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ABSTRACT 

High utility itemsets refer to the sets of items with high utility 

like profit in a database, and efficient mining of high utility 

itemsets plays an important role in many real life applications 

and is an important research issue in data mining area. In 

recent years, the problems of high utility pattern mining 

become one of the most important research areas in data 

mining. The existing high utility mining algorithm generates 

large number of candidate itemsets, which takes much time to 

find utility value of all candidate itemsets. 

In this paper we are implementing a data structure that stores 

the utility related to the item and using this data structure we 

are reducing time and space complexity of UP Growth and UP 

Growth+ Algorithms. Various Standard and synthetic datasets 

are used with Educational real data set. An algorithm is 

proposed to find set of high utility itemset which avoids the 

candidate itemsets generation. 

Keywords 
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1. INTRODUCTION 
Data Mining can be described as an action that analyses the 

data and draws out some new nontrivial information from the 

large amount of databases. Data mining techniques have 

widely applied to extract useful rules or patterns in various 

practical applications, such as mobile data application and 

multimedia data applications. Discovering useful patterns 

hidden in a database plays an essential role in several data 

mining tasks, such as frequent pattern mining, association rule 

mining, and high utility pattern mining. 

Mining frequent itemset [2] from the database DB is to find 

out set of itemset that occurs frequently. The frequency of 

itemset is the support count related to that itemset i.e. number 

of transactions containing that itemset. If the support of the 

itemset exceeds the minimum support threshold value then 

itemset is frequent.  

Mining frequent itemset takes presence and absence of itemset 

into account, other relative information related to the item is 

not considered. To adderss this issue, the concept of weighted 

association rule mining was proposed.  In weighted 

association rule mining, weights of items, such as unit profits 

of items in transaction databases, are considered. With this 

concept, even if some items appear infrequently, they might 

still be found if they have high weights. However, the 

quantities of items are not considered yet. This results in the 

research area of finding out high utility itemset from database. 

Utility is one of the important features of itemset in 

transaction that specifies a utility/profit of itemset with 

frequency.   

 

 

Table 1: Profit table 

 

Recently, a number of high utility itemset mining algorithms 

[3] have been proposed. Most of the algorithms adopt a 

similar framework: initially generate candidate high utility 

itemsets from a database and then compute the exact utilities 

of the candidates by scanning the database to identify high 

utility itemsets. However, the algorithms often generate a very 

large number of candidate itemsets and thus are challenged 

with two problems:  

(1) Excessive amount of memory required for storing 

candidate itemsets.  

(2) A large amount of running time for generating candidates 

and computing their exact utilities. 

 

Table 2 : Database Example 

TID Transaction Quantity TU 

T1 {A,C,D,} {1,10,1} 17 

T2 {A,C,E,G} {2,6,2,5} 27 

T3 {A,B,D,E,F} {2,2,6,2,1} 37 

T4 {B,C,D,E} {4,13,3,1} 30 

T5 {B,C,E,G} { 2,4,1,2} 13 

T6 {A,B,C,D,H} {1,1,1,1,2} 12 

 

When the number of candidates is so large that they cannot be 

stored in memory, the algorithms will fail or their 

performance will be degraded due to thrashing. To solve these 

problems, we propose in this paper an algorithm for high 

utility itemset mining. 

The contributions of the paper are as follows: 

1. A novel structure, called utility information record, 

is proposed. Utility information record stores the 

utility information about an itemset along with the 

heuristic information about whether the itemset 

should be pruned or not. 

Item A B C D E F G H 

Profit 5 2 1 2 3 5 1 1 
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2. An efficient algorithm, called Efficient High Utility 

Itemset Mining (EHUIM) Algorithm, is developed. 

EHUIM Algorithm does not generate candidate 

high utility itemsets. After constructing the initial 

utility information-record from a mined database, 

EHUIM Algorithm, can mine high utility itemsets 

from these utility information record. We are using 

various standard and real data sets [4].  

2. BACKGROUND 
2.1 Problem Definition 
Let I= {i1, i2, i3, . . . , in} be a set of items.the database DB is 

composed of a utility table and a transaction table. Each item 

in I has a utility value in the utility table. Each transaction T in 

the transaction table has a unique identifier (tid). An itemset is 

a subset of I and is called a k-itemset if it contains k items. 

Definition 1. The external utility of item i, denoted as ext_u(i), 

is the utility value of i in the utility table of DB. 

Definition 2. The internal utility of item i in transaction T, 

denoted as int_u(i, T), is the count value associated with i in T 

in the transaction table of DB. 

