
International Journal of Computer Applications (0975 8887)
Volume 120 - No. 9, June 2015

Acceleration of JPEG Decoding Process using CUDA

Rushikesh Tade
Department of Electronics and Telecommunication

Pune University
Pune - 411 007

Saniya Ansari
Department of Electronics and Telecommunication

Pune University
Pune - 411 007

ABSTRACT
In this paper we have implemented efficient JPEG (Joint
Photographic experts group) Decoder on GPU (Graphic
Processing Unit) using NVIDIA CUDA (Compute Unified
Device Architecture) Technology. This decoder is capable of
decoding images of Ultra HD resolution with superfast speed GPU
is used to assist the CPU for time consuming tasks. In this paper
IDCT module which consumes 70 to 80 percent of computation
time is implemented on GPU. An asynchronous parallel execution
between the CPU and the GPU is used at a same time to improve
the JPEG decoder acceleration rate. In this work, the JPEG decoder
based on the CUDA performs decompression of images of size
2560 x 1600 pixels and below. Finally the results are shown with
respect to different sized images and consumed time for decoding.
The results show that this decoder faster in multiple times than the
decoder in CPU.

General Terms:
GPUGPU, CUDA, JPEG, DCT

Keywords:
CUDA, JPEG, RLE ,HUFFMAN Decoding

1. INTRODUCTION
In recent year many with the development of new technology
data storage cost is also increased. The more familiar example
would be the screen resolution of the TV sets. We can see how
the popularity of high resolution TV sets is been increasing over
the years. Since the data is increased and so do the quality of
material. This has resulted in more data to be stored and transferred
via communication media. Which has lead us to the various
compression techniques for the data to be transferred and stored.
Now a days we can find many standards for the image compression.
JPEG (Joint Photographic Experts Group) is one them which has
very popular for photographic image decoding [1]. In computing,
JPEG is a common method of lossy compression for digital images,
especially for those images produced by digital photography.
Adjustment in the compression can be done in JPEG, allowing a
selectable trade-off between storage size and image quality. JPEG
usually achieves 10:1 compression with little perceptible loss in
quality of image.

Fig. 1. Percent share of screen resolution in Europe market [3]

Since its very popular in image compression many
software and hardware techniques have been developed to
improvise the speed of JPEG decoding process. To the hardware
resources for the JPEG decoder, Some common efficient ways can
be obtained using the ,FPGA (Field Programmable Gate Array)
or other ASIC (Application Specific Integrated Circuit) resources,
DSP (Digital Signal Processor) [2].With increasing computations
speed of GPU along with the CUDA framework a software decoder
can be efficiently implemented.

2. CUDA TECHNOLOGY
General-Purpose computing on Graphics Processing Units
(GPGPU) is referred to techniques where calculations traditionally
done by the Central Processing Unit (CPU), handed over to the
Graphics Processing Unit (GPU). Earlier, the GPU was used only
to accelerate certain parts of the graphics pipeline, but now it can
reduce the CPU load and/or increase the processing throughput
for general purpose scientific and engineering computing. A
GPU acceleration model is shown in figure 3. GPU-accelerated
computing gives good application performance by giving load of
compute-intensive portions of the application to GPU, while the
rest of the code still runs on the CPU.

1



International Journal of Computer Applications (0975 8887)
Volume 120 - No. 9, June 2015

Fig. 2. CUDA execution model

Fig. 3. GPU acceleration Model [4]

From a user’s view, applications simply run significantly
faster. In order to ease the usage of GPUs for programmers
not familiar with the graphics pipeline, the CUDA language was
created by NVIDIA. CUDA is a programming interface to parallel
architecture for general purpose computing. It is an extension to
the C language, with a programming model easily understood
by programmers already familiar with threaded applications. This
interface is a set of library functions which can be coded as
extension of the C language. A compiler produces executable code
for CUDA device. The CPU sees a CUDA device as multi-core
co-processor. The CUDA design does not have memory restrictions
of GPGPU. One has a access of all memory available on the device
using CUDA with no restriction on its representation though the
access times vary for different types of memory [5].The GPU works
with a very high amount of threads which run at the simultaneously.
Threads are run in different batches called thread blocks [6]. And
the CUDA kernel function is essentially based on the block as a
unit. [7] In the same block, there are maximally 512 threads. As the
threads of the same block are executed into the same streaming
multiprocessors (SM), they can share data with each other by
shared memory. The number of active blocks is not more than 8 in
each SM. Generally, the number of active threads is not more than
768. There are six types of memory in the CUDA programming
model: Global Memory, Shared Memory, Local Memory, Register,
Constant Memory and Texture Memory [4]. The global memory is
located in the memory and it can be both read and write by devices,
but it has large memory access latency. However constant memory

Fig. 4. JPEG decoding process on CUDA

and texture memory are cached, the access speed is faster than
global memory. But they are only read by devices. The register are
on the GPU caches, execution units of GPU can access to register
with very low latency, the register is the basic unit of the register file
and each register file only has 32 bit. When the program has many
private variables, it can use the local memory. When the program
need data communicate in a block, the shared memory is a good
choice, it is also on cache and the access speed of shared memory
almost as fast as the register. So properly using the shared memory
to reduce other kinds of memory access is a good way to reduce
delay caused by memory access. [8]

2.1 nVidia Performance Primitives (NPP)Library
The NVIDIA Performance Primitives library (NPP) is a collection
of GPU-accelerated video, image, and signal processing functions
that deliver up to 5 to 10 times faster performance than comparable
CPU-only implementations. Using this library, we can take
advantage of over 1900 image processing and approximately 600
signal processing primitives to achieve significant improvements in
the performance of application. [9] We have used this library to
boost our performance.

