A Statistical Parametric Analysis on Various Filters Applied on Different Noises for MRI and USG Images

Manasi Rana Research Scholar 2, Kuthiala Colony, Jodhamal Road, civil Lines, Hoshiarpur-146001,Punjab,India

ABSTRACT

This paper presents the comprehensive study of the various filters and their comparative analysis using statistical parameters in digital image processing. We have simulated the various statistical parameters and viewed their results using plots. We have done their comparative analysis with the help of MATLAB simulation to ease the selection of best filter for a specific noise introduced in MRI and USG image.

Keywords

Statistical Parameters, noise, filters, MRI and USG image.

1. INTRODUCTION

Suppression of noise efficiently in an image is a very important. Here the detection of the noise patterns which affect the USG and MRI image and to apply the Spatial filters to remove those noises. The common noises found in these images are speckle noise, salt and pepper noise and Gaussian noise. These images come across these noises from background and through equipment [1]. The noise can be of any type, high or low leading to the degradation of the image quality. The Spatial Filters are categorized according to their performance judged by Statistical analysis to find the best suitable Spatial Filter for a particular noise. The various statistical parameters used are MSE, NAE, NCC, max diff and PSNR. In the next few sections we have discussed about the various noises, filters and the statistical parameters for an input MRI and USG image. Section II deals with the statistical model of the proposed work done throughout the project in brief. Section III discusses about various noises used, followed by statistical parameters in section IV and section V contains experimental results for de noised images passed through filters.

2. PROPOSED STATISTICAL MODE

Although research has already been done on few of these measures at quite advance level, we have proposed a simple statistical model for experimental work. The proposed statistical model consists of the following steps:

1. Adding noise to input image, I(x, y): In this step noise is added to input image. Here three basis noises are added to input image differently, namely: Speckle, Salt and pepper and Gaussian noise.

2. *Passing of noisy image through various filters :* The noisy image is passed through various filters namely: Maximum filter, Minimum filter, Midpoint filter, Median filter, Harmonic filter, Contra harmonic mean filter, Arithmetic Mean filter , Alpha mean filter, Alpha trimmed mean filter and de noised images are obtained.

Jasdeep Kaur Assistant Professor 93 Kirpa Nagar, Naraingarh chheharta, Amritsar-143005, Punjab, India

3.*Statistical parameters for Comparing de noised images:* Various statistical parameters used are Maximum Difference(MD), Normalized Absolute Error(NAE), Normalized Cross Correlation(NCC), Structural Content(SC), Average Difference(AD), Mean square Error(MSE), Peak Signal-to-Noise Ratio(PSNR). These parameters compared the various de noised images. The compared values for these parameters are given by comparison tables and plots. The best filter is retained through those values for all the noises.

3. VARIOUS NOISES USED

The various noises used for converting an input noiseless image into noisy image are: Speckle, Salt and pepper and Gaussian noise.

A. Speckle Noise: Speckle noise is defined to have a granular pattern. Speckle is the result of the diffused scattering, which occurs when an ultrasound pulse randomly interferes with small particles or objects comparable to the sound waves. In this, the ratio of variance and mean is constant over a wide region which is also a property of Rayleigh distribution [2].

$$F(g) = \frac{g^{\alpha - 1}}{(\alpha - 1)! \, \alpha^{\alpha}} e^{-\frac{g}{\alpha}}$$

- **B.** Salt and pepper noise: The corrupted pixel values are set alternatively to the maximum or to the minimum value, giving the image a salt and pepper like appearance as salt looks like white(one) and pepper looks as black(zero) for binary ones. For an 8 bit image, value of pepper noise is 0(minimum) and for salt noise 255(maximum) [3]. Image with salt and pepper noise.
- **C. Gaussian Noise:** Gaussian noise is statistical noise which has probability density function equal to that of the normal distribution [4], also known as the Gaussian distribution. A special case is white Gaussian noise, in which values at any pair of times are statistically independent and are uncorrelated [5].

$$F(g) = \frac{1}{\sqrt{2\pi\sigma*\sigma}} e^{-(g-m^2/2\sigma^2)}$$

IV. Various Filters Used

Each noise is passed through a particular set of filters to get the resultant output image.