Definition 3. The utility of item i in transaction T, denoted as 

u(i, T), is the product of int_u(i, T) and ext_u(i), where u(i, T) 

= int_u(i, T) × ext_u(i). 

For example, in Table 2 and 3, ext_u(e) = 3, int_u(e, T5) = 1, 

and u(e,T5)= int_u(e, T5) × ext_u(e) = 1 x 3 =3. 

Definition 4. The utility of itemset X in transaction T, denoted 

as u(X, T), is the sum of the utilities of all the items in X in T 

in which X is contained, where 

u(X, T) =                

Definition 5. The utility of itemset X, denoted as u(X),is the 

sum of the utilities of X in all the transactions containing X in 

DB, where u(X) =                  

 

For example, in Table 2, u({ae}, T2) = u(a, T2) + u(e, T2)= 2 

× 5 + 2 × 3 = 16, and u({ae}) = u({ae}, T2) + u({ae},T5) = 16 

+ 14 = 30. 

Definition 6. The utility of transaction T, denoted as tu(T), is 

the sum of the utilities of all the items in T, where  tu(T) 

=          ,and the total utility of DB is the sum of 

the utilities of all the transactions in DB. 

2.2 Related Work 
Many algorithms have been proposed for high utility itemset 

mining such as, Two-Phase [6], IHUP [7], and UP-Growth[5]. 

Two-Phase algorithm [6] was proposed by Liu et al. the 

algorithm consists of two phases. In phase I, Two-Phase 

algorithm employs Apriory based method to enumerate 

HTWUIs. It generates next set of candidate itemsets from the 

previous set of candidate itemsets and prunes candidate 

itemsets by TWDC property. In each pass, HTWUIs and their 

estimated utility values are computed by scanning database. 

After this, the complete set of HTWUIs is collected. In phase 

II, the original database is scanned to find out the high utility 

itemsets and their utilities 

Although Two-Phase algorithm effectively reduces the search 

space and finds the complete set of high utility itemsets, it still 

generates too many candidates for HTWUIs and requires 

multiple database scans. To address this issue Ahmed et al. [7] 

proposed a tree-based algorithm, called IHUP. To maintain 

the information of high utility itemsets and transactions the 

algorithm uses an IHUP-Tree. Every node in IHUP-Tree 

consists of an item name, a support count, and a TWU value. 

The algorithm works in three steps, in first, items in the 

transaction are rearranged in a fixed order such as 

lexicographic order. The IHUP-tree is then constructed using 

rearranged transactions. In the second step, HTWUIs are 

generated from the IHUP-Tree. In third step, by scanning the 

original database, high utility itemsets and their utilities are 

identified from the set of HTWUIs.  

Although IHUP finds HTWUIs without generating any 

candidates for HTWUIs and achieves a better performance 

than Two-Phase, it still produces too many HTWUIs in phase 

I. To address this issue, Vincent S. Tseng, Cheng-Wei Wu, 

Bai-En Shie, and Philip S. Yu [5] proposed the UP-Growth 

algorithm. A compact tree structure, called utility pattern tree 

(UP-Tree), for discovering high utility itemsets and 

maintaining important information related to utility patterns 

within databases are proposed. High-utility itemsets can be 

generated from UP-Tree efficiently with only two scans of 

original databases.  Four new strategies are proposed namely 

DGU, DGN, DLU and DLN. First two strategies are applied 

on UP Tree to globally reduce unpromising items from 

obtained potential high utility itemsets. The next two 

strategies namely DLU and DLN are applied by the UP-

Growth on the UP-Tree for reducing the local unpromising 

items. The actual high utility itemsets are then denfied from a 

set of potential high utility itemsets.  

All these algorithms first produce candidate itemset which 

require more time and space. Here in this algorithm a search 

space from the UP Growth algorithm [5] is minimized. A 

Utility information record structure is used instead of UP 

Tree.     

3. PROPOSED METHOD 
The framework of the proposed method consists of following 

steps: 1) Scan database to construct utility Information 

Record. 2) Apply EHUI mining algorithm. 3) Generate High 

Utility Itemsets.  

3.2  Utility Information Record Structure 
In the section, we propose a utility information record 

structure to maintain the utility information about a database. 

3.1.1 Initial Utility information record 
Initial utility information record for storing the 

utility information about a mined database can be constructed 

by two scans of the database. Firstly, the transaction-weighted 

utilities of all items are collected by performing a database 

scan. If the transaction-weighted utility of an item is less than 

a given minutil, the item is no longer considered. For the 

items whose transaction-weighted utilities exceed the minutil, 

they are sorted in transacion-weighted-utility-ascending order.  

