
International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.5, June 2015

8

Malicious Applications Detection by Analyzing Manifest
Files

Aparna Harikumar
BE Computer, VIIT Pune

Chandrika Kapre
BE Computer, VIIT Pune

Rajeshwari Chandratre
BE Computer, VIIT Pune

Dhaval Adhav Mrs.S.R.Rathi
BE Computer, VIIT Pune Assistant Prof.VIIT Pune

ABSTRACT

With the rapid rise in the use of Android worldwide, the harm

done due to malicious applications is increasing

exponentially. Due to this the data of the Android users is not

secure, and we need a system to detect the maliciousness of

the applications being downloaded. The project being

developed here is a solution to this problem as it detects

whether an application is malicious or benign, this will not

only provide data security but will also enhance the

performance of the user's device. There are a number of

systems like DroidMat and signature-based systems, already

available in the market that detect malicious applications. But

these systems detect that on the base of signatures and by

parsing smali files which not only increases the processing

time but also does not provide accurate results. The proposed

system here that is Malicious applications detection using

permissions retrieval detects whether an application is

malicious or not based on the keywords present in the

manifest file. This method does not affect the performance of

the device in any way and gives us better throughput.

General Terms

Security,malware,adware,malicious

Keywords

Android,smart phones,manifest file.

1. INTRODUCTION
With the advent of smartphones, hundreds of thousands of

Android apps find their way in the Android market. The

Android market is an open platform, and hence anyone can

upload the apps developed by them here. The cyber criminals

use this feature as a golden opportunity to post their malicious

applications in the Android market. The malicious

applications may prove hazardous on various levels. Right

from collecting user’s personal information to sending text

messages to some premium rate numbers, the malware

possesses a great threat to the Android users. Before their

installation, the Android applications ask for certain

permissions like access to the installer’s contact list, gallery or

GPS co-ordinates and even for the modification of the SD

card content. Some of the permissions might prove

unnecessary according to the use of the app. Thus, the

malicious applications access the user data and may make

transactions in the Android device illegally. As Android is

considered as an easy target for the attackers, the privacy and

integrity of the users is seriously threatened. There have been

many successful attempts to get rid of the malicious content

from the phone including the Signature-based Detection,

Behaviour-based Detection, DroidMat, etc. Detection based

on signature is quite effective in detecting the known

malicious applications but is susceptible to evasion. Since the

signature is known, it can be easily hacked. It fails to detect

unknown malicious applications since its signature is not

known. The other technique overcomes the shortcomings of

the previous method. Simply put, a behaviour-based detector

determines whether a program is malicious by inspecting what

it does rather than what it says. But again, it is susceptible to

mimicry attacks. Also, it is susceptible to false positives as

normal behaviour for complex programs is very complicated.

Another system was developed to provide a static analysis

paradigm for detecting malware, called DroidMat. They

obtained some distinguishable characteristics such as

permissions, components and API calls by analyzing manifest

files and smali files. This system can discriminate between

malware and benign applications. However, the cost of their

analysis depends on the size and numbers of smali files. The

efficiency reduces highly as we have to access the manifest,

as well as smali files. The complexity of this algorithm is

quite high. Though there are numerous anti-malware

applications available in the market, it is the need of the hour

to create a better and an effective way to detect the hazardous

malicious applications you have installed in your phone. The

main objective of the DMAP is to increase the security of the

Android devices and make the users aware of malicious

content carried by their phones. This application will reduce

the complexity of malware detection by just fetching and

reading the manifest files of the Android applications installed

and analysing them for potential malicious content. We also

display the permissions and features of the user’s phone

accessed by the installed Android applications on the device.

The integral resource to implement the DMAP is the manifest

file of the Android application to be scanned. The manifest

file is a XML file carried by every Android application and

carries specific information required by the Android system

about that application. The contents being the permissions and

other resources accessed by the application from the device on

which it is installed. This manifest file is scanned for various

malicious tags which will be computed upon to determine the

degree of the maliciousness of that app. When the user wishes

to scan any app, it should be selected explicitly. The Manifest

File of the application to be scanned is fetched. Originally in

the XML format, this file is now saved in text format and is

parsed by the XML parser. The content of this file is analyzed

for various permission tags such as uses-permission, uses-

library, uses-features, etc. After supervising the file content

for potentially malicious tags, these tag contents are extracted

and compared with a set of predefined malicious tags, this

decides the value of keywords in the manifest file that are

malicious. It is followed by computation of the degree of

maliciousness. Our application now displays the obtained

figure in percentage- the level to which the scanned app is

potentially malicious. Some apps being harmless, we leave it

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.5, June 2015

9

to the user whether to uninstall the app or still use it. This

system is successful in extracting and displaying all the

resources like permissions required and features accessed by

the scanned application from the user’s Android device.

