
International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.1, July 2015

32

Transliterated Search of Hindi Lyrics

Pallavi Verulkar

IIIT Bhubaneswar
Department of Computer

Science

Rakesh Chandra
Balabantray

IIIT Bhubaneswar
Department of Computer

Science

Rohit Arvind Chakrapani

IIIT Bhubaneswar
Department of Computer

Science

ABSTRACT

A huge number of Indian languages are written using native

scripts. However, usually the websites and the user generated

content (such as tweets, chats and blogs) in these languages

are written using Roman script due to various phonetic-typing

as the users feel comfortable in writing in their native

language. Transliteration of many languages into Roman

script is used copiously on the web not just for documents but

also for user queries that are used to search these documents.

A challenge that search engines face while processing

transliterated queries and documents is that of extensive

spelling variation. The aim of this topic is to systematically

formalize several research problems that one must solve to

tackle this unique situation prevalent in Web search for users

of many languages around the world. We choose to solve the

problem of Language identification when the Hindi words are

written in Roman script. Then, transliterate the roman scripted

Hindi words into Devanagri form. And when a search query is

given, results should be retrieved for Hindi song lyrics.

Keywords

Language Identification, Transliteration, Indexing,

Search query

1. INTRODUCTION
A huge number of Indian languages are written using native

scripts. However, usually the websites and the user generated

content (such as tweets, chats and blogs) in these languages

are written using Roman script due to various phonetic-typing

as the users feel comfortable in writing in their native

language[1]. Such content creates a monolingual or multi-

lingual space with more than one script which we refer to as

the Mixed-Script space. Information retrieval in the mixed-

script space, which can be termed as Mixed-Script IR (MSIR),

is challenging because queries written in either the native or

the Roman scripts need to be matched to the documents

written in both the scripts.

Transliteration is a technique of mapping from one script of

writing into another, word by word, or alphabet by alphabet. It

is to follow the transcribing a word or text written in one

writing system of script into another writing system.

Transliterations in the narrow sense are used in situations

where the original script is not available to write down a word

in that script, while still high accuracy is required. One

instance of transliteration is the use of an English computer

keyboard to type in a language that uses a different alphabet,

such as Marathi, Russian, Chinese and Hindi etc.

The process of phonetically representing the words of a

language in a non-native script is called transliteration [2].

Transliteration, into Roman script is most widely accepted on

the internet not just for files but for the instant messages that

users send in the conversation on any social networking sites,

or for any query fired on search engines. When the queries are

written there is no specific spelling in the transliteration as the

user freely converts the word according to the phonetics, user

think is correct. That makes it very difficult to identify the

language and the context of the query of document. The

native word can have extensive spelling variations. For

example, the word (“good” in Hindi and many other

Indian languages) can be also written as aacha, acha, aachha,

achha, aachaa and so on.
This observable fact gives as a major matching problem faced

by the search engines to match the original or native script to

the transliterated script or Roman transliteration, where the

query asked need to search in the various documents and

having extensive spelling variations because of the

transliteration. For many languages, where typing in the

native script is not very convenient or popularly used for input

of search engine, in such cases, the user types the native

language words and sentences (usually) in Roman script, and

a transliteration engine automatically converts the Roman

input back to the native script. It is important to make a

distinction between forward and backward transliteration.

While the former refers to transliterating a word of language

A (say Hindi) into the script of language B (say English, in

which case the script is Roman), the latter is the reverse

process of getting back the word in the native script, given its

transliteration in a foreign script[3]. Thus, the process of

generating aacha or accha from the word , is forward

transliteration, whereas the process of generating given

accha is backward transliteration. For the proper forward and

backward transliterations it required to have two different

datasets for training. For example, to learn an English-to

Hindi backward transliteration engine one would need

transliterations pairs such as “accha, ”, where the

original word is in Hindi, and its transliteration in English is a

representation of the sound (/accha/ in IPA) of the Hindi word

using the English script. On the other hand, for English-to-

Hindi forward transliteration engine, one would need

instances like “accha, ”, where the original word of

English origin –“accha”, and the transliterated word is

representation of its sound (/accha/ in IPA) in Hindi script,

i.e., .
This paper is divided into sections: section 2 describes the

work that has already being done and the work which is

related. Section 3 describes the problem statement of the

paper while section 4 gives all the links for the dataset that

were used for the work done in this paper. Section 5 gives the

International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.1, July 2015

33

proposed method and the challenges. Section 6 describes the

results and Section 7 gives the conclusion and future work

that can be carried on.

