
International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.9, June 2015

35

Restructuring robots.txt for better Information Retrieval

Bhavin M. Jasani

Department of computer Science,
Saurashtra University, Rajkot, Gujarat (India).

C. K. Kumbharana
Department of computer Science,

Saurashtra University, Rajkot, Gujarat (India).

ABSTRACT
Now a days the users of the WWW are not only the human.

There are other users or visitors like web crawlers and robots

which are generated by the search engines or information

retrievers. The direct visitors of your website are very less

than those who reach to your website by using search engines

or through other links. To collect information from your

website search engines use crawlers or robots to access your

website. There must be an access mechanism or protocol for

such robots which restrict them to access unwanted content of

the website.robots.txt is a partial mechanism for such facilities

but not fully functional. This paper gives an enhancements to

fully make use of the functionality of robots.txt file.

Keywords
Crawling agents, robots, spammer, harvesters, User Agent,

<META> tag, Directive Overriding, Web Crawling, Web

Tree, Web Spamming, Crawling, Querying.

1. INTRODUCTION
Crawling agents called robots or crawlers are used by search

engines for retrieval of Information from websites. The

website has to access its resources to serve the requests

coming from various web crawlers. It takes more time and

resources of the web servers. There must be some mechanism

to manage the crawler activities because the intention and

purpose of retrieving content of all crawlers may not be

identical. To overcome this problem the robot exclusion

protocol(REP)[1] is a solution but this is not fully utilized by

site administrators. REP provides set of access rules to be

followed by web crawlers. A place in the website where these

rules can be specified is a robots.txt file, Which contains

allow or disallow rules to define access of content for specific

web crawlers.

By using this technique specified in this paper, Website

administrators can specify the set of rules to indicate the

visiting robots that which parts of the site should be avoided

and which part should be scanned at the time of website visit.

It is purely depends up to the visiting robot to consult the

instructions written into the robots.txt file and act accordingly.

Because some bad robots like spammer or email harvesters

may not act according to the robot exclusion protocol or

instructions written in the robots.txt file. There is no control of

site administrators over the scanning of robots. To overcome

this problem some techniques are defined in this paper.

2. STRUCTURE & ACCESS METHOD

OF ROBOTS.TXT
This section covers the encoding of the instructions and

access method to retrieve these instructions by robot or

crawler. Any visiting robot or crawler must first read these

instructions before visiting any other URLs of that website.

And decide if the other URLs of that website are accessible or

not. Such instructions must be accessible through HTTP as

text/plain format from specific path websiteurl/robots.txt as

other pages are accessible from the internet.

Some examples of URLs for sites and URLs for

corresponding "/robots.txt" files:

If the domain name of a website is http://www.example.com/

than the robots.txt file must be at root of the site i.e.

http://www.example.com/robots.txt another domain name like

http://www.myweb.com:8001/, than the robots.txt file must be

available at http://www.myweb.com:8001/robots.txt

At the time of accessing robots.txt file if the server response

returns success then robot or crawler must read the content or

instructions from the robots.txt file and act accordingly if

applicable to that visiting robot or crawler. If server returns

page not found (404) error then visiting robot can assume that

no instructions are available and hence the site is not restricted

by robots.txt, robot will scan all available pages of that

website.

3. FORMAT OF ROBOTS.TXT FILE
The instructions are encoded in the plain text format formally

records are separated by new lines and each record is in the

form of <field>:<value>.

The instructions start with the list of user agents to specify

which instructions are for which robot with the value of

“Allow” and “Disallow” fields. As an example:

User-agent:crawlername

User-agent:robotname

Allow:/public/page.html

Allow:*

Disallow:/public/page_1.html

Where User-agent is the name of the crawler or robot to

identify themselves at the time of website visit. Here

crawlername and robotname are the name of the visiting

robots. The Allow directive indicates the page

/public/page.html is accessible for both user agents, while the

Disallow directive indicates the page /public/page_1.html is

not permissible to read for both user agents. The value of “*”

defines the remaining all pages of the site are accessible for

both user agents.