3. JPEG DECODING PROCESS AND
IMPLEMENTATION ON CUDA

JPEG decoder usually consist of an entropy decoder which usually
consist of Huffman decoder. Before the start of the actual image
in the decoder’s stream of input data, the encoder has placed the
tables it used for encoding the image. This means that the decoder
can first extract the required tables from its input data stream, in
order to process the rest of the input data with the help of these
tables. The first step is to reverse the entropy encoding process,

2



International Journal of Computer Applications (0975 8887)
Volume 120 - No. 9, June 2015

which produces the quantized DCT coefficients, with the help of
the quantization tables, the DCT coefficients can be de quantized
and finally be transformed back via the IDCT process. Figure 4
shows the decoding process of the JPEG. [10] [11]

The Huffman decoder includes the decoding of the
run-length encoding (RLE), the entropy coding of the DC(Direct
Current) coefficients and AC(Alternating Current) coefficients. At
the same time, in order to decode the DC coefficients, the current
DC variable is to add the former DC variable of a color component
unit, and it involves a large number of logical operations. So the
Huffman decoding is more suitable to use the CPU to complete [12]
[13].In this paper, the de-quantizer and the inverse zigzag operation
are done with the Huffman decoder module. The de-quantizer is
accomplished by multiplying the value with the quantization table
when the coefficients is finished by the Huffman decoder model.
Then the inverse zigzag is implemented with the help of look up
table. Since the hardware configuration of the GPU is not suitable
for logic operations. The GPU will bring large overhead in the
implementation of the control flow instruction. At the same time,
this model is also so simply done in the Huffman model, so this
module is more efficiently done by the CPU than by the GPU with
the CUDA.The whole 2-D IDCT have more data computation in the
JPEG decoder than any other block. The 2-D IDCT in the decoded
image is no correlation between each sub-graph, so which makes
it computable independently. Therefore, there are different levels
of parallelism in the step of the IDCT transform. So we can use
the CUDA to finish it. In this work have used CUDA NPP library
for the processing of the data in CUDA is been used. This gives
users advantage for the processing of the most of the data into
the GPU memory. Which has resulted as boost of performance
as discussed in the Results. Flowchart for the whole process if
shown in figure 5. First a bit stream is processed in the CPU and
different markers are detected from it. Using this bit stream we have
separated out the data such as Huffman tables, Quantization tables
and data bits. After that we have performed De-quantization and
Huffman decoding of the data.First, we use the texture memory
to store the Huffman decoder data for the input of IDCT module.
With this way we can reduce the access latency comparing to global
memory. Then we move with the constant memory to store some
constant data such as cos matrix and it makes the constant data
access latency as fast as the register. Secondly, in the same block,
we use the shared memory to store the output data from the row
1-D IDCTs. Since there are eight sub IDCTs executing in the GPU,
there are 512 intermediate data for the next 1-D IDCT step. As a
result, we put the 512 intermediate data into the shared memory and
it will also reduce the access latency of data. Which has resulted
into producing the DCT data. Preceding that we have used IDCT
module for which outputted the pixel values of the data.

4. EXPERIMENTAL SETUP AND RESULTS
We have used images of three size for the decoding process. Input
image is shown in 6. The three resolutions which are used in for
experimentation are 600 x 522, 1920 x 1080, and 3240 x 2160. The
Results are calculated with by calculating the time required for the
execution a module. We have also compared the results with the
method proposed by Ke Yan [14]. Ke Yan has used two methods
for the implementation of the CUDA decoder it. Synchronous and
Asynchronous execution of the CUDA decoder.

Fig. 5. JPEG decoding process on CUDA

Fig. 6. Input Image

3



International Journal of Computer Applications (0975 8887)
Volume 120 - No. 9, June 2015

Table 1. Results for the execution of Image Decoder
Image Size CPU GPU asynch GPU synch NPP
600 x 522 31 ms 16 ms 21 ms 11.72 ms
1920 x 1080 187 ms 89 ms 117 ms 44.85 ms
3240 x 2160 621 ms 279 ms 373 ms 124 ms

Table 2. Results for the execution of IDCT
Module

Image Size CPU GPU NPP
600 x 522 18 ms 0.38 ms 0.28 ms
1920 x 1080 125 ms 2.54 ms 3.33 ms
3240 x 2160 422 ms 8.54 ms 5.55 ms

Fig. 7. IDCT Results

Fig. 8. Results for the Decoder

Fig. 9. IDCT Results

Fig. 10. Results for the Decoder

These results show that with this method we get around
26x more speed-up that the previous method and also around 3x
more speedup in decoding process. This is mainly because most of
our operations are performed in GPU memory.