A. Max Filter: The max filter, also known as the 100th percentile filter, replaces it with the maximum value. Max filter is usually used to identify the brightest pixel gray value of an image [5]. The brightest pixel becomes the new pixel value at the center of the window. This filter is normally considered best for the removal of salt and pepper noise.

$$F(x, y) = \max(s, t) \in S_{xy} \{g(s, t)\}$$

B. Min Filter: The min filter, also known as the zeroth percentile filter, replaces it with lowest value [5]. Min filter is used to identify the darkest pixel gray level value and usually used to remove salt noise from the images.

$$F(x, y) = \min(s, t) \, \epsilon s_{xy} \{g(s, t)\}$$

C. Midpoint Filter: The midpoint filter [5] calculates average of highest and lowest pixel values in a window by combining ordered statistics and averaging them into one filter. It is used to reduce Gaussian and uniform noise in images.

$$F(x,y) = \max(s,t) \, \epsilon s_{xy} \{g(s,t)\} + \min(s,t) \, \epsilon s_{xy} \{g(s,t)\}$$

D. Harmonic Mean Filter: In harmonic mean filter, the color value of each pixel is replaced with harmonic mean of pixels in the neighborhood. The harmonic mean filter [16] has another variation of the arithmetic mean filter and is useful for images with Gaussian or salt noise.

$$H = \frac{n}{\frac{1}{X1} + \frac{1}{X2} \dots \dots \frac{1}{Xn}}$$

E. Contra Harmonic Mean Filter: Contra Harmonic Mean is a function complementary to the harmonic mean [4]. Image with salt noise can be filtered using negative value of R, whereas image with pepper noise can be filtered with positive values of R.

$$C(X1, X2 \dots Xn) = \frac{X1^2 + X2^2 + \dots + \frac{Xn^2}{n}}{X1 + X2 + \dots \frac{Xn}{n}}$$

- **F.** Alpha Mean Filter: It forms a hybrid of mean and median filters. It discards the elements at the start and end of ordered set and calculates its average or mean value [5].
- **G.** Median Filter: Median Filter is also kind of non linear filter which preserves edges whilst removing noise. It works by selecting middle pixel from the ordered set of values within 'm×n' neighborhood around the reference pixel [5].

$$M(u, v) = median\{I(x, y)(x, y) \notin wF\}$$

H. Alpha Trimmed Mean Filter: In this case an average of the pixel values closest to the median, after the 'D' lowest and 'D' highest values in ordered set have been removed [5]. The filter behaves as a regular arithmetic mean filter. For D = (mn-1)/2 it is equivalent to the median filter.

$$F(x,y) = \frac{1}{mn - 2D} \sum_{(r,c) \in W} g(r,c)$$

4. STATISTICAL PARAMETERS

Statistics is defined as the study of the collection, organization, analysis, and interpretation of data. Here we will study various types of statistical measures with respect to image processing and simulated all of these.

A. Maximum Filter: It differentiates between original and output image after the removal of noise. It must be least for the best filter.

$$MD = \max|x(i,j) - y(i,j)|$$

B. Normalized Absolute Error: It is used to determine the outcome image to the input image. Its value must be closer to zero for better results.

$$NAE = \frac{\sum_{i=1}^{M} \sum_{j=1}^{N} (x(i,j) - y(i,j))^2}{\sum_{i=1}^{M} \sum_{j=1}^{N} (x(i,j))^2}$$

C. Structural Content: Structured content is more related to human perception than Mean Square Error values. If value comes out to be 1 means the original image and the resultant images are identical.

$$SC = \frac{\sum_{i=1}^{M} \sum_{j=1}^{N} (y(i,j))^2}{\sum_{i=1}^{M} \sum_{j=1}^{N} (x(i,j))^2}$$

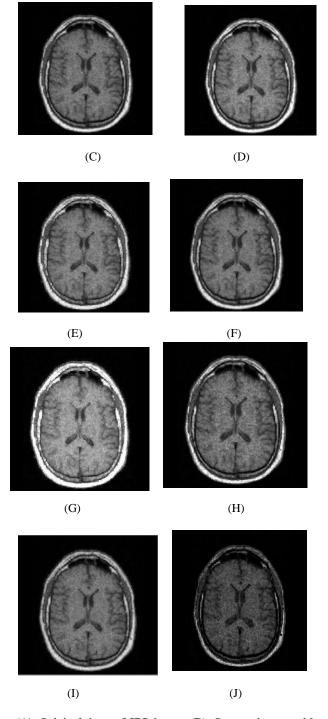
D. Average Difference: Also called mean difference is defined as the value obtained of absolute difference of the two images. The average difference should be least means more similar are the images hence better is the filter.