2. RELATED WORK
Ben King and Steven Abney have worked in labelling the

languages of words in mixed language documents [6]. The

focus of the paper is labeling the languages of individual

words within a those documents that have more than one

language or in general term a multi-lingual document. They

have explores the possibilities of language identification in

multi-lingual documents. After their evaluation they found

that language identification of words is difficult if only single

word is considered while if the context of the word is

considered the results are better. This paper attempts to

address three of the ongoing issues specifically- supporting

minority languages, sparse or Impoverished training data, and

multilingual documents. For evaluation of the data they

created a corpus from BootCat tool and decided to consider 30

languages. They addressed the problem at the word level

classification. They used the logistic regression method

considering the n-gram approach with the use of tagging tool

like MALLET(A Machine Learning for Language Toolkit).

For further evaluation this problem is addressed in weakly

supervised fashion, where the sequence of the word is also

considered while in the independent word level identification

it was not considered. Among the approaches evaluated, they

found a conditional random field (CRF) model trained with

generalized expectation criteria was the most accurate and

performed consistently since the amount of training data was

varied.

Barman, Utsab, Amitava Das, Joachim Wagner, and Jennifer

Foster [7] have discussed the problem of automatic language

identification of the social media content is solved. They have

used three methods first a simple heuristic-based approach

which uses a combination of our dictionaries to classify the

language of a word. Second word-level classification using

supervised machine learning with SVMs but no contextual

information. Third Word-level classification using supervised

machine learning with SVMs and sequence labeling both

employing contextual information. A dictionary-based

language detector predicts the language of a word based on its

frequency in multiple language dictionaries. In their data the

Bengali and Hindi tokens are phonetically typed. To predict

the language of a word, dictionaries with normalized

frequency were considered first (BNC,SemEvalTwitter,

Training Data), if not found, word list look-up was performed.

The predicted language is chosen based on the dominant

language(s) of the corpus if the word appears in multiple

dictionaries with same frequency or if the word does not

appear in any dictionary or list. They have got two errors

firstly Named entity errors - when a named entity is given a

label that does not match the label it was given in the original

annotation. Second Shared word errors - when a word that

could belong to either language is classified incorrectly.

Kanika Gupta, Monojit Choudhury and Kalika Bali have

worked on Mining Hindi-English Transliteration Pairs from

Online Hindi Lyrics [3]. They have done the work on Hindi-

English language but the work can be applied to any other

native language if the transliteration is present in Roman

form. In paper describes a technique to mine Hindi-English

transliteration pairs from online Hindi song lyrics. The mining

task is non-trivial as the Hindi lyrics which are usually present

in websites are different as their transliterations differ. It

hence creates the problem of matching the lyrics to the correct

transliteration of the song and makes it a challenging task.

The problem increases as the data acquired from the web may

contain some form of noise. They mined the web and

collected data both for forward and backward transliteration

pairs and the crawling of different websites for making the

corpus of lyrics for aligning. After the corpus collection the

lyrics noises (repetitions, line breaks or transcriptions) are

removed. Then they align the song using cosine similarity for

Devanagri corpus and for roman corpus, vector space

representation. Again they have used the word level alignment

using an edit distance based approximate string matching

algorithm, using HMM classifier. With this work done the

results are of high quality and noise free.