5. CONCLUSION
In this paper, we introduced the CUDA technology and analysed
the basic JPEG decoder models. By taking advantage of the CUDA
technology and NPP libraries, we can speed up the JPEG decoding
by much more that speed than the traditional CUDA based JPEG
Decoders. The experimental results show that the CUDA-based
JPEG decoder can save about 70% time than the CPU-based
realization and the model of the IDCT decoder realized on the GPU
can be 49 times faster than the CPU-based realization.

Our future work will be targeted in the direction
of improving the JPEG decoder and we will move towards
optimization of JPEG resizing process which will be achieved by
doing the implementation of both decoder and encoder unit on
CUDA.

4



International Journal of Computer Applications (0975 8887)
Volume 120 - No. 9, June 2015

6. ACKNOWLEDGEMENT
The authors would like to thank the Department of Electronics
and Telecommunication Engineering of Dr. D.Y. Patil School of
Engineering, as well as researchers for making their resources
available and teachers for their guidance. We are thankful to the
authorities Board of Studies Electronics and Telecommunication
Engineering of Savitribai Phule Pune University. We are also
thankful to reviewer for their valuable feedback and suggestions.
We also thank the college authorities for providing the required
infrastructure and support. Finally, we would like to extend a
heartfelt gratitude to friends and family members.

7. REFERENCES

[1] Kun-Bin Lee and Chi-Cheng Ju. A memory-efficient
progressive jpeg decoder. In VLSI Design, Automation and
Test, 2007. VLSI-DAT 2007. International Symposium on,
pages 1–4. IEEE, 2007.

[2] Jahanzeb Ahmad, Kamran Raza, Mansoor Ebrahim, and
Umar Talha. Fpga based implementation of baseline jpeg
decoder. In Proceedings of the 7th International Conference
on Frontiers of Information Technology, page 29. ACM, 2009.

[3] Areppim AG, stats of screen resolution eu. http://stats.
areppim.com/stats/stats_screenresxtime_eu.htm.
Accessed: 2015-04-12.

[4] NVIDIA, gpu accelerated computing. http://www.
nvidia.com/object/what-is-gpu-computing.html.
Accessed: 2015-04-25.

[5] Pawan Harish and PJ Narayanan. Accelerating large graph
algorithms on the gpu using cuda. In High performance
computing–HiPC 2007, pages 197–208. Springer, 2007.

[6] CUDA Nvidia. Compute unified device architecture
programming guide. 2007.

[7] Hong Biao Li. A new efficient method for dct8x8 with
cuda. In Applied Mechanics and Materials, volume 681,
pages 231–234. Trans Tech Publ, 2014.

[8] Shane Cook. CUDA programming: a developer’s guide to
parallel computing with GPUs. Newnes, 2012.

[9] NVIDIA, nvidia performance primitives. https://
developer.nvidia.com/NPP. Accessed: 2015-04-25.

[10] Jingqi Ao, Sunanda Mitra, and Brian Nutter. Fast and efficient
lossless image compression based on cuda parallel wavelet
tree encoding. In Image Analysis and Interpretation (SSIAI),
2014 IEEE Southwest Symposium on, pages 21–24. IEEE,
2014.

[11] KS Priyadarshini, GS Sharvani, and SB Prapulla. A survey
on parallel computing of image compression algorithms jpeg
and fractal image compression. IJITR, pages 78–83, 2015.

[12] Jeong-Woo Lee, Bumho Kim, Jungsoo Lee, and Ki-Song
Yoon. Gpu-based jpeg2000 decoding scheme for digital
cinema. In Advanced Communication Technology (ICACT),
2014 16th International Conference on, pages 601–604.
IEEE, 2014.

[13] Bart Pieters, Charles-Frederik Hollemeersch, Jan De Cock,
Peter Lambert, and Rik Van de Walle. Data-parallel
intra decoding for block-based image and video coding on
massively parallel architectures. Signal Processing: Image
Communication, 27(3):220–237, 2012.

[14] Ke Yan, Junming Shan, and Eryan Yang. Cuda-based
acceleration of the jpeg decoder. In Natural Computation
(ICNC), 2013 Ninth International Conference on, pages
1319–1323. IEEE, 2013.

5

http://stats.areppim.com/stats/stats_screenresxtime_eu.htm
http://stats.areppim.com/stats/stats_screenresxtime_eu.htm
http://www.nvidia.com/object/what-is-gpu-computing.html
http://www.nvidia.com/object/what-is-gpu-computing.html
https://developer.nvidia.com/NPP
https://developer.nvidia.com/NPP

	Introduction
	CUDA Technology
	nVidia Performance Primitives (NPP)Library

	JPEG Decoding Process and Implementation on CUDA
	Experimental Setup and Results
	Conclusion
	Acknowledgement
	References