The name of the robot can found in the HTTP request made

by the visiting robot for example the “search data” robot sends

HTTP request as :

http://www.example.com/
http://www.myweb.com:8001/

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.9, June 2015

36

GET / HTTP/1.0

User-agent: search_data/0.1 Robot libwww-perl/5.04 might

scan the "/robots.txt" file for records with:

User-agent: search_data

The comparison of user_agent value is case insensitive. If

there is not match found for the visiting robot then the access

of website is unlimited for that robot. Matching process

compares each octet found in the URL with the records in

robots.txt file. Possible matches are given in the bellow table

as robots.txt file record value and URL path.

Record Value URL Path Matches

/tmp /tmp Yes

/tmp /tmp.html Yes

/tmp /tmp/a.html Yes

/tmp/ /tmp No

/tmp/ /tmp/ Yes

/tmp/ /tmp/a.html Yes

/a%3cd.html /a%3cd.html Yes

/a%3Cd.html /a%3cd.html Yes

/a%3cd.html /a%3Cd.html Yes

/a%3Cd.html /a%3CD.html Yes

/a%2fb.html /a%2fb.html Yes

/a%2fb.html /a/b.html No

/a/b.html /a%2fb.html No

/a/b.html /a/b.html Yes

/%7ebmj/index.html /~bmj/index.html Yes

/~bmj/index.html /%7Ebmj/index.html Yes

3.1 Working Example of robots.txt file
This section contains an example of how a /robots.txt is used.

A fictional site may have the following URLs:

http://www.bmj.org/

http://www.bmj.org/index.html

http://www.bmj.org/robots.txt

http://www.bmj.org/server.html

http://www.bmj.org/services/fast.html

http://www.bmj.org/services/slow.html

http://www.bmj.org/orgo.gif

http://www.bmj.org/org/about.html

http://www.bmj.org/org/plans.html

http://www.bmj.org/%7Ejim/jim.html

http://www.bmj.org/%7Emak/mak.html

The following instructions are written into /robots.txt of the

site http://www.bmj.org for three user agents “Robot 1/1.0”,

“Crawler 1/0.2” and “Info Spiders/3.0”.

/robots.txt for http://www.bmj.org/

comments to webmaster@bmj.org

User-agent: robot1

Disallow: /

User-agent: crawler1

User-agent: infospider

Disallow:

User-agent: *

Disallow: /org/plans.html

Allow: /org/

Allow: /serv

Allow: /~mak

Disallow: /

The following matrix shows which robots are allowed to

access which URLs:

URLs Robot1 Crawler1 other&

infospider

http://www.bmj.org/ No Yes No

/index.html No Yes No

/robots.txt Yes Yes Yes

/server.html No Yes Yes

/services/fast.html No Yes Yes

/services/slow.html No Yes Yes

/orgo.gif No Yes No

/org/about.html No Yes Yes

/org/plans.html No Yes No

/%7Ejim/jim.html No Yes No

/%7Emak/mak.html No Yes Yes

3.2 Robots <META> Tags
The page requests coming from other websites may not read

the instructions of robots.txt file. The visiting robot may read

that page even this page is restricted in the robots.txt file.

Apart from robots.txt file, by using html <meta> tags we can

instruct the visiting robots to index the content of the HTML

page or to follow the links found in the page as following:

<html>

<head>

<title>...</title>

<META NAME="ROBOTS" CONTENT="NOINDEX,

NOFOLLOW">

</head>

the NOFOLLOW directive only applies to links on this page.

It's entirely likely that a robot might find the same links on

some other page without a NOFOLLOW (perhaps on some

other site), and so still arrives at your undesired page. The

"NAME" attribute must be "ROBOTS".