3. PROBLEM STATEMENT
The problem statement was taken from the Shared task on

Transliterated Search at Forum for Information Retrieval

Evaluation (FIRE) in 2013[4]. Language detection of

individual words in the corpus or search query - Suppose

that q: w1 w2 w3 … wn, is a query which is written in Roman

script. The words, w1 w2 etc., could be Standard English

words or transliterated from Hindi. The task is to label the

words as E or H depending on whether it an English word, or

a transliterated Hindi word. For each transliterated word,

provide the correct transliteration in the native script (i.e., the

script which is used for writing Hindi). Then the second task

after the language identification is transliteration of the search

query entered by the user. Retrieval of appropriate song lyrics

file based on the input search query.

4. DATASET USED
The complete dataset for training and testing was taken from-

1. Training data for language identification task:

http://tinyurl.com/m6yyw48

2. English word frequency list: http://tinyurl.com/lyck5js

3. Hindi word frequency list: http://tinyurl.com/laxahsk

4. Hindi words transliteration pairs:

http://tinyurl.com/lnx4vha, http://tinyurl.com/oewsyx7

5. Song lyrics document collection:

http://www.dsic.upv.es/~pgupta/data/msir-doc-collection.zip

5. PROPOSED METHOD
The problem is divided into three major subtasks and they

have different approaches and methods.

5.1 Language Identification
Language identification is a qualification for all other task that

is needed to perform. Hence, having a good language

classifier is necessary and increases the accuracy of the

results. This portion describes the algorithm used and the

functioning of the language classifier. The major problem that

is needed to identify is the words from two languages first

English and second Hindi. If the words are written in

Devanagri script for Hindi and Roman script for English it is

then a simpler task to identify the language. This becomes one

of the important and non-trivial tasks as the Hindi words are

also written in roman script rather than Devanagri script. In

the web this problem is often faced as the users who are firing

the query know English as their second language and use

phonetic writing for convenience.

In this method several dataset has been used, the data which is

used for training the classifier consists of bilingual documents

containing annotated English and Hindi words in Romanized

script along with the transliterated form for the Hindi words.

In this method auxiliary English and Hindi dictionary datasets

International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.1, July 2015

34

are used. In the English word dictionary, 207856 English

words are stored with frequency. The Hindi dictionary which

consists of Hindi words written in roman script is taken into

account. In the Hindi word dictionary 15,000 roman scripted

Hindi words are stored with frequency. The words present are

with various spelling variations as the user can phonetically

write different spellings.

In this approach the system designed is purely lookup based.

The dataset taken contains of 30824 English Hindi pair’s

words, 207856 English words with frequency. But the dataset

given contained noise and therefore reduction of noise is a

necessary step. We reduce the given data by taking out all

words having frequency 1. As the words which have

frequency 1 means their chance of occurring in a document is

1 in 10000. So we consider it as negligible. From the above

reduction the dataset renaming to us is now containing 1 lakh

words.

Table 1 - Word variations in Roman Script

Word Variations

Pradhanmanti, pradhaanmantri, pradhaanmaantri,

pradhanmantree, pradhaanmantree, pradanmantri

Dheemi, dhimi, dhemi, dhiimii, dhiimi, dheemee

Maloom, malum, maaloom, maalum, mallum

Zindagi, zendagi, zindagee, zindhagi

Based on first character, these English words are splitted and

stored into 26 different files. Initially system reads a term

(word) from text file and compares first character of word

with files name, and then search the word in matched file (e.g.

suppose Airplane is input word and first character is A, so this

term will be searched in file a.txt). If word found in respective

English file we temporarily assume it is English term, but

there is possibility that it may be a Hindi term. For this reason

without taking final decision we search term in EH pair file. If

the term is found here also we assume it may be Hindi term.

Hence we assign H to word as label. If the word is found in

both the dictionaries, we check the frequencies with respect to

the word in both the dictionary and finally label the word with

either E or H whose frequency is more.

Algorithm-

1. Input term from Test Document

2. Check first letter of word {a-z}

3. Search word in corresponding Document

4. if match found

4.1 Search word in Hindi Document

4.2 if found

4.3 Check the frequencies in both the documents

4.4 Label the word as either English or Hindi based on the

frequency .

