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ABSTRACT 

Horizon line detection is a demanding problem in various 

tasks associated with planet exploration, because no standard 

approaches such as global positioning system is available. 

Horizon line is a boundary line defined between a sky and 

non-sky region in 2D images, and it is an important visual 

clue that can be utilized for calculating the rover’s position 

and orientation during planetary missions. The problem of 

segmenting an image into sky and non-sky regions is 

classically referred as “horizon line detection”. Subsequently, 

the localization problem can be solved by matching the 

detected horizon line in 2D images with virtually generated 

horizon lines from 3D terrain patterns. In this paper, we 

propose a new real-time horizon line detection (HLD) method 

by coupling clustering and classifications, as well as 

implementing the algorithm on the NVIDIA’s compute 

unified device architecture (CUDA). The proposed method 

has been evaluated on NASA Basalt Hill dataset and on a set 

of mountainous images that have been collected from the web. 

The experiments demonstrate high accuracy in determining 

the horizon line that is proven by provided Receiver 

Operating Characteristic (ROC) curves.  

General Terms 

Computer vision, machine learning, CUDA  

Keywords 

Horizon line detection, skyline extraction, sky segmentation, 

CUDA, k-means clustering, neural network, fusion. 

1. INTRODUCTION 
Horizon line detection or sky segmentation is the problem of 

finding a boundary between sky and non-sky regions in still 

images or video sequences. This task is of demand in 

navigating small unmanned aerial vehicles (UAVs) [1, 2, 3] 

and micro air vehicles (MAVs) [4, 5, 6], visual geo-

localization [7, 8], ship detection [9, 10] and outdoor 

robot/vehicle localization [11, 12, 13]. The horizon line can be 

detected by (i) modeling sky and non-sky regions using 

machine learning [1, 2, 4, 5, 6, 9, 22] and (ii) employing edge 

detection [14, 15]. McGee et al. [2] used SVM classifier 

trained on color information for detecting sky and non-sky 

regions. They have used horizon line segmentation for 

obstacle detection in UAV flight. Their underlying 

assumption was a linearity of the horizon boundary; this is 

frequently violated and probably is acceptable only for UAVs 

navigation. Ettinger et al. [5] proposed a flight stability and 

control system for micro air vehicles (MAVs) that relies on 

the horizon line detection. The authors model the sky and 

non-sky regions by Gaussian distributions and found an 

optimum boundary between them. Two assumptions made are 

a) the horizon boundary is linear and b) there are only two 

regions significantly different in appearance (i.e., sky and 

non-sky). However, these assumptions might not always be 

true. The approach of Fefilatyev et al. [9] also assumed a 

linear horizon boundary and used color and texture features, 

specifically, mean intensity, entropy, smoothness, uniformity 

and other features to train various classifiers. Croon et al. [4] 

extended the features used in [9] by including cornerness, 

grayness to train a shallow decision tree classifier. The 

proposed method was able to detect non-linear horizon 

boundaries, and has been tested in the context of MAVs 

obstacle avoidance. Todorovic et al. [6] circumvented the 

assumption of the horizon boundary being linear in [5] by 

building priors for sky and non-sky regions based on color 

hue and texture features derived by complex wavelet 

transform to model the priors. The latter was a required step 

because of great appearance variations between sky and non-

sky regions. A Hidden Markov Tree model has been able to 

detect non-linear horizon boundaries. Authors of [1] presented 

a clustering based approach for the horizon line detection for 

UAV navigation. The main assumption was the presence of a 

dominant light field between sky and ground regions, which 

they detect by clustering the intensity information. The 

authors identified cases when their method requires 

modifications of clustering process, because the assumption 

about the light field does not hold in general. Thurrowgood et 

al. [3] has found an optimum threshold to segment 

preliminary transformed from RGB space images based on 

histograms and priors about sky and non-sky regions. Their 

approach is applicable only to UAV navigation due to the 

assumption that sky and ground pixels are equiprobable. 

mailto:bebis@cse.unr.edu


International Journal of Computer Applications (0975 – 8887) 