Valid values for the "CONTENT" attribute are: "INDEX",

"NOINDEX", "FOLLOW", "NOFOLLOW". Multiple

comma-separated values are allowed, but obviously only

some combinations make sense. If there is no robots

<META> tag, the default is "INDEX,FOLLOW", so there's

no need to spell that out. That leaves:

<META NAME="ROBOTS" CONTENT="NOINDEX,

FOLLOW">

<META NAME="ROBOTS" CONTENT="INDEX,

NOFOLLOW">

<META NAME="ROBOTS" CONTENT="NOINDEX,

NOFOLLOW">

NOINDEX, FOLLOW : Means do not Index the page, but

follow the links found in the page to further scanning.

INDEX, NOFOLLOW : Means Index this page content for

search, but do not follow the links found in the page for

further scanning.

NOINDEX, NOFOLLOW : Means do not index this page

for searching and also don’t follow the links found in this

page for further scanning.

4 ENHANCING ROBOTS.TXT
As we have discussed in above sections that It is solely up to

the visiting robot to consult this information and act

accordingly. Because some bad robots like spammer or email

harvesters may not act according to the robot exclusion

protocol or instructions written in the robots.txt file.

http://www.bmj.org/
http://www.bmj.org/index.html
http://www.bmj.org/robots.txt
http://www.bmj.org/server.html
http://www.bmj.org/services/fast.html
http://www.bmj.org/services/slow.html
http://www.bmj.org/orgo.gif
http://www.bmj.org/org/about.html
http://www.bmj.org/org/plans.html
http://www.bmj.org/~jim/jim.html
http://www.bmj.org/~mak/mak.html
http://www.bmj.org/
http://www.bmj.org/
http://www.fict.org/index.html
http://www.fict.org/server.html

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.9, June 2015

37

As per the above study of robots.txt and Robot Exclusion

Protocol there is no mechanism of how to manage the

scanning flow of the robots and how to restrict them to visit

unpublished or unwanted pages in the website, whether the

intension of robot for scanning the website is good or bad.

Here, the researcher has suggested some improvements for

robots.txt file as a protocol to follow each robot access in the

website. These improvements are as under.

Up to now we have seen some basic keywords like user agent,

allow, disallow, etc in the robots.txt files. But these

information are only limited for controlling access of web

pages into the website. But this information does not give any

confirmation that whether the visiting robot has act according

to this information or not.

The robots.txt standard is a very useful tool for both

webmasters and the people who run web crawlers. This

standard could be even more useful with several

improvements.

As we know that, what is the main aim of any robots or

crawler? The answer is to collect meaning full information

from World Wide Web. Generally robots or web crawlers are

run by search engines to collect information from WWW for

indexing as per their structure and algorithms. Here the main

aim of researcher is to improve the web crawling mechanism

for effectiveness of search engine.

So far as the search engine mechanism and web crawling

algorithm is concern the robots.txt file should also contain the

information about the website, that what is the actual aim of

the website, website content is for what purpose and category,

the region of the website, language or target users of the

website, description of the website, etc. So that a visiting

robot can get basic information about website by reading only

one file i.e. robots.txt. To collect such information if there is

no such robots.txt file, the robot may need to scan more than

five pages of the website. Let us discuss each topic in detail

which is highlighted above.

4.1 Site Naming
Site naming creates many problems for web robots or web

masters. A robots.txt file should contain the name of the site.

Sites can be referred or referenced by many names. Even

some large scale websites may have many physical IP

addresses and virtual domain names. It becomes very crucial

for robots or web master tools to determine which name to

prefer for future use. This is useful when the site administrator

has set the temporary domains to balance the server load. This

naming guides the robot how to avoid that domain to reduce

infinite looping and scanning. Site administrator may simply

set the site name directive into the robots.txt file as under:

defines the site name for visiting robots.

Site-name: www.example.com | www.example1.com

Where “|” defines the alternatives as per BNF-like description,

using the conventions of RFC 822[2].