5. else

5.1 Label it as Hindi word.

We have used NetBeans IDE 7.2.1 Java: 1.7.0; Java

HotSpot(TM) 64-Bit Server VM 21.0-b17 as the simulator to

run and check all the proposed algorithms.

As we run the first segment we get the desired results and the

terms are classified based on the input query given. The user

can give either all the terms of the query in English or Hindi.

But there are fair chances that it can be mixed or roman

scripted transliteration. Therefore for clarification we give

labels \E for English and \H for Hindi so that we can

transliterate the terms which are only in roman scripted

format.

5.2 Transliteration
A corpus of Hindi song lyrics in Roman and Devanagri script

was collected along with the frequency lists of Hindi and

English words. Necessary filtering was done, and then a

mapping from Roman Words to a list of their Devanagri

counterparts was created. Now the frequency lists were used

to remove lower frequency Devanagri words from this one-to-

many mapping. In this process, we also get mapping for

Roman syllables. Thus, a many-to-one mapping of

transliterated word pairs and transliterated syllable pairs was

created to directly transliterate words. All the words are

identified as English or Hindi. If the word is identified as

Hindi, the word is transliterated to Devanagri script. The

English words remain same and no changes are done to those

words.

Table 2- Variations for Hindi words written in Roman

script

Roman Scripted Hindi

word

Hindi Transliteration

achchhi
Achchi
achcchi
achhi
achi

In the transliteration of Hindi words written in roman script,

the lookup dictionary is created which consist of 14,000

words with their corresponding transliterated word. Those

words are considered for transliterations which are identified

as Hindi language and English words are not transliterated. In

the process of transliteration all the possible combination of

words are considered. As the table 2 gives the idea that all the

spelling variations are considered in transliteration and this

mainly occur due to phonetic typing, for the speakers whose

second language is English.

If the search query consists of both Hindi and English words,

all the Hindi words are transliterated and all the English words

remain same as they are. For example if the query is as

follows “main kya karu”. In this query the first term is found

in both English and Hindi dictionaries. But word main(Roman

Scripted Hindi) has more frequency than the word found in

English dictionary. Therefore all the three terms will be

tagged by \H. And then the transliteration of the words will be

displayed as the result as follows, for main – , kya – ,
and for karu – .

International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.1, July 2015

35

5.3 Searching of Hindi Lyrics
This module is for the query processing part. The query

consists of either Devanagri script or its transliterated Roman

text or a combination of both and this module outputs ranked

list of song lyrics, with results in both Devanagri and Roman

scripts of the songs list with their respective document ids to

locate the result. The mining task is tough and challenging

because the Hindi lyrics and its transliterations are usually

available on the web but are very different, and often

unrelated on several websites. Therefore, it is a non-trivial

task to match the Hindi lyrics to their transliterated

counterparts. Moreover, there are various types of noise in

lyrics data that needs to be appropriately handled before songs

can be aligned at word level [3].

Note that, after pre-processing of the lyrics, different

Devanagri versions of the same song are expected to be

identical. On the other hand, their Roman counterparts can

still be significantly different from each other due to natural

spelling variations generated during forward transliteration. It

is important as well as useful for us to capture these

variations. Therefore, we divide the problem of song

alignment into the following two sub-tasks: First, we identify

all the Devanagri versions of the same song. Since they are

expected to be identical, we only take one of the versions for

further processing. The second sub-problem is to align the

Roman songs to one of the unique Devanagri songs

discovered in the previous step.

• Complete database of songs consist of 63,000

documents in form of text file.

• Indexing is created and then classified based on

scripts.

• Input query is being searched in indexing files.

• Based on the input query, decision is taken

whether to search in Roman corpus or Devanagri

corpus.