3.1.2 Utility information record of 2-Itemsets 
For constructing the utility information record of 2-itemsets 

there is no need to scan the database. The utility information 

record of 2-itemset{xy} can be constructed by the intersection 

of the utility list of {x} and that of {y}. The common 

transactions are identified by comparing the tids in the two 

utility information records by the algorithm. Suppose the 

lengths of the utility-information records are m and n 

respectively, and then (m + n) comparisons at most are 
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enough for identifying common transactions, because all tids 

in a utility information record are ordered. The identification 

process is actually a 2-way comparison. 

3.1.3 Utility information record of k-Itemsets (k≥3) 
To construct the utility information record of k-itemset {i1 · · · 

i(k−1)ik}(k≥3), we can directly intersect the utility information 

record of{i1 · · · i(k−2)i(k−1)}and that of {i1 · · · i(k−2)ik} as we do 

to construct the utility information record of a 2-itemset. 

Algorithm 1: Build - Tree Generation Algorithm 

 

Input: P.UIR, the utility information record of itemset P; 

Px.UIR, the utility information record of itemset Px; 

Py.UIR, the utility information record of itemset Py. 

Output: Pxy.UIR, the utility information record of itemset 

Pxy. 

1. Pxy.UIR = NULL; 

2. for each element Ex  Px.UIR do 

3. if ∃Ey Py.UIR and Ex.tid==Ey.tid then 

4. if P.UIR is not empty then 

5. search such element E P.UIR that 

E.tid==Ex.tid; 

6. Exy=<Ex.tid, Ex.iutil+Ey.iutil -E.iutil, 

Ey.rutil>; 

7. Else 

8.  Exy=<Ex.tid, Ex.iutil+Ey.iutil, Ey.rutil>; 

9. end if 

10. append Exy to Pxy.UIR; 

11. end if 

12.  end for 

13.  return Pxy.UIR; 

3.2 EHUIM Algorithm  
After constructing a Utility information record a EHUIM 

Algorithm can mine all high utility itemset from database. 

3.2.1 Domain Space 
The domain space of the high utility itemset mining 

problem can be represented as a combination tree. Given a set 

of items I = {i1, i2, i3, . . . in} and a total order on all items 

(suppose i1 < i2 < · · · < in), a combination tree representing all 

itemsets can be constructed as follows. 

Firstly, the root of the tree is created; secondly, the 

n-child nodes of the root representing n 1-itemsets are created, 

respectively; thirdly, for a node representing itemset{is · · · ie} 

(1 ≤ s ≤ e < n), the (n−e) child nodes of the node representing 

itemsets {is · · · iei(e+1) },{is · · · iei(e+2)}, ...,{is · · · iein} are 

created. The third step is done repeatedly until all leaf nodes 

are created. For example, given I = {e, c, b, a, d} and e < c < b 

< a < d, a combination tree representing all itemsets of I is 

depicted in Fig. 1.  

 

Figure 1: Combination Tree 

3.2.2 Pruning Strategy 
For a database with n items, exhaustive search has 

to check 2n itemsets. To reduce the search space, we can 

exploit the iutils and rutils in the utility information record of 

an itemset. The sum of all the iutils in the utility information 

record of an itemset is the utility of the itemset according to 

Definition 5, and thus the itemset is high utility if the sum 

exceeds a given minutil. The sum of all the iutils and rutils in 

the utility information record provides EHUIM Algorithm 

with the key information about whether the itemset should be 

pruned or not. 

Lemma 1. Given the utility information record of itemset X, if 

the sum of all the iutils and rutils in the utility information 

record is less than a given "minutil", any extension X' of X is 

not high utility. 

3.2.3 EHUI Mining Algorithm 
Algorithm 2 shows the pseudo-code of EHUIM 

Algorithm. For each utility information record X in ULs (the 

second parameter), if the sum of all the iutils in X exceeds 

minutil, and then the extension associated with X is high 

utility and outputted. According to Lemma 1, only when the 

sum of all the iutils and rutils in X exceeds minutil should it 

be processed further. The initial utility information records are 

constructed from a database and they are sorted and processed 

in transaction-weighted utility ascending order. Therefore, all 

the utility information records in UIRs are ordered as the 

initial utility information record are. To explore the search 

space, the algorithm intersects X and each utility information 

record Y after X in UIRs. Suppose X is the utility information 

record of itemset Px and Y that of itemset Py, and then 
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Build(P.UIR, X, Y ) in line 8 is to construct the utility 

information record of itemset Pxy as stated in Algorithm 1. 

Finally, the set of utility information record of all the 1-

extensions of itemset Px is recursively processed. Given a 

database and a minutil, after the initial utility information 

record IUIRs are constructed, EHUIM(∅, IUIRs, minutil) can 

mine all high utility itemsets. 