4.2 Multiple Names and IP Addresses
Most of the websites are referred by multiple names and IP

addresses to balance the server traffic as mentioned in above

section. To avoid duplication crawlers generally convert these

names to IP addresses. In practice when representing the

search data it is required to use site names instead of IP

addresses. It is bit confusing for web crawlers to determine

which name should be used for a particular website. The

robots.txt file should have an entry for the site name details.

Some heavy traffic websites use multiple servers to balance

the load. Servers are added frequently and their IP addresses

often change. Crawlers do not have any mechanism to

understand and keep record of the frequently changing

mapping of servers to their logical site names. These

anomalies create undesired duplicate crawling and useless

effort of the crawler and higher traffic at the websites. The

robots.txt file is a perfect location to mention a list of IP

addresses and their mapping to a logical site.

defines multiple site name and IP address mapping.

Site-temp-name: www.temp.abc.com=>127.0.0.1

Site-temp-name: www.temp.abc1.com=>192.168.0.1

Site-temp-name: www.temp.abc2.com=>192.168.1.123

4.3 Freshness of Web Pages and its Content
There are many ways to check freshness of the web page and

web content. HTTP header provides a facility to check when

the page or file was updated. This process is useful for saving

labor work of robot to scan unchanged pages as the last scan

was run before. It saves server time and bandwidth for

scanning such pages.

The robots.txt file should have an entry of modification record

for such frequently changing web pages or website areas by

using MD5s or timestamp values. So that the robot can easily

identify which area of the website is useful for scan and which

area is unchanged since the last visit of that website.

Today the only way to tell what pages you want to update is

to use the If-Modified-Since request-header field. This costs a

connection per page. Having this information centralized in

the robots.txt file would decrease server loads. This

information could be presented at a directory or file level

depending on the size of the site and the granularity of

information the webmaster wants to present.

As the paths of the website inner pages or areas are defined in

the robots.txt file we can put same changing timestamp[5]

with the entry of the path in allow, disallow directives.

Following example or directive can be used to apply such

facility into the robots.txt file:

defines change timestamp of frequently changing pages.

Last-updated:/info/aboutus.html=>1431507724

Last-updated:/main/news.html=> 1431507798

Last-updated:/main/jobs.html=> 1431508278

Last-updated:/blog/recent.html=> 1431508758

4.4 Freshness of robots.txt file
The robots.txt file needs to include a time-to-live (TTL) value.

This tells crawlers how often they should update the robots.txt

information for that site. Some sites very rarely change their

robots.txt files and do not want the extra traffic of having

them frequently re-read by multiple crawlers. Even if the If-

Modified-Since request-header field is used, a connection still

http://www.example.com/
http://www.example1.com/
http://www.temp.abc1.com/

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.9, June 2015

38

has to be created each time. On the other hand, some sites

change their robots.txt files regularly and often. They are

often hurt by extensive caching of robots.txt information by

crawlers. Having an explicit TTL value would help crawlers

satisfy each site's requirements.

4.5 Multi level robots.txt file
The scanning size of visiting robots may have scanning or

reading limitations to read the robots.txt file at some extent.

So it becomes danger to put large amount of text content in

the robots.txt file because some robots leave the content at

specific size or limit occurs. It is required to have more than

one robots.txt file for the same website at different levels, so

that the size of the file remain small and it is acceptable by

almost all robots and webmasters.

For example in some website the content can be updated from

many sources as there may be a more than one content

updaters for a site. As an example a blogging site, social

network site, university sites may have more than one content

updaters.

In the university there may be multiple students updating their

content on the website. the updating area of the site may be

different for different student. And content access control may

be changed and it is up to the students. if all students or all

content updaters try to change the main global robots.txt file

than it is not feasible in the practice and it is unreasonable to

allow all of the content updaters to make changes in the

robots.txt file.

The main robots.txt file should contain information or

redirection facility to read further robots.txt file in the deep.

The multilevel robots.txt files can be defined for various part

of the site, may be this can be categorize by the access control

or types of the website users.