Volume 121 – No.10, July 2015 

6 

Among methods which employ edge detection approach, a 

most prominent method is that of Lie et al. [14]. The horizon 

detection is formulated as a graph search problem. The 

method assumes a consistent edge boundary between sky and 

non-sky regions. The detected edge map is represented as a 

multi-stage graph where each column of the image is a stage 

of the graph and each edge pixel is a node. The shortest path 

is then found extending from the left-most column to the 

right-most one using dynamic programming. Since the edge 

boundaries are not consistent, the method in [14] suggests a 

gap-filling parameterized approach which makes assumptions 

that a full horizon line across the image does exist and that it 

lies in the upper half of the image. The complexity of the 

algorithm depends on the number of edges detected in an 

image and the performance can be affected greatly by nearby 

edges or by edge gaps. Dynamic programming hinders the 

real-time implementation of this method.  

The rest of this paper is organized as follows: Section 2 

describes the proposed HLD algorithm. Section 3 presents the 

parallel implementation of the HLD algorithm and the 

architecture behind it. Section 4 discusses implementation and 

presents testing results. Section 5 concludes the work and 

highlights perspectives of the future work. 

2. HLD- HORIZON LINE DETECTION 

ALGORITHM 
The proposed HLD method is based on fusion of results of 

clustering and classification. The complete algorithm 

comprises texture feature calculation, classification using a 

Neural Network (NN), pixel intensity clustering, and fusion of 

the results of the last two steps followed by a post-processing 

as depicted in Figure 1, which shows the processing flow. In 

the next section a detailed description is provided for each 

step of the proposed method.  

2.1 Feature Extraction 
The sky and non-sky regions of images are characterized by 

different textures, and thus texture features are chosen for the 

classifier input. The gray level co-occurrence probabilities 

show a second order statistics for calculating the texture 

features. The co-occurrence matrix (GLCM) introduced by 

Haralick [16, 17] includes the conditional joint probabilities 

of all pair-wise mixtures of gray levels given these 

parameters: inter-pixel distance (d) and inter-pixel orientation 

(θ). The probability can be introduced as [18]:  

                  

Where     is defined as: 

    
   

    
 
     

. 

    denotes the number of occurrences of gray levels    and 

   , and   is the total number of gray levels. The sum in the 

denominator of     denotes the total number of gray level 

pairs within a window given (d, θ). A different GLCM is 

required for each (d, θ). Typically only four orientations, i.e., 

0, 45, 90 and 135 degrees are used for computation. Various 

features are extracted from GLCM, such as   - the mean value 

of  ,        - means of      .      - defined as the ith entry 

obtained by summing the rows of    .  
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A number of statistical measures can be determined from each 

GLCM, those used in our method are listed in Table 1. These 

features are fed to the NN and image is labeled accordingly. 

 

 

 

 

 

 

 

 

 

Fig 1: Flow diagram of the proposed HLD method. 

2.2 Clustering  
The assumption that the horizon boundary is a consistent edge 

boundary is not always true in practice due to environmental 

conditions (e.g., clouds) and foreground variations. Clustering 

partially addresses this problem as a means for obtaining a 

consistent edge boundary in the clusters boundaries. 

Table 1. Texture statistics 
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K-means clustering partitions n observations into k clusters, 

where each observation belongs to the cluster with a nearest 

mean [19]. For images, each pixel is assigned a label of the 

cluster it belongs to.  

In order to have an accurate consistent edge in cluster 

boundaries, the value of means is supposed to be chosen 

correctly; this number mostly depends on the resolution of 

images under processing.  

A number of disjoint clusters can be assigned the same label    
         , where      is a number of clusters), so 

generally there could be   disjoint regions with the label  , 
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that is, the output of clustering sharing label   is    

              – disjoint clusters  . In Figure 2, the clustering 

result with         is shown for one of the test images. 

 

 

Fig 2: Top: input test image, bottom: clustering result. 

2.3 Classification  
The Neural Network (NN) is used for classifying image 

blocks as belonging to sky or to the rest of the image. The 

classifier with a single hidden layer of 20 neurons was trained 

using the gradient descent method. The features were 

extracted from 9 x 9 non-overlapping blocks from 9 test 

images selected randomly from our dataset. The classifier was 

trained using pixel intensities and 5 texture statistics of Table 

1. 