$$AD = \frac{1}{MN} \sum_{i=1}^{M} \sum_{j=1}^{N} (x(i,j) - y(i,j))$$

E. Mean Square Error: Also called root mean squared error (RMSE) denotes mean square error of two images m *x* n as I(i, j) and K(i, j) where one of the image is considered as the noisy approximation of the other image[6].

$$MSE = \frac{1}{mn} \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} [I(i,j) - K(i,j)]^2$$

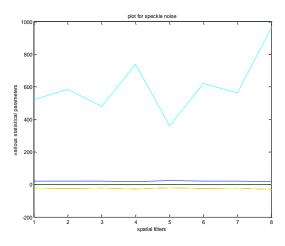
F. Peak Signal-to- Noise Ratio: The lower value of PSNR represents that the image reconstructed is of lower quality and vice-versa. It is mostly defined by using means square error as shown in the above equation [6].


$$PSNR_{db} = 10\log_{10}\frac{MAX_{I}^{2}}{MSE}$$

5. EXPERIMENTAL RESULTS

The results are obtained by introducing different noises to original image forming noisy images. Each noisy image is further passed through various filters to de noise them. Then we compare them by calculating various statistical parameters explained above [7]. The values of these parameters are compared to find the best possible filter for a particular kind of noise including plots.

A. Results for Speckle Noise:

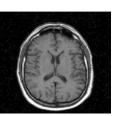

(A) Original input MRI image (B) Output image with speckle noise (C) Alpha trimmed mean filter image for speckle noise (D) Arithmetic mean filter image for speckle noise (E) Contra harmonic mean filter for speckle noise (F) Harmonic filter for speckle noise (G) Maximum filter image for speckle noise (H) Medium filter for speckle noise (I) Midpoint filter for speckle noise (J) Minimum filter image for speckle noise.

International Journal of Computer Applications (0975 – 8887) Volume 120 – No.8, June 2015

	Mari	NIA	NC	C tomo at	A	MCE	DCM
	Max	NA	NC	Struct	Avera	MSE	PSN
	differ	Е	С	ural	ge		R
	ence			conte	differ		
				nt	ence		
Alpha	-	0.3	1.3	0.517	-	521.1	20.9
trimm	22.82	895	895	9	22.82	978	608
ed	98				98		
mean							
filter							
Arith	-	0.4	1.4	0.501	-	585.0	20.4
metic	24.87	127	127	1	24.18	532	588
mean	9				79		
filter							
Canta		0.2	1.3	0.529			21.2
Contr	- 21.94	0.3 744	1.5 744	0.329 4	-	481.4	21.3 053
a haanna		/44	/44	4	21.94		035
harmo	20				20	528	
nic							
mean							
filter							
Harm	-	0.4	1.4	0.466	-	738.4	19.4
onic	27.17	253	253	8	27.17	372	477
mean	42				42		
filter							
Maxi	-	0.4	1.4	0.570	-	360.2	22.5
mum	18.98	042	042	6	18.95	973	642
filter	15				15		
Media	-	0.5	1.5	0.492	-	621.1	20.1
n	24.92	0.5 295	295	3	24.92	839	20.1 986
filter	36	275	275	5	36	037	700
inter	50				50		
Midp	-	0.3	1.3	0.507	-	561.2	20.6
oint	23.69	975	975	1	23.69	531	392
filter	08				08		
Mini	-	0.2	1.2	0.427	-	962.9	18.2
mum	31.03	564	564	5	31.03	736	947
filter	18				18		
Tabla	1: Com	noricor	of Sto	tistical n	aramata	rs for Sn	ocklo

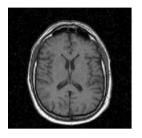
 Table 1: Comparison of Statistical parameters for Speckle

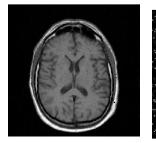
 noise in MRI image



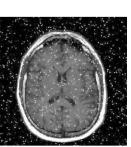
Graph 1: Plot of parameters for Speckle noise in MRI image

Maximum filter forms the best filter from the results for Speckle noise in MRI image.