Which gives a clear idea about the reason of the application’s

degree of maliciousness to the user. In this paper, Section II

describes the literature survey that has been done while

bringing this idea into being. Section III gives a detailed

description of the proposed methodology and Section IV

shows the results of the testing done and its analysis..

2. LITERATURE SURVEY
Trojan like malware on Android is recognized by machine

learning based framework known as crowdroid[1].It analyzes

a frequency of each system call issued by an application at the

time of execution of an action which requires user

interaction.It differs from a genuine application. Crowdroid

builds a vector of Android system calls features.13 features

are used by MADAM: multi-level anomaly detector for

Android malware [3]in which features are used at both levels

kernel and user level.MADAM has a global monitoring

approach which detects malware contained in unknown

applications that are not classified previously. MADAM is

tested on real malware found in wild. [5] proposes a behavior-

based malware detection system (pBMDS) that correlates

user’s inputs with system calls to detect anomalous activities

related to SMS/MMS sending. [6] and[7] propose Kirin

security service for Android, which performs lightweight

certification of applications to mitigate malware at install

time. Kirin certification uses security rules that match

undesirable properties in security configuration bundled with

applications. [8] performs static analysis on the executables to

extract functions calls usage using read elf command. Hence,

these calls are compared with malware executables for

classification. Finally, [9] surveys some security solutions for

mobile devices. In Shadow Manifest[10] permission that an

app requires are stored by prior execution of the app.

Unnecessary permissions are stored along with a mask which

are to be revoked by generating an empty resource when an

app requests them. COPES(Correct Permission Set)[11] is a

tool which uses static analysis to extract a table from Android

framework bytecode. This table the set of permissions that an

app needs and maps every method of the API to these

permissions which are called. So no unnecessary permissions

are stored in the table and mapped with API methods. In

Apex[12] users are allowed to specify what an app can access.

An extended installer is used to set user policies.

Data set Highest Lowest

Malicious106 1

Market 36 0

Average number of permissions by data set, and the highest

and lowest number of requested permissions (source internet)

3. PROPOSED WORK

3.1 Architectural Design

Fig 1 Architectural design

Applications in Android can be downloaded from the official

market that is google app store as well as from third party

applications providers. All downloaded applications that are

all .apk files will get stored on user’s device storage let’s say

this storage space as applications repository.Manifest file for

an Android application is a resource file which contains all the

details needed by the Android system about the application. It

is a key file that works as a bridge between the Android

developer and the Android platform. It helps the developer to

pass on functionality and requirements of our application to

Android. Manifest file is a XML file which must be named as

AndroidManifest.XML and placed at application root. Every

Android app must have AndroidManifest.XML file.

AndroidManifest.XML allows us to define.

3.2 The packages, API, libraries needed

for the application
• Basic building blocks of application like activities,

services etc.

• Details about permissions.

• Set of classes needed before launch.[source internet]

When a user wants to scan the particular application manifest

file will get fetched to detection engine.Here detection engine

will start his working.Firstly the XML parser will parse this

manifest file and .txt file will get generated for further

analysis.Then an underlying algorithm will run, and degree of

maliciousness in percentage will be displayed on the users

screen.Now its up to the user whether to keep the application

or to uninstall it..

3.3 Algorithm

1]Fetch manifest file

Here the user needs to select the application which he wants

to scan.As soon as user selects application for scanning

manifest file of an application will get fetched

2]Read using XML parser

Manifest files of applications are XML files so parsing is done

which will give .txt file so that it can be easily accessed for

analysis.

3]Analyze it for potentially malicious tags

In manifest file, various tags are present like

Elements for Application Properties

• uses-permission –specifies the permissions that are

requested for the security.

• permission –sets the permissions to provide access

control for specific component of the application.

• permission-group – does the same as permission for

a set of the components.

• permission-tree – refers the one specific name of the

component which is the parent of the set of component.

• instrumentation – shows interaction between

Android system and application.

• uses-sdk – specifies the platform compatibility of

the application.

• uses-configuration – gives information about set of

hardware and software required for the application.

• uses-feature – specifies single hardware and

software requirement and their related entity.

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.5, June 2015

10

• supports-screens, compatible-screens – both these

tags deals with screen configuration mode and size of the

screen etc.

• supports-gl-texture – specifies texture based on

which the application is filtered.

