated on

NASA Basalt Hill data set and a set of images that have been

collected from the web. Our experimental results show

considerable accuracy in determining the horizon line location

in two challenging data sets. For the future work, we intend to

explore various other classification features and more

powerful classifiers to reduce the post-processing step of the

algorithm and also consider the horizon line as a localization

cue in planetary environment.

Table 3. Average execution times for each frame in both

data sets using Matlab, C++, and CUDA implementation

Implementation
NASA Basalt

Hill
Web

CUDA ~1014 (ms) ~549 (ms)

CPU (C++) ~10123 (ms) ~4627 (ms)

CPU (Matlab) ~70000 (ms) ~29000 (ms)

6. ACKNOWLEDGMENTS
This research was supported by NASA EPSCoR under

cooperative agreement No. NNX10AR89A.

7. REFERENCES
[1] Boroujeni N. S., Etemad S. A., Whitehead A. 2012

Robust Horizon Detection Using Segmentation for UAV

Applications. Proceedings of IEEE Ninth Conference on

Computer and Robot Vision.

[2] McGee T. G., Sengupta R., and Hedrick K. 2005

Obstacle Detection for Small Autonomous Aircraft

Using Sky Segmentation. Proceedings of International

Conference on Robotics and Automation (ICRA).

[3] Thurrowgood S., Soccol D., Moore R. J. D., Bland D.,

and Srinivasan M. V. 2009 A Vision Based System for

Altitude Estimation of UAVs. Proceedings of

International Conference on Intelligent Robots and

Systems (IEEE/RSJ).

[4] De Croon G. C. H. E., Remes B. D. W., DeWagter C.,

and Ruijsink R. 2011 Sky Segmentation Approach to

Obstacle Avoidance. IEEE Aerospace Conference.

[5] Ettinger S. M., Nechyba M. C., Ifju P. G., and Waszak

M. 2002 Vision- Guided Flight Stability and Control for

Micro Air Vehicles. Proceedings of International

Conference on Intelligent Robots and Systems

(IEEE/RSJ).

[6] Todorovic S., Nechyba M. C., Ifju P. G. 2003

Sky/Ground Modeling for Autonomous MAV Flight.

Proceedings of International Conference on Robotics and

Automation (ICRA).

[7] Baatz G., Saurer O., Koser K., and Pollefeys M. 2012

Large Scale Visual Geo-Localization of Images in

Mountainous Terrain Proceedings of European

Conference on Computer Vision.

[8] Liu W. and Su C. 2014 Automatic Peak Recognition for

Mountain Images Advanced Technologies, Embedded

and Multimedia for Human-centric Computing.

[9] Fefilatyev S., Smarodzinava V., Hall L. O., Goldgof D.

B. 2006 Horizon Detection Using Machine Learning

Techniques. International Conference on Machine

Learning and Applications, 17-21.

[10] Gershikov E., Libe T., Kosolapov S.: Horizon Line

Detection in Marine Images. 2013 Which Method to

Choose? International Journal on Advances in Intelligent

Systems, 6(1-2): 79 - 88.

[11] Gupta V. and Brennan S. 2008 Terrain Based Vehicle

Orientation Estimation Combining Vision and Inertial

Measurements. Journal of Field Robotics, 25(3):181 -

202.

[12] Ho N. and Chakravarty P. 2014 Localization on

Freeways using the Horizon Line Signature. Proceedings

of International Conference on Robotics and Automation

(ICRA).

[13] Dumble S. J. and Gibbens P. 2014 Efficient Terrain-

Aided Visual Horizon Based Attitude Estimation and

Localization. Journal of Intelligent and Robotic Systems.

[14] Lie W., Lin T. C.-I., Lin T., and Hung K.-S.. 2005 A

robust dynamic programming algorithm to extract

skyline in images for navigation, in Pattern Recognition

Letters, 26(2) 221–230.

[15] Kim B., Shin J., Nam H. and Kim J. 2011 Skyline

Extraction using a Multistage Edge Filtering World

Academy of Science, Engineering and Technology.

[16] Haralick R.M. 1979 Statistical and structural approaches

to texture, in: Proceedings of the IEEE, vol. 67, 786–804.

[17] Harlick R.M., Shanmugam K., Dinstein I. 1973 Textural

Features for Image Classification. IEEE Trans, System.

Man Cybernetic. 610–621.

[18] Barber D.G., LeDrew E.F. 1991 SAR sea ice

discrimination using texture statistics: a multivariate

approach, Photogrammetric Engineering and Remote

Sensing 57 (4) 385–395.

[19] Seber, G.A.F. 1984 Multivariate Observations. John

Wiley & Sons, Inc., Hoboken.

[20] Boyer M., Tarjan, D., Acton S.T., Skadron K. 2009

Accelerating leukocyte tracking using CUDA: A case

study in leveraging many core coprocessors,” IEEE

International Symposium on Parallel & Distributed

Processing, 1–12.

[21] http://www.ee.unlv.edu/~yazdan/projects.html

[22] Pour Yazdanpanah A., Regentova E. E., Mandava A. K.,

Ahmad T., Bebis G. 2013 Sky Segmentation by Fusing

Clustering with Neural Networks. 9th International

Symposium on Visual Computing (ISVC), 663-672.

[23] Dhillon I. S. and Modha D. S. 2000 A data clustering

algorithm on distributed memory multiprocessors. In

Large-Scale Parallel Data Mining, Lecture Notes in

Artificial Intelligence, 245–260.

International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.10, July 2015

11

8. APPENDIX

Fig 11: Horizon Line detection by the proposed method (green line); NASA Basalt Hill data [rows 1-2], Web data [rows 3-4].

Fig 12: Examples where the proposed method has missed true or added false regions of sky.