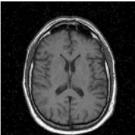

B. Results for Salt and pepper noise:

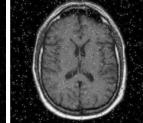

(B)

(A)

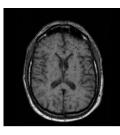


(C)


(D)

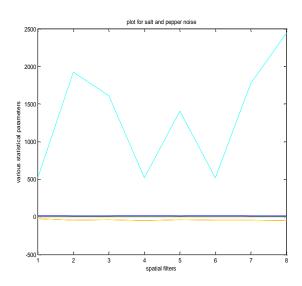


(E)


(F)

(G)

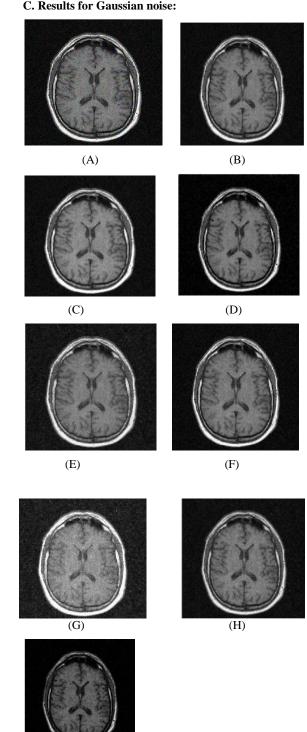
(H)


(I)

(A) Salt and pepper noise in MRI image (B) Alpha trimmed filtered image for salt and pepper noise (C) Arithmetic mean filtered image for salt and pepper noise (D) Contra harmonic mean filtered image for Salt and pepper noise (E) Harmonic mean filtered image for salt and pepper noise (F) Maximum filtered image for salt and pepper noise (G) Median filtered image for salt and pepper noise (H) Midpoint Filtered image for salt and pepper noise (I) Minimum Filtered image for salt and pepper noise.

	Max	NA	NC	Struc	Aver	MSE	PSN
	diff	Е	С	tural	age		R
				conte	differ		
				nt	ence		
Alpha	-	0.3	1.3	0.517	-	521.	20.9
trimm	22.2	895	895	9	22.82	1978	608
ed	98				98		
mean							
filter							
Arith	-	0.7	1.7	0.327	-	1.92	15.2
metic	43.8	476	476	4	43.81	00	978
mean	176				76	e+03	
filter							
Contr	-	0.6	1.6	0.352	-	1.61	16.0
а	40.1	849	849	3	40.13	10	598
harmo	376				76	e+03	
nic							

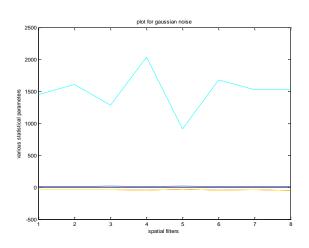
mean							
filter							
Harm	-	0.7	1.7	0.308	-	521.	20.9
onic	46.8	994	994	8	46.85	1978	608
mean	521				21		
filter							
Maxi	-	0.6	1.6	0.371	-	1.40	16.6
mum	37.5	404	404	6	37.53	85	431
filter	307				07	e+03	
Media	-	0.7	1.7	0.327	-	521.	20.9
n	43.8	476	476	4	43.81	1978	608
filter	176				76		
Midp	-	0.7	1.7	0.338	-	1.77	15.6
oint	42.1	187	187	5	42.11	40	412
filter	192				92	. 0.2	
						e+03	
Mini	-	0.8	1.8	0.297	-	2.43	14.2
mum	49.3	422	422	4	49.36	65	631
filter	612	722	722	Ŧ	49.50 12	e+03	0.51
inter	012				12	0+05	
		1					


Table 2: Comparison of Statistical parameters for Salt and pepper noise in MRI image.

Graph 2: Plot of parameters for Salt and pepper noise in MRI image.

For MRI image it was found that alpha trimmed filter is the best filter according to the results obtained.