Algorithm 2: EHUI Mining Algorithm 

 

Input: P.UIR, the utility information record of itemset P, 

initially empty; UIRs, the set of utility information record of 

all P’s 1-extensions; 

minutil, the minimum utility threshold. 

Output: all the high utility itemsets with P as prefix. 

1. for each utility information record X in UIRs do 

2. if SUM(X.iutils)≥minutil then 

3. output the extension associated with X; 

4.  end if 

5. if SUM(X.iutils)+SUM(X.rutils)≥minutil 

then 

6. exULs = NULL; 

7. for each utility information record Y after X in UIRs do 

8.  exUIRs = exUIRs+Build(P.UIR, X, Y ); 

9. end for 

10. EHUI(X, exULs, minutil); 

11. end if 

12. end for 

4. EXPERIMENTAL EVALUATION 
Performance of proposed algorithm is evaluated in this 

section. The experiments were performed on 2.20 GHz Core2 

Duo Processor with 2GB memory. The operating system is 

Linux Fedora 14. The algorithms are implemented in Java 

language. Both real and standard datasets are used in this 

experiment. Standard data sets are obtained from FIMI 

Repository. Real datasets were generated from the actual 

values. Parameter descriptions and default values of datasets 

are shown in Table no. Educational dataset for evaluation of 

feedback report of faculty member is used as a real dataset.  

Table 3: Statistics about Databases 

Dataset Chess Dataset Feedback Dataset 

Size 642kb 26kb 

Transactions 3196 500 

Items 75 10 

Avg Length 37 10 

 

4.2 Performance comparison on different 

data sets 
Running Time 

When measuring running time, we varied the minutil for 

each database. The lower the minutil is, the larger the number 

of high utility itemsets is, and thus the more the running time 

is. For example, for database chess in Fig.4 , when the 

minutils are 80% and 90%, the running times of EHUI are 

1400 mSec and 800 mSec. 

For almost all databases and minutils, EHUI 

performs the best. In Fig. , EHUI is slower than UPGrowth 

and UPGrowth+ for low minutils, and we found out in this 

case that UPGrowth+ requires less time. However, for high 

minutils, EHUI is even an order of magnitude faster than 

UPGrowth and UPGrowth+. For the Educational Feedback 

Dataset, when minutils are 50%, 60%, and 70%, the running 

time required for EHUI are 40mSec. 

 

Figure 2: Time for Educational Dataset (Separate File) 

 

Figure 3: Time for Educational Dataset (Combine File) 
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Figure 4: Time for Chess Dataset  

Memory Consumption 

 

Figure 5: Memory Space for Educational Dataset 

(Separate File) 

 

Figure 6: Memory Space for Educational Dataset 
(Combine File) 

Generally, the memory consumption of the 

algorithms is proportional to the number of candidate itemsets 

they generate. For example, for database Chess, UP Growth 

generates 623, UP Growth+ generates 551 and that of IHUP 

generates 30 candidate itemsets and consumes 17.60MB, 

21.81MB, and 16.02MB of memory respectively. Similar case 

is there for Educational Feedback Dataset. EHUI require less 

space than UPGrowth and in some cases of UPGrowth+ 

algorithm.  

 

 

 

 

 

 

 

 

 

 

Figure 7: Memory Space for Chess Dataset   

Itemsets Found 

Higher the number of candidate itemsets in a algorithm, 

lower is the performance. EHUI mining always generate less 

number of itemsets than UPGrowth and UPGrowth+. In both 

chess and educational feedback datasets, the numbers of 

generated itemsets are less for EHUI mining algorithm for 

high value of minutil.    

 

Figure 8: Itemset for Educational Dataset (Separate File) 
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Figure 9: Itemset for Educational Dataset (Combine File)

 

Figure 10: Itemset for Chess Dataset 

5. CONCLUSION 
In this paper, we have proposed a novel data structure, utility 

information record, and developed an efficient algorithm, 

EHUI, for high utility itemset mining. Utility information 

record provide not only utility information about itemsets but 

also important pruning information for EHUI. We have used 

Educational real time and standard datasets. Previous 

algorithms have to process a very large number of candidate 

itemsets during their mining processes. However, most 

candidate itemsets are not high utility and are discarded 

finally. EHUI Algorithm can mine high utility itemsets 

without candidate generation, so that complexity of 

UPGrowth and UPGrowth+ is reduced as it require less time 

and space, which avoids the costly generation and utility 

computation of candidates. However in future we can again 

reduce the complexity by reducing the joining cost of utility 

information record. 
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