 

Fig 3: Ground truth (red lines) from Basalt Hill data. 

For training, we manually labeled the horizon line in each 

training image and selected a number of blocks around key 

points from the sky image above it. Figure 3 shows a few 

images with ground truth marked by a red line. The same 

way, negative samples are blocks selected from non-sky 

regions.  The classification result is a binary map of sky/non-

sky region. Figure 4 shows the classifier output for an 

example image. 

2.4 Fusion Algorithm and Post-Processing 
The fusion algorithm checks the intersection between clusters 

and a spatially corresponding region that was classified as 

sky. If the latter is a certain part of the cluster, then the 

algorithm merges it into the sky, provided that the relative 

size of the intersection is a greater than a threshold, Th. We 

will show how the performance of the method is affected by 

the choice of the threshold in section 4.  Next, all sky regions 

are merged together to produce the final binary map -  . The 

following are the parameters defined for implementing the 

procedure: 

    – Number of clusters. The default value is 10. 

  – Final segmentation matrix (initially, zero matrix). 

   – Tunable threshold (between 0 and 1). The default 

value is       . 

  – Output matrix for classifier stage after post processing.  

                 – Clusters in matrix   paired 

with/one to one relationship with               clusters. 

                 – Clusters in matrix   paired with/one 

to one relationship with               clusters. 

   – Total number of pixels in   . 

P – Total number of pixels in image x. 

Figure 5 shows the pseudo-code of the fusion procedure. 

The post-processing stage is intended to reducing the number 

of faulty regions without affecting actual edges between sky 

and non-sky regions. Simple rules defined for this procedure 

are as follows: 

1. There is a minimum size for the whole sky region (The 

default value depends on the image resolution and is 0.05% of 

total pixel numbers in image. 

2. Any region classified as sky, but surrounded only by non-

sky regions should be labeled as non-sky and vice versa. 

  
Fig 4: Left: input test image, right: classifier output 

(binary map). 

3. HLD PARALLEL IMPLEMENTATION 
We assign each thread process to a single pixel to have all 

pixels simultaneously processed. The parallel version was 

implemented using four CUDA kernels: (1) feature extraction, 

(2) classification, (3) clustering, and (4) fusion. The post-

processing stage is run on the CPU. The flow chart is shown 

in Figure 6, where memory transfers are shown using wide 

arrows. The kernels running in GPU are invoked by the host. 

To increase the performance, we have used two general 

optimization techniques including memory management 

overhead reduction and the memory transfer overhead 

reduction [20]. 

In CUDA, memory allocations (cudaMalloc and cudaFree) are 

more intensive operations than standard C functions (malloc 

and free). Therefore we have allocated the GPU memory just 

once at the beginning and then we accessed and changed that 

memory in any kernel calls, finally at the end we just brought 

the results back from the GPU memory to the host just one 

time. For overhead reduction in memory transfer, we have to 

avoid unnecessary data transfers between GPU and CPU 

during execution, therefore we perform most of the 

computationally expensive procedures in GPU. In the 

following subsections we describe the CUDA implementation 

of each stage of the HLD algorithm. 
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Fig 5: Pseudo code of fusion algorithm 

3.1 Parallel Feature Extraction 
Due to the data parallelism of feature calculation, which is 

calculated per image block, we store block pixel values in 2D 

on-chip texture memory.  Multiple threads then can run in 

parallel. The feature extraction kernel is implemented on a 

grid of W/32 × H/32 thread blocks, for H x W images. Before 

any arithmetic operation, data accessed by each thread block 

are read first from the global into the texture memory, that is 

on-chip. For minimizing the repetitive access to off-chip 

memory, each thread reads neighborhood pixels in 9 by 9 

blocks into texture caches and calculates texture statistics. 

3.2 Parallel Clustering 
Dhillon et al. [23] presented a parallel implementation of k-

means clustering on multiprocessors. In the labeling stage, the 

pixel value set x is divided equally between processors. Each 

processor is assigned to find the labels of the subset of x. 

