
International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.4, June 2015

34

Efficient High Utility Itemset Mining using Utility

Information Record

Prashant V. Barhate
Research Scholar,
MIT, Aurangabad.

 S. R. Chaudhari
Department of Computer Science
& Engineering, MIT, Aurangabad

P. C. Gill
Department of Computer Science
& Engineering, MIT, Aurangabad

ABSTRACT

High utility itemsets refer to the sets of items with high utility

like profit in a database, and efficient mining of high utility

itemsets plays an important role in many real life applications

and is an important research issue in data mining area. In

recent years, the problems of high utility pattern mining

become one of the most important research areas in data

mining. The existing high utility mining algorithm generates

large number of candidate itemsets, which takes much time to

find utility value of all candidate itemsets.

In this paper we are implementing a data structure that stores

the utility related to the item and using this data structure we

are reducing time and space complexity of UP Growth and UP

Growth+ Algorithms. Various Standard and synthetic datasets

are used with Educational real data set. An algorithm is

proposed to find set of high utility itemset which avoids the

candidate itemsets generation.

Keywords

Utility, Utility Information Record, Effective High Utility

Itemset Mining

1. INTRODUCTION
Data Mining can be described as an action that analyses the

data and draws out some new nontrivial information from the

large amount of databases. Data mining techniques have

widely applied to extract useful rules or patterns in various

practical applications, such as mobile data application and

multimedia data applications. Discovering useful patterns

hidden in a database plays an essential role in several data

mining tasks, such as frequent pattern mining, association rule

mining, and high utility pattern mining.

Mining frequent itemset [2] from the database DB is to find

out set of itemset that occurs frequently. The frequency of

itemset is the support count related to that itemset i.e. number

of transactions containing that itemset. If the support of the

itemset exceeds the minimum support threshold value then

itemset is frequent.

Mining frequent itemset takes presence and absence of itemset

into account, other relative information related to the item is

not considered. To adderss this issue, the concept of weighted

association rule mining was proposed. In weighted

association rule mining, weights of items, such as unit profits

of items in transaction databases, are considered. With this

concept, even if some items appear infrequently, they might

still be found if they have high weights. However, the

quantities of items are not considered yet. This results in the

research area of finding out high utility itemset from database.

Utility is one of the important features of itemset in

transaction that specifies a utility/profit of itemset with

frequency.

Table 1: Profit table

Recently, a number of high utility itemset mining algorithms

[3] have been proposed. Most of the algorithms adopt a

similar framework: initially generate candidate high utility

itemsets from a database and then compute the exact utilities

of the candidates by scanning the database to identify high

utility itemsets. However, the algorithms often generate a very

large number of candidate itemsets and thus are challenged

with two problems:

(1) Excessive amount of memory required for storing

candidate itemsets.

(2) A large amount of running time for generating candidates

and computing their exact utilities.

Table 2 : Database Example

TID Transaction Quantity TU

T1 {A,C,D,} {1,10,1} 17

T2 {A,C,E,G} {2,6,2,5} 27

T3 {A,B,D,E,F} {2,2,6,2,1} 37

T4 {B,C,D,E} {4,13,3,1} 30

T5 {B,C,E,G} { 2,4,1,2} 13

T6 {A,B,C,D,H} {1,1,1,1,2} 12

When the number of candidates is so large that they cannot be

stored in memory, the algorithms will fail or their

performance will be degraded due to thrashing. To solve these

problems, we propose in this paper an algorithm for high

utility itemset mining.

The contributions of the paper are as follows:

1. A novel structure, called utility information record,

is proposed. Utility information record stores the

utility information about an itemset along with the

heuristic information about whether the itemset

should be pruned or not.

Item A B C D E F G H

Profit 5 2 1 2 3 5 1 1

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.4, June 2015

35

2. An efficient algorithm, called Efficient High Utility

Itemset Mining (EHUIM) Algorithm, is developed.

EHUIM Algorithm does not generate candidate

high utility itemsets. After constructing the initial

utility information-record from a mined database,

EHUIM Algorithm, can mine high utility itemsets

from these utility information record. We are using

various standard and real data sets [4].

2. BACKGROUND
2.1 Problem Definition
Let I= {i1, i2, i3, . . . , in} be a set of items.the database DB is

composed of a utility table and a transaction table. Each item

in I has a utility value in the utility table. Each transaction T in

the transaction table has a unique identifier (tid). An itemset is

a subset of I and is called a k-itemset if it contains k items.

Definition 1. The external utility of item i, denoted as ext_u(i),

is the utility value of i in the utility table of DB.

Definition 2. The internal utility of item i in transaction T,

denoted as int_u(i, T), is the count value associated with i in T

in the transaction table of DB.

Definition 3. The utility of item i in transaction T, denoted as

u(i, T), is the product of int_u(i, T) and ext_u(i), where u(i, T)

= int_u(i, T) × ext_u(i).

For example, in Table 2 and 3, ext_u(e) = 3, int_u(e, T5) = 1,

and u(e,T5)= int_u(e, T5) × ext_u(e) = 1 x 3 =3.

Definition 4. The utility of itemset X in transaction T, denoted

as u(X, T), is the sum of the utilities of all the items in X in T

in which X is contained, where

u(X, T) =

Definition 5. The utility of itemset X, denoted as u(X),is the

sum of the utilities of X in all the transactions containing X in

DB, where u(X) =

For example, in Table 2, u({ae}, T2) = u(a, T2) + u(e, T2)= 2

× 5 + 2 × 3 = 16, and u({ae}) = u({ae}, T2) + u({ae},T5) = 16

+ 14 = 30.