4.6 Directive overriding for complex

directory tree
The disallow statement of the current robots.txt standard

could be made more powerful. For various reasons some sites

cannot change their on-disk layout and may have very large

directories. It is very cumbersome to exclude part of a large

directory using the current disallow statement. A more

powerful regular expression syntax or an 'allow' directive to

override the disallow for specific files would be useful.

4.7 Site Description
the main task of any robot or crawler is to collect meaningful

information from the world wide web to create some specific

repositories. Repositories may be categorized by the content

type, area of the content, language of the content, location of

the website , origin of the website etc.

robots or crawlers generally read the content of the website

and stores them to different categories for future use. The

description of the website is also useful for SEO(search

engine optimization) of the website.

It is recommended to have brief info of the website into the

robots.txt file. Using this brief description of the website

written in the robots.txt file robots or crawlers can identify

that in which category the website will fall without reading

the content of all pages of that website.

4.8 Host Details
Putting domain hosting details on robots.txt file may help the

web crawler to collect meaning information like IP address of

the website, domain provider, list of available name servers

etc.

Using these information search engines can keep record of

server location and list of available name servers for crawling

purpose.

Following is the host details of http://www.w3c.org website as

an example to make entry in the robots.txt file.

#Hosting Details.

Hosting_provider: Massachusetts Institute of Technology

IP_Address: 128.30.52.45

Name_Server1:ns1.w3.org

Name_Server2:ns3.w3.org

Name_Server3:ns2.w3.org

Domain_ID:D1266030-LROR

Creation_Date:1994-07-06T04:00:00Z

Updated_Date:2015-02-16T16:48:01Z

Expiry_Date: 2022-07-05T04:00:00Z

4.9 Access log of each visiting robot/crawler
While visiting the website page, the robot or web crawler

passes the header information to the web server as a request.

Following is the example of http header sent by the HTTrack

crawling application as a robot request :

GET /abc HTTP/1.1

Connection: keep-alive

Host: localhost

User-Agent: Mozilla/4.5 (compatible; HTTrack 3.0x;

Windows 98)

Accept: text/html,image/png,image/jpeg,image/pjpeg,image/x-

xbitmap,image/svg+xml,image/gif;q=0.9,*/*;q=0.1

Accept-Language: en, *

Accept-Encoding: gzip, identity;q=0.9

Capturing User-Agent field from header information web

servers can keep track of the visiting robots or web crawlers.

This tracking process should also be performed from the

website areas where any robot is not allowed to visit the

pages, so that we can also identify that how many robots are

entering in such restricted areas intentionally.

4.10 Authenticating Robots
As earlier mentioned in this section the it is up to the visiting

robot/crawler to act according to the access rules written in

robots.txt files. Some bad robots like email harvesters and

spammers may not act according to robots.txt.

To make sure that robot/crawler is acting as per the

instructions written in robots.txt file, web servers could

provide an authentication for each robot/crawler as normal

user’s user name and password to access the website content.

Web server or site administrator may also create a role for

robots to access the website content.

http://www.w3c.org/
http://www.whoishostingthis.com/linkout/?t=3&url=Massachusetts+Institute+of+Technology
http://www.whoishostingthis.com/linkout/?t=3&url=Massachusetts+Institute+of+Technology

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.9, June 2015

39

For such authentication robots.txt file has such mechanism

that each robot/crawler should be redirected to an

authentication page when they enter to visit the website page

or try to read the robots.txt file for further detail. After

providing a username and password, robot/crawler can gain

the access of scanning the web pages as per their roll and

instructions written in the robots.txt file. As all web

applications support sessions a site administrator can also

track the activities of the robot/crawler during their logged in

sessions.

4.11 Configuration Interface
Now a days the management of websites become crucial for

site administrators. Maintaining an authenticity of the website

is become a major problem for all online applications. We

have discuss that the website should have multilevel robots.txt

files for batter access control same way there may be more

than one content updaters for the different areas of the

website. To maintain these all one must have to make changes

in robots.txt file every time and it becomes very difficult to

track the record of each change made in robots.txt file.