For the index creation complete database of songs is

considered. The index creation is an important task because

we cannot open and check if a particular search query matches

the contents of the lyrics or not. Therefore, we create index

for database and search the query in the formed index. The

index creation is also divided into two sections- Roman based

lyrics and Devanagri based. New files are created to store the

indexes for songs. The roman based index files are again

categorized into 26 files based on the roman alphabets. And

rest all are Devanagri script indexes and stored in separate text

files.

Table 3- Roman Scripted Lyrics stored in Index

After creation of Index

Gayab Hoke doc-id-22573.txt

Gayab Hoke Sab Dikhta Hai doc-id-22567.txt

Gayab Hoke Sab Dikhta Hai doc-id-22578.txt

Gayab Hoke Sab Dikhta Hai Lyrics doc-id-22583.txt

Gayatri Mahamantra doc-id-22587.txt

Gayatri Mantra doc-id-2825.txt

Gayatri Mantra Lyrics doc-id-2849.txt

Gaye Dinon Ka Suraag Lekar Kidhar Se doc-id-

40225.txt

Gazab doc-id-678.txt

After transliteration of the word, there are two possible cases.

The searches is carried for the given query in roman scripted

indexes and transliterate it to Devanagri script and search the

transliterated query in Devanagri scripted indexes.

Table 4 - Devanagri form of lyrics Index

After creation of Index

द द ... doc-id-25180.txt

द द ॥। doc-id-25168.txt

द द , ग़ , doc-id-

25164.txt

द द , ग़ , doc-id-

25181.txt

द द doc-id-39251.txt

द द doc-id-39219.txt

द ग़ doc-id-26470.txt

द ग़ doc-id-26473.txt

If the query is in roman script, then firstly then the language

identification of every word is done and then its

corresponding transliterations if found. And then the query is

searched through the lyrics index from roman lyrics. We then

again generate new query through the result we got from

subtask-2 of transliteration. The words are joined and the new

transliterated query is searched in the Devanagri index text

files. Suppose the user entered query was “Aa bhi ja” So the

two query formed in the below example would be

1. Aa bhi ja

2. आ .
Some of the results for the first query are:

“Aa Bhi Ja doc-id-21982.txt

Aa Bhi Ja Aaise Na Tarsa doc-id-21936.txt

Aa Bhi Ja Aye Mere Hamdam doc-id-21961.txt”

It gives the songs retrieved with their corresponding document

id if the user wishes to open the document. Some of the

results for second query are:

“आ आ ऐ आ doc-id-55364.txt

आ द ... doc-id-55840.txt

 द ड़प ड़प आ doc-id-38032.txt”

6. RESULTS
The results are evaluated with different parameters and the

parameters are defined below. Correct label pairs imply E−E

and H−H, while incorrect label pairs include E−H and H−E,

where E is for English and H stands for the Hindi language

[5]. TP, TR and TF are based on the overall factor, while EP,

International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.1, July 2015

36

ER and EF are based on the factor of language English

precision, recall and F-score, similarly for Hindi language.

Transliteration Precision –

Transliteration Recall –

Transliteration F-Score –

LA- Language Accuracy –

English Precision –

English Recall –

English F-Score –

Hindi Precision –

Hindi Recall –

Hindi F-Score –

The task that we have taken as a problem statement is

mentioned by Shared task on Transliterated Search at Forum

for Information Retrieval Evaluation (FIRE) in 2013[4]. We

have taken all the dataset from the provided link. And the

results that we obtained from completing the task are

compared to the results that were already submitted to this

track submission.

The last column of the result is the results obtained through

the implementation of the technique that we proposed earlier.

It shows better results than the earlier methods defined in the

paper shown in figure given below with comparison.

Table 5 - Comparison of results obtained from language

identification and transliteration

 ISM[8] NTNU[9] GU[11] Results

TP .72 .29 .41 .85

TR .64 .22 .36 .80

T F-

Score .68 .25 .40 .82

LA .81 .80 .81 .83

EP .68 .55 .56 .918

ER .91 .97 .97 .723

E F-

Score .78 .70 .71 .819

HP 96 .98 .99 .96

HR .86 .74 .75 .945

H F-

Score .91 .85 .85 .95

The results for the third task is given below where if we give a

query we get the result correct .81 times. This checked based

on the accuracy calculated. The accuracy is measured in terms

of the relevant and non-relevant documents. The list of

relevant and non-relevant documents is already present in the

given query list with the training and test data set.