Elements for Application Components

These should be enclosed in <application> container.

• activity – has the set of attributes based on a user

interface.

• activity-alias – lets us know about target activities.

• service – has the operation provided by any library

or API, running in a background that is not visible.

• receiver – that makes to receive message

broadcasted by the same application or by an outside entity.

• provider – provides some structure to access

application data.

• uses-library – it specifies a set of library files need

to run the application.

For each and every tag values are obtained and analyzed.

4]Comparing with predefined tags of malicious tags

5]Computing the value

6]Displaying the result

Result is displayed in 2 forms

 a. degree of maliciousness b. what all permissions

application uses

7]Uninstall

If the user wants to uninstall an application through our

application, the uninstall choice is given.

4. TESTING AND RESULTS
For our project we tested applications in which there were

variety of applications categorically games, chatting

applications ,music applications , online shopping

applications, food related applications, travelling related

applications and so on along with some known malicious

applications like Geinimi, DroidDream, CounterClank,

Pjapps, asSMS, Jimm Russia, Gold Dream etc. From these

sample applications degree of maliciousness is obtained.

Result of testing is as follows

Table 1

Type Correct Detection

(%)

Incorrect

Detection (%)

Malicious 88.7 11.3

Benign 91.6 8.4

Total 90.15 9.85

By our proposed methods some malwares were not detected

for example adwares which means while running application

we generally find different advertisements, our application

fails to capture such advertisement’s manifest files or

information related to them. As there is often a marginal

difference between a benign application and adware. This

means that both manifest files appear to be similar, and it is

difficult for our proposed method to effectively detect adware

based on the manifest analysis.

Table 2 1=Uses permissions 0=Not uses permissions

Permissio

ns

Aptitud

e

workbo

ok

Galler

y

Cup

cake

game

Jabo

ng

Farm

hero

es

game

MalDet

ect

READ_P

HONE_S

TATE

1 0 0 0 0 0

INTERN

ET
1 0 1 1 1 0

SEND_S

MS
0 0 0 0 0 0

WRITE_

EXTERN

AL_STO

RAGE

0 0 0 1 0 1

ACCESS

_NETWO

RK_STA

TE

1 0 1 1 1 0

RECEIV

E_SMS
0 0 0 0 0 0

READ_S

MS
0 0 0 0 0 0

ACCESS

_WIFI_S

TATE

1 0 0 1 1 0

WRITE_

SMS
0 0 0 0 0 0

READ_C

ONTACT

S

0 0 0 1 0 0

INSTALL

_PACKA

GES

0 0 0 0 0 0

MODIFY

_PHONE

_STATE

0 0 0 0 0 0

MOUNT_

UNMOU

NT_FILE

SYSTEM

S

0 0 0 0 0 0

PROCES

S_OUTG

OING_C

ALLS

0 0 0 0 0 0

bluetooth 0 0 0 0 0 0

location.g 0 0 0 0 0 0

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.5, June 2015

11

ps

camera 0 1 0 0 0 0

cameara.f

ront
0 0 0 0 0 0

wifi 0 0 0 0 0 0

ACCESS

_FINE_L

OCATIO

N

0 0 0 0 0 0

ACCESS

CORE

LOCATI

ON

0 0 0 0 0 0

WRITE_

CONTAC

T

0 0 0 0 0 0

multiwind

ow
0 0 0 0 0 0

BOOT_C

OMPLET

ED

0 0 0 0 0 0

SMS_RE

CEIVED
0 0 0 0 0 0

CONNEC

TIVITY_

CHANGE

0 0 0 0 0 0

USER_P

RESENT
0 0 0 0 0 0

PHONE_

STATE
0 0 0 1 0 0

NEW_O

UTGOIN

G_CALL

0 0 0 0 0 0

UNINST

ALL_SH

ORTCUT

0 0 0 0 0 0

INSTALL

_SHORT

CUT

0 0 0 0
 0

0

Degree of

malicious

ness in %

12 0 6 22 22 3

Calling apps- Truecaller and apps that access your contact list

were scanned and the average result was calculated.

Food Apps- Applications like zomato, burrp, foodpanda, etc

were scanned and the average of their degrees of

maliciousness was calculated.

Games- Games like candy crush, cricket world, etc were

scanned and average was calculated.

Camera apps- all applications that accessed the camera and

gallery present on the device were scanned and the average

was computed. Eg. Google camera, photo editing apps.

Malicious test applications- Many malicious applications

were downloaded and manually made for testing purpose so

their average degree of maliciousness was calculated as well.