Authors in [23] showed that the speedup increases with the 

number of processors have been used in the implementation. 

The communication cost is defined as a performance metric 

between the processors. The method shows high efficiency 

and simplicity so we have adopted this implementation. 

 
Fig 6: Flow chart of CUDA-based HLD algorithm. 

3.3 Parallel Fusion 
To parallelize the fusion procedure, we have used   disjoint 

blocks corresponding to   disjoint regions for each cluster, if 

more than one region is defined per cluster. We have assigned 

a block to a region and pixels inside the regions to threads 

inside the blocks. Figure 7 provides the CUDA-based pseudo 

code.  

3.4 Parallel Classification 
In classification stage we assign a blockID for each feature 

and each threadID for each neuron on a feature vector. Every 

feature vector is handled by a block and each pixel in it is 

handled by a thread. The weights are used as an array for each 

network layer. There is a CUDA kernel handling the 

computation of neuron values of that layer.  

4. EXPERIMENTS AND RESULTS 

4.1 HLD Evaluation 
We have experimented with two different data sets: NASA 

Basalt Hill data and Web data set. . The Basalt Hill data set 

consists of 45 grayscale images (1038x1388 pixels) chosen 

from a larger data set based on a field study for rovers taken 

by two Hazcams (hazard avoidance cameras) cameras on 

NASA’s rovers. Hazcams are photographic cameras sensitive 

to the visible light. They have a wide field of view 

(approximately 120° both horizontally and vertically) to allow 

a large amount of terrain to be visible. They are mounted on 

the front and rear of NASA's rovers. These images are used by 

the rover to autonomously navigate hazards terrains. The Web 

data set consists of 80 mountainous images (519x1388 pixels) 

that have been randomly collected from the web. This data set 

includes various viewpoints, geographical and seasonal 

variations. The classifier has been trained on basalt Hill data 

and applied to WEB data in our experiments described in the 

following section.  

 

 

 

 

 

 

Fig 7: CUDA Pseudo code for fusion stage. 

In this section, we provide a comparison between the 

proposed method and the approach of Lie et. al [14] that 

outperforms all previous methods. In each case, the detected 

and true horizon lines are compared by calculating a pixel-

wise absolute distances S as shown below.  

  
 

 
              

 

   

 

where       and       are row indices of the detected and true 

horizon pixels in column j, and N is the number of columns in 

the test image. For each column, the absolute distance 

between the detected and ground truth pixels is computed and 

summed over the entire number of columns in the image. 

Feature Extraction 

Fusion 

Clustering 

Initialize cluster centroids                 

Repeat until converge: { 

For every k, set 

                       
     

 
 

For each l, set 

              
           

   

         
   

 

} 

              {      

             { 

                                   

                            { 

                                    

  } 

 } 

} 

Classification 

Global Memory 
Query Image 

Device (GPU) 

                      

             {      
// we have used    different blocks 

              { 

 }  

synchronize threads 

                                                       { 

                        } 

synchronize threads 

} 

Host (CPU) 

Detected Horizon 

 

Data Transfer 

Memory Allocation & 

Data Transfer 

Post Processing 

 

Kernel Call 

Kernel Call 

Kernel Call 

Kernel Call 



International Journal of Computer Applications (0975 – 8887) 

Volume 121 – No.10, July 2015 

9 

Hence, there is a one-to-one correspondence between the pixel 

locations in the true and detected horizon pixel locations.  

For each method, we compute the average and the standard 

deviations over all images in the data set. As it can be 

concluded from Table 2, the proposed HLD its counterpart.  

Table 2. Average absolute errors for methods under 

comparison 

Approach 
NASA Basalt Hill Web 

Mean STD. Dev. Mean STD. Dev. 