Table 6 - Result comparison of searching of Hindi lyrics

 NTNU

[9]

Valencia

[10]

GU

[11]

Result

Accuracy .56 .805 .563 .813

International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.1, July 2015

37

Fig 1: The result showing the search results after entering the query.

7. CONCLUSION AND FUTURE WORK
The results obtained from the above proposed method were

slightly better than the earlier proposed works. But there are

some points where results are lacking. The point which

needed attention is recall portion where the improvement is

required. But it is difficult because of the fact that we are

using two different languages and using the same script makes

it more difficult to recognize and correctly the words because

of the different and large spelling variations used by the

speakers. There is a lot of scope of improvement in the

proposed method. We have not used the already present

indexer for indexing of the songs as we are using two

different languages and that can create problem while

indexing as the two different languages have different

semantics and way of writing. The indexing is done

accordingly.

For the further work in language identification different

machine learning techniques can be used such as Hidden

Markov Model, Support vector machines, Conditional

Random Field. For this we can also use the context based

information, depending on the before and after words of the

search query. The context based information also helps in

improving accuracy of the language identification. For the

transliteration of the words every word can be referred to

another word using the editex algorithm.

8. REFERENCES
[1] U. Z. Ahmed, K. Bali, M. Choudhury, and S. VB.

Challenges in designing input method editors for indian

lan-guages: The role of word-origin and context. In

Proceedings of the WTIM, pages 1–9, November 2011.

[2] K. Knight and J. Graehl. Machine transliteration.

Comput. Linguist., 24(4):599–612, Dec. 1998.

[3] Gupta, Kanika, Monojit Choudhury, and Kalika Bali.

"Mining Hindi-English Transliteration Pairs from Online

Hindi Lyrics." In LREC, pp. 2459-2465. 2012.

[4] FIRE Shared Task on Transliterated Search

http://research.microsoft.com/en-

us/events/fire13_st_on_transliteratedsearch/default.aspx

[5] R. Saha Roy, M. Choudhury, P. Majumder, and K.

Agarwal. “Overview and Datasets of FIRE 2013 Track

on Transliterated Search.” In Fifth Forum for

Information Retrieval Evaluation, 2013.

[6] Ben King and Steven Abney “Labeling the languages of

words in mixed-language documents using weakly

supervised methods.” Conference of the North American

Chapter of the Association for Computational Linguisics:

Human Language Technologies, pages 1110-1119, June-

2013

[7] Barman, Utsab, Amitava Das, Joachim Wagner, and

Jennifer Foster. "Code Mixing: A Challenge for

Language Identification in the Language of Social

Media." EMNLP 2014 (2014): 13.

[8] Dinesh Kumar Prabhakar, Sukomal Pal

“ISM@FIRE2013 shared task on Transliterated Search”

http://research.microsoft.com/en-

us/events/fire13_st_on_transliteratedsearch/fire14st.aspx

[9] Partha Pakray, Pinaki Bhaskar “Transliterated Search

System for Indian Languages”

http://research.microsoft.com/en-

us/events/fire13_st_on_transliteratedsearch/fire14st.aspx

[10] Parth Gupta, Paolo Rosso, and Rafael E. Banchs

Encoding transliteration variation through dimensionality

reduction: FIRE Shared Task on Transliterated Search

http://research.microsoft.com/en-

us/events/fire13_st_on_transliteratedsearch/fire14st.aspx

[11] Hardik Joshi , Apurva Bhatt, Honey Patel “Transliterated

Search using Syllabification Approach”

http://research.microsoft.com/en-

us/events/fire13_st_on_transliteratedsearch/fire14st.aspx

IJCATM : www.ijcaonline.org