Basic comparison between all these groups were made and it

is depicted using a bar graph. The graph shows the basic

difference in the degree of maliciousness.

5. FUTURE SCOPE
The idea presented in the paper devises a method to detect the

degree to which an application can access the device resources

hence giving the user an idea of the maliciousness level of the

application.

This idea can be further expanded to give the user a chance to

select the permissions required by the application before

downloading it. Which allows the user to secure his or her

data and device resources in a proper way. The idea presented

in the paper is static, this can be made dynamic as well.

Which will ensure that no application on the user's device is

hacked by another application. The manifest file of every

application is made secure, and the hacker application is not

allowed to access any of the manifest files in order to make

changes and use device resources.

6. CONCLUSION
This paper has presented an application which can detect a

degree of a maliciousness of an application is a cost effective

way. Every Android application has a manifest file attached to

it, the application discussed in this paper accesses this

manifest file and based on the permissions, services, features,

etc. present in the manifest file the degree of a maliciousness

is calculated. This method is better than the earlier present

methods as it requires access to only the manifest file thus

reducing the processing time and since it is based on

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.5, June 2015

12

permissions the result is more accurate. Thus the idea

presented in the paper gives the user a chance to secure his or

her own device, and avoid the breach of security and

unnecessary use of device resources.

7. ACKNOWLEDGMENTS

It gives us immense pleasure to express our deepest sense of

gratitude and sincere thanks to our highly respected and

esteemed guide Prof.S.R.Rathi,Computer department, VIIT

Pune, for their valuable guidance, encouragement and help for

completing this work. Their useful suggestions for this whole

work and co-operative behavior are sincerely acknowledged..

8. REFERENCES
[1] I. Burguera, U.Z., Nadijm-Tehrani, S.: Crowdroid:

Behavior- Based Malware Detection System for Android.

In: SPSM’11, ACM(October 2011)

[2] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, Y. Weiss:

Andromaly: a behavioral malware detection framework

for Android devices. Journal of Intelligent Information

Systems 38(1) (January 2011) 161-190

[3] G. Dini, F.Martinelli, A. Saracino, D. Sgandurra:

MADAM: a Multi-Level Anomaly Detector for Android

Malware

[4] Schmidt, A.D., Peters, F., Lamour, F., Scheel, C.,

Camtepe, s.A., Albayrak, S.: Monitoring smartphones for

anomaly detection. Mob.Netw. Appl. 14(1)(2009) 92-106

[5] Xie,L.,Zhang,X.,Seifert, J.P.,Zhu, S.: pBMDS: a

behavior-based malware detection system for cellphone

devices. In: Proceedings of the Third ACM Conference

on Wireless Network Security, WISEC 2010, Hoboken,

New Jersey, USA, March 22-24 2010, ACM(2010) 37-

48

[6] Enck, W., Ongtang, M., McDaniel, P.: On lightweight

mobile phone application certification. In: CCS ’09:

Proceedings of the 16th ACM conference on Computer

and Communication Security, New York, NY, USA,

ACM (2009) 235-245

[7] Ongtang, M., McLaughlin, S., Enck, W., McDaniel, P.:

Semantically Rich Application-Centric Security in

Android. In: Computer Security Applications

Conference, 2009. ACSAC ’09. Annual.(Dec 2009) 340-

349

[8] Schmidt, A.D., Bye, R., Schmidt, H.G., Clausen, J.H.,

Kiraz, O., Yuksel, K.A., Camtepe, S.A., Albayrak, S.:

Static Analysis of Executables for Collaborative

Malware Detection on Android. In: Proceedings of IEEE

International Conference on Communications, ICC 2009,

Dresden, Germany, 14-18 June 2009, IEEE (2009) 1-5

[9] La Polla, M., Martinelli, F., Sgandurra, D.: A survey on

security for mobile devices. Communications Surveys

Tutorials, IEEE PP(99) (2012) 1-26.

[10] LakhmiPriyaSekar,Vinitha Reddy Gankidi,

SelvakumarSubramanian.,Avoidance of Security Breach

through Selective Permissions in Android Operating

System.ACM SIGSOFT Software Engineering

Notes,September 2012 Volume 37 Number 5.

[11] AlexandreBartel,JacquesKlein,MartinMonperrous.Autom

aticallSecuring Permission-Based Software by Reducing

the Attack Surface:An Application to Android.

[12] Mohammad Nauman and Sohail Khan. Design and

Implementation of a Fine-grained Resource Usage Model

for the Android Platform. The International Arab Journal

of Information Technology, Vol.8, No.4, Oct 2011

IJCATM : www.ijcaonline.org