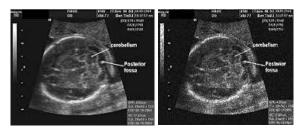
C. Results for Gaussian noise:



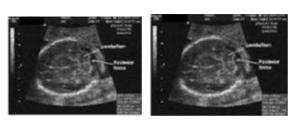
(I)

(A) Image with Gaussian noise of MRI (B) Alpha trimmed filtered image for Gaussian noise (C) Arithmetic mean filtered image for gaussian noisenoise (D) Harmonic mean filtered image for Gaussian noise (E) Contra harmonic mean filtered image for Gaussian noise (F) Maximum filtered image for Gaussian noise (G) Median filtered image for gaussian noise (H) Midpoint filtered image for Gaussian noise (I) Minimum filtered image for Gaussian noise

		NA	NC	Struct	Avera	MSE	PSN
	Max	Е	С	ural	ge		R
	diff		-	conte	differ		
				nt	ence		
				in	enee		
Alpha	-	0.6	1.6	0.367	-	1.452	16.5
trimm	38.1	503	503	2	38.11	4	100
ed	102				02	e+03	
mean							
filter							
Arith	-	0.6	1.6	0.352	-	1.607	16.0
metic	40.0	841	841	6	40.09	6	691
mean	947				47	e+03	
filter							
Cart		0.6	1.6	0.384		1.096	17.0
Contr	-	0.6	1.6		-	1.286	17.0
a	35.8	120	120	8	35.86	e+03	372
harmo	658				58		
nic							
mean							
filter							
Harm	-	0.7	1.7	0.319	-	2.035	15.0
onic	45.1	697	697	3	45.11	1	450
mean	120				20	e+03	
filter							
Maxi	-	0.5	1.5	0.434	-	916.1	18.5
mum	30.2	165	165	9	30.26	468	12
filter	679				97		
		0.6	1.6	0.046		1 (50)	150
Media	-	0.6	1.6	0.346	-	1.679	15.8
n filter	40.9	993	993	3	40.98	8	782
	856				56	e+03	
Midpo	-	0.6	1.6	0.360	-	1.524	16.2
int	39.0	662	662	2	39.04	7	990
filter	472	202		_	72	e+03	
						2105	
Mini	-	0.8	1.8	0.291	-	1.524	14.5
mum	50.0	535	535	1	50.02	7	896
filter	220				20	e+03	


Table 3: Comparison of Statistical parameters forGaussian noise in MRI image

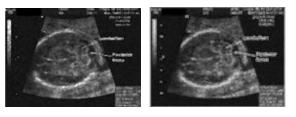
Graph 3: Plot of parameters for Gaussian noise in MRI image.

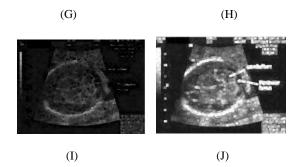

Comparing all the images of various filters for Gaussian noise in MRI image Maximum filter is the best filter.

D. Results for speckle noise in USG image:

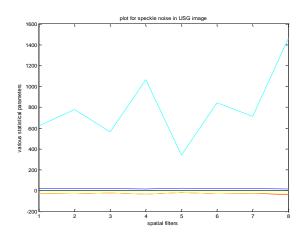
(A)

(B)





(E)


(A) Original USG image without noise (B) USG Image with speckle noise (C) Alpha trimmed mean filter for speckle noise in USG (D) Arithmetic mean filter for speckle noise in USG (E) Contra harmonic mean filter for speckle noise in USG image (F) Harmonic mean filter for speckle noise in USG image (G) Median filter for speckle noise in USG image (H) Midpoint filter for speckle noise in USG image (I) Minimum filter for speckle noise in USG image (J) Maximum filter for speckle noise in USG.

	Max	NA	NC	Struc	Avera	MSE	PSN
	diff	Е	С	tural	ge		R
				Cont	Differ		
				ent	ence		
Alpha	-	0.2	1.2	1.808	-	621.0	20.1
trimm	24.9	564	564	4	24.92	756	994
ed	214				14		
mean							
filter							
Arith	-	0.5	1.5	0.391	-	776.8	19.2
metic	27.8	982	982	5	27.87	880	272
mean	727				27		
filter							
				0.400			• • •
Contr	-	0.5	1.5	0.438	-	565.9	20.6
а	23.7	106	106	2	23.78	495	030
harmo	897				97		
nic							
mean							
filter							
		0.7	17	0.246		1.064	17.0
Harm	-	0.7	1.7	0.346	-	1.064	17.8
onic	32.6	001	001	0	32.62	2	607
mean	215				15	e+03	
filter							
Maxi	-	0.3	1.3	0.152	-	343.0	22.7
mum	18.5	975	975	0	18.52	631	771