Lie et al. 5.5548 9.4599 9.1500 17.9195 

Proposed 1.6077 2.8493 4.2964 6.1581 

 

The proposed method is evaluated by calculating: true 

positive (TP), false negative (FN), false positive (FP), and true 

negative (TN) rates. The     and     rates for   images in 

the database are calculated as follows:  

              
 
                     

 
    

              
 
                     

 
    

    
       

               
      

       

               
 

The ROC curves for NASA Basalt Hill data are shown in 

Figure 8. As it can be observed, the proposed HLD method 

shows high performance. TPR=0.9956 and FPR=0.0282 are 

the max TPR and corresponding FPR obtained for NASA 

Basalt Hill dataset. Also, the effect of the number of clusters, 

k on the accuracy can be observed in Figure 9. A highest 

performance is attained for k = 10, so this value is set for both 

experiments. Figure 10 shows the ROC for Web data that are 

normalized and histogram-wise equalized. We used for the 

experiment same parameters applied towards NASA Basalt 

Hill data. 

 
Fig 8: ROC curve obtained by testing the HLD on the 

NASA Basalt Hill data set. 

Figure 11, displays several examples from each data set where 

the HLD method has successfully detected the horizon line. 

The complete real-time result for video sequences can be 

accessed at [21]. Figure 12 shows examples where our method 

fails to detect certain portions of the horizon line. The main 

reason for these failures is a small set of training images from 

Basalt Hill data (i.e., only 9 images). Adding more data to the 

training set including web images would improve the 

detection accuracy. 

4.2 Parallel Implementation Result 
In this section, we present the performance evaluation of the 

HLD algorithm on both CPU and GPU. As for the CPU 

implementation, the algorithm is tested using single-threaded 

implementation in both Matlab and C++. Both CPU and 

CUDA implementations of the algorithm run on a machine 

with 4 Gigabyte RAM, Intel core 2 Duo E8400 processor and 

with the NVIDIA Tesla C2050 GPU board with 448 CUDA 

cores. We compare the execution times of the Matlab, C++, 

and CUDA versions of the HLD method for two data sets in 

Table 3 to illustrate the accelerating performance of CUDA. 

Tabulated execution times of CPU and CUDA 

implementations are average values over ten executions. The 

speedups achieved with the proposed CUDA implementation 

range from ~9x to ~70x, as illustrated in Table 3. According 

to the experimental results in Table 3, we observe that the 

parallel algorithm on the GPU through the CUDA 

environment improved the performance significantly 

compared to the serial single-threaded algorithm running on 

the CPU. 

 
Fig 9: ROCs with three different values of NUM for NASA 

Basalt Hill data set 

 

 
Fig 10: ROC curve obtained by testing the HLD on the 

Web data set 

For the input image of 1038 x 1388 pixels of Basalt Hill data 

set, the speed up is up to 70 times compared to Matlab 

implementation and up to 10 times compared to C++ 

implementation, and for the input image of 513 x 1388 pixels 

from Web data set, the speed up is up to 53 times compared to 

Matlab implementation and up to 9 times compared to C++ 

implementation. 
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5. CONCLUSION 
We have designed a real-time horizon line detection (HLD) 

method based on fusion of clustering and classification. We 

consider local texture features for training sky/non-sky 

classifier. Further processing involves fusion of the classifier 

outcome with the clustering result. Also we develop the 

parallel implementation of the algorithm for CUDA to meet 

the requirement for real-time horizon detection in video 

sequences. The proposed method has been evaluated on 

NASA Basalt Hill data set and a set of images that have been 

collected from the web. Our experimental results show 

considerable accuracy in determining the horizon line location 

in two challenging data sets. For the future work, we intend to 

explore various other classification features and more 

powerful classifiers to reduce the post-processing step of the 

algorithm and also consider the horizon line as a localization 

cue in planetary environment.  

Table 3. Average execution times for each frame in both 

data sets using Matlab, C++, and CUDA implementation 

Implementation 
NASA Basalt 

Hill 
Web 

CUDA ~1014 (ms) ~549 (ms) 

CPU (C++) ~10123 (ms) ~4627 (ms) 

CPU (Matlab) ~70000 (ms) ~29000 (ms) 
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8. APPENDIX 
 

    

    

   

    

 

Fig 11: Horizon Line detection by the proposed method (green line); NASA Basalt Hill data [rows 1-2], Web data [rows 3-4]. 

 

 

 

 

Fig 12: Examples where the proposed method has missed true or added false regions of sky.

 