Hence like the website admin panel, the robots.txt file also

should be configurable through attractive user interface. The

configuration settings can be stored in database and easily

updatable using user interface by any person with little or no

knowledge about robots.txt file and robot exclusion protocol.

4.12 Authenticating Robots
The web crawler or a robot will have its own independence to

act as per the instructions written in the robots.txt file. We can

list allow and disallow entries in the robots.txt file for a

specific path or directories. But it becomes crucial to keep

allow disallow entry of each page specifically when the

website has more pages. Even it excide the size of the

robots.txt file. Because some robots or web crawlers may read

robots.txt file up to some defined size. So the size of robots.txt

file should be as less as possible.

If you disallow the robot or crawler to enter into some

restricted area of website by making entry in the robots.txt

file, the bad intension robots even scan your page. Or

sometimes the request of restricted page may comes from

outside or crawling other website. At this time crawler may

not read the target website robots.txt file and keep reading the

restricted page. To overcome this problem we can use the

meta tages for each page to inform the visiting robots that

visit or not to visit this page.

But the problem remains still open that how to restrict all type

of robots or crawler whether the intension of scanning robot is

good or bad.

As we discussed earlier in the chapter section 3.8.9 that the

web crawler or robot make a request at each page while

crawling the website. By using header information web server

can identify the name of requester i.e. the name of the robot or

crawler in this case. At the top of the each page a site

administrator can put a check mark whether the requesting

robot is allowed to visit the current page or not. If the

robots.txt file is configurable as discussed earlier, the

checking entries of all robots from database is become easy

irrespective of platform and programming language used to

develop a website.

The following flowchart may help to understand the check

mark process.

Fig.1 : [A process flow of crawler without page level check

mark]

Fig.2 : [A process flow of crawler with page level check

mark]

Start Crawling

Read robot.txt file

Get page access instructions

Pick page URL to scan

Check page

<meta> tag

Read page content & out going

links

End Process

No Yes

Check headers for access

Yes No

Start Crawling

Read robot.txt file

Get page access instructions

Pick page URL to scan

Check page

<meta> tag

Read page content & out going

links

End Process

No Yes

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.9, June 2015

40

In figure 1 the web crawler or robot can ignore the page

access rule and read the page. While in figure 2 the robot is

identified by check mark to allow or disallow. If the robot is

disallow to read the page, the robot won’t find anything from

the page. The pseudo code for check mark is as under:

Var allow=false;

Function read_Header(){

 Var user_agent=”agent name”;

 allow = Check_agent_entry(user_agent);

}

Function Check_agent_entry(user_agent){

 Var(array) list_of_robots=fetch from database;

 While(list_of_robots){

 If(robot==user_agent){

 Return true;

 Break;

 }

 }

 Return false;

}

If(allow){

// put html code of the page here.....

}else{

 Print(“you are not allowed to scan or read this

page.. bye bye.”);

}

5. REFERENCES

[1] A Standard for Robot Exclusion:

http://www.robotstxt.org/orig.html

[2] Standard for the Format of ARPA Internet Text

Messages: https://www.ietf.org/rfc/rfc0822.txt

[3] The Web Robots Pages. http://www.robotstxt.org/

[4] W3C http://www.w3.org/

[5] Timestamp http://en.wikipedia.org/wiki/Timestamp

[6] Backus–Naur Form

http://en.wikipedia.org/wiki/Backus%E2%80%93Naur_f

orm

IJCATM : www.ijcaonline.org

http://www.robotstxt.org/orig.html
https://www.ietf.org/rfc/rfc0822.txt
http://www.robotstxt.org/
http://www.w3.org/
http://en.wikipedia.org/wiki/Timestamp
http://en.wikipedia.org/wiki/Backus%E2%80%93Naur