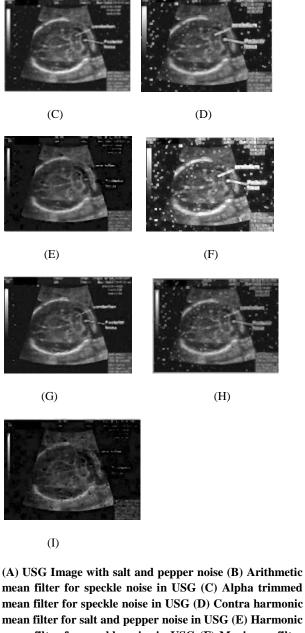
filter	220				20		
Media	-	0.6	1.6	0.379	-	842.0	18.8
n	29.0	228	228	7	29.01	864	772
filter	187				87		
Midp	-	0.5	1.5	0.404	-	713.3	19.5
oint	26.7	732	732	0	26.70	664	977
filter	089				89		
Mini	-	0.8	1.8	0.301	-	1.461	16.4
mum	36.2	205	205	7	36.22	4	830
filter	289				89	e+03	

 Table 4: Comparison of Statistical parameters for Speckle

 noise in USG image

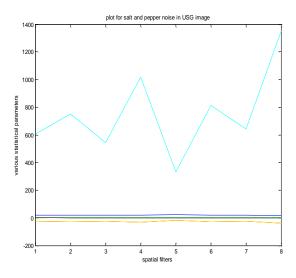
Graph 4: Plot of parameters for Speckle noise in USG image

The results received after comparing all the images of various filters for Gaussian noise in MRI image found Maximum filter as the best filter according to the results obtained.


E. Results for Salt and pepper noise in USG image:

(A)

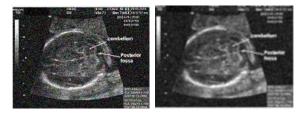
(B)

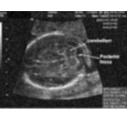


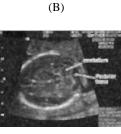
mean filter for speckle noise in USG (D) Contra harmonic mean filter for salt and pepper noise in USG (E) Harmonic mean filter for speckle noise in USG (F) Maximum filter for salt and pepper noise in USG (G) Median filter for salt and pepper noise in USG (H) Midpoint filter for salt and pepper noise in USG image (I) Minimum filter for salt and pepper noise in USG.

	Max	NA	NC	Struc	Aver	MSE	PSN
	diff	Е	С	tural	age		R
				conte	differ		
				nt	ence		
Alpha	-	0.2	1.2	1.803	-	605.	20.3
trimm	24.5	553	553	2	24.59	0447	129
ed	977				77		
mean							

filter							
Arith	-	0.5	1.5	0.396	-	749.	19.3
metic	27.3	877	877	7	27.38	8025	813
mean	825				25		
filter							
Contr	-	0.5	1.5	0.444	-	544.	20.7
а	23.3	006	006	1	23.32	0481	744
harmo	248				48		
nic							
mean							
filter							
							12.2
Harm	-	0.6	1.6	0.352	-	1.01	18.0
onic	31.8	840	840	6	31.86	57	633
mean	695				95	e+03	
filter							
Maxi		0.3	1.3	0.515		334.	22.8
	-				-		
mum	18.2	924	924	8	18.28	2981	895
filter	838				38		
Media	-	0.6	1.6	0.385	-	811.	19.0
n	28.4	115	115	1	28.49	8397	361
filter	928				28		
Midp	-	0.5	1.5	0.410	-	643.	19.7
oint	26.1	610	610	4	26.14	3743	842
filter	414				14		
Mini	-	0.7	1.7	0.312	-	1.35	16.8
mum	36.7	892	892	4	36.77	22	203
filter	725				25	e+03	

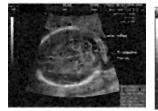

Table 5: Comparison of Statistical parameters for Salt andpepper noise in USG image

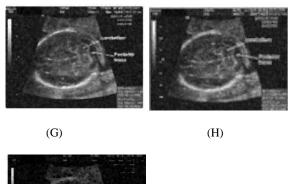

Graph 5: Plot of parameters for Salt and pepper noise in USG image

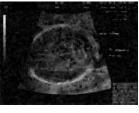

Alpha trimmed mean filter and maximum filter are the best filters.

F. Results for Gaussian noise in USG image:

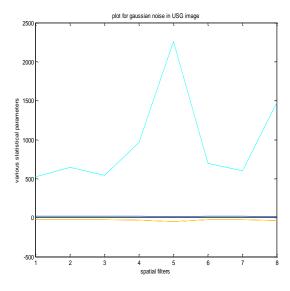
(A)






(C)

(E)


(I)

(A) Image with Gaussian noise (B) Alpha mean filter for Gaussian noise in USG (C) Arithmetic mean filter for Gaussian noise in USG (D) Contra harmonic mean filter for Gaussian noise in USG (E) Harmonic mean filter for Gaussian noise in USG (F) Maximum filter for Gaussian noise in USG image (G) Median filter for Gaussian noise in USG image (H) Midpoint filter for Gaussian noise in USG image (I) Minimum filter for Gaussian noise in USG image.

	Max	NA	NC	Struc	Aver	MSE	PSN
	diff	Е	С	tural	age		R
				conte	differ		
				nt	ence		
Alpha	-	0.4	1.4	0.448	-	527.	20.9
trimm	22.9	927	927	8	22.95	0783	121
ed	582				82		
mean							
filter							
Arith	-	0.5	1.5	0.418	-	646.	20.0
metic	25.4	456	456	6	25.42	3212	263
mean	228				28		
filter							
Contr	-	0.5	1.5	0.444	-	544.	20.7
а	23.3	006	006	1	23.32	0481	744
harmo	248				48		
nic							
mean							
filter							
Harm	-	0.6	1.6	0.355	-	966.	18.1

onic	31.5	775	775	3	31.56	6137	455
mean	692				92		
filter							
Maxi	-	1.0	2.0	0.245	-	2.26	14.5
mum	47.5	203	203	0	47.53	00	896
filter	398				98	e+03	
Media	-	0.5	1.5	0.407	-	695.	19.7
n	26.3	661	661	7	26.37	6570	069
filter	753				53		
Midp	-	0.5	1.5	0.429	-	601.	20.3
oint	24.5	264	264	2	24.52	4624	387
filter	247				47		
Mini	-	0.8	1.8	0.300	-	1.47	16.4
mum	38.3	240	240	6	38.39	42	453
filter	951				51	e+03	

Table 6: Comparison of Statistical parameters forGaussian noise in USG image

Graph 6: Plot of parameters on Gaussian noise in USG image

Comparing all the images of filters for Speckle noise in USG image and found that Alpha trimmed mean filter and maximum filter are the best filter.

6. REFERENCES

- R.C. Gonzalez and R.E. Woods, *Digital Image Processing*, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall; 2002.
- [2] S. Kent, O. N. Oçan, and T. Ensari. "Speckle Reduction of Synthetic Aperture Radar Images Using Wavelet Filtering". in ITG, VDE, FGAN, DLR, EADS, astrium. EUSAR 2004 Proceedings, 5th European Conference on Synthetic Aperture Radar, May 25–27, 2004, Ulm, Germany.
- [3] Charles Boncelet (2005)."Image Noise Models". in Alan C. Bovik. Handbook of Image and Video Processing.
- [4] S. Kumar, P. Kumar, M. Gupta and A. K. Nagawat, "Performance Comparison of Median and Wiener Filter in Image De-noising," International Journal of Computer Applications 12(4):27–31, December 2010.
- [5] B. Goossens, A. Pizurica, and W. Philips. Image denoising using mixtures of projected Gaussian scale mixtures, IEEE Transactions on Image Processing, Vol.18, Issue. 8, pp.1689-1702, 2009.
- [6] R.C. Gonzalez and R.E. Woods, *Digital Image Processing*, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall; 2002.
- [7] A.K. Jain, Fundamentals of Digital Image Processing., Englewood Cliffs, NJ: Prentice Hall; 1989.
- [8] S. Arivazhagan, S. Deivalakshmi, K. Kannan. B.N.Gajbhiye, C.Muralidhar, Sijo Ν Lukose, M.P.Subramanian, "Performance Analysis of Wavelet Denoising", Filters for Image Advances in Computational Sciences and Technology, Vol.1 No. 1 (2007), pp. 1-10, ISSN 0973-6107.