Definition 6. The utility of transaction T, denoted as tu(T), is

the sum of the utilities of all the items in T, where tu(T)

= ,and the total utility of DB is the sum of

the utilities of all the transactions in DB.

2.2 Related Work
Many algorithms have been proposed for high utility itemset

mining such as, Two-Phase [6], IHUP [7], and UP-Growth[5].

Two-Phase algorithm [6] was proposed by Liu et al. the

algorithm consists of two phases. In phase I, Two-Phase

algorithm employs Apriory based method to enumerate

HTWUIs. It generates next set of candidate itemsets from the

previous set of candidate itemsets and prunes candidate

itemsets by TWDC property. In each pass, HTWUIs and their

estimated utility values are computed by scanning database.

After this, the complete set of HTWUIs is collected. In phase

II, the original database is scanned to find out the high utility

itemsets and their utilities

Although Two-Phase algorithm effectively reduces the search

space and finds the complete set of high utility itemsets, it still

generates too many candidates for HTWUIs and requires

multiple database scans. To address this issue Ahmed et al. [7]

proposed a tree-based algorithm, called IHUP. To maintain

the information of high utility itemsets and transactions the

algorithm uses an IHUP-Tree. Every node in IHUP-Tree

consists of an item name, a support count, and a TWU value.

The algorithm works in three steps, in first, items in the

transaction are rearranged in a fixed order such as

lexicographic order. The IHUP-tree is then constructed using

rearranged transactions. In the second step, HTWUIs are

generated from the IHUP-Tree. In third step, by scanning the

original database, high utility itemsets and their utilities are

identified from the set of HTWUIs.

Although IHUP finds HTWUIs without generating any

candidates for HTWUIs and achieves a better performance

than Two-Phase, it still produces too many HTWUIs in phase

I. To address this issue, Vincent S. Tseng, Cheng-Wei Wu,

Bai-En Shie, and Philip S. Yu [5] proposed the UP-Growth

algorithm. A compact tree structure, called utility pattern tree

(UP-Tree), for discovering high utility itemsets and

maintaining important information related to utility patterns

within databases are proposed. High-utility itemsets can be

generated from UP-Tree efficiently with only two scans of

original databases. Four new strategies are proposed namely

DGU, DGN, DLU and DLN. First two strategies are applied

on UP Tree to globally reduce unpromising items from

obtained potential high utility itemsets. The next two

strategies namely DLU and DLN are applied by the UP-

Growth on the UP-Tree for reducing the local unpromising

items. The actual high utility itemsets are then denfied from a

set of potential high utility itemsets.

All these algorithms first produce candidate itemset which

require more time and space. Here in this algorithm a search

space from the UP Growth algorithm [5] is minimized. A

Utility information record structure is used instead of UP

Tree.

3. PROPOSED METHOD
The framework of the proposed method consists of following

steps: 1) Scan database to construct utility Information

Record. 2) Apply EHUI mining algorithm. 3) Generate High

Utility Itemsets.

3.2 Utility Information Record Structure
In the section, we propose a utility information record

structure to maintain the utility information about a database.

3.1.1 Initial Utility information record
Initial utility information record for storing the

utility information about a mined database can be constructed

by two scans of the database. Firstly, the transaction-weighted

utilities of all items are collected by performing a database

scan. If the transaction-weighted utility of an item is less than

a given minutil, the item is no longer considered. For the

items whose transaction-weighted utilities exceed the minutil,

they are sorted in transacion-weighted-utility-ascending order.

3.1.2 Utility information record of 2-Itemsets
For constructing the utility information record of 2-itemsets

there is no need to scan the database. The utility information

record of 2-itemset{xy} can be constructed by the intersection

of the utility list of {x} and that of {y}. The common

transactions are identified by comparing the tids in the two

utility information records by the algorithm. Suppose the

lengths of the utility-information records are m and n

respectively, and then (m + n) comparisons at most are

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.4, June 2015

36

enough for identifying common transactions, because all tids

in a utility information record are ordered. The identification

process is actually a 2-way comparison.

3.1.3 Utility information record of k-Itemsets (k≥3)
To construct the utility information record of k-itemset {i1 · · ·

i(k−1)ik}(k≥3), we can directly intersect the utility information

record of{i1 · · · i(k−2)i(k−1)}and that of {i1 · · · i(k−2)ik} as we do

to construct the utility information record of a 2-itemset.

Algorithm 1: Build - Tree Generation Algorithm

Input: P.UIR, the utility information record of itemset P;

Px.UIR, the utility information record of itemset Px;

Py.UIR, the utility information record of itemset Py.

Output: Pxy.UIR, the utility information record of itemset

Pxy.

1. Pxy.UIR = NULL;

2. for each element Ex Px.UIR do

3. if ∃Ey Py.UIR and Ex.tid==Ey.tid then

4. if P.UIR is not empty then

5. search such element E P.UIR that

E.tid==Ex.tid;

6. Exy=<Ex.tid, Ex.iutil+Ey.iutil -E.iutil,

Ey.rutil>;

7. Else

8. Exy=<Ex.tid, Ex.iutil+Ey.iutil, Ey.rutil>;

9. end if

10. append Exy to Pxy.UIR;

11. end if

12. end for

13. return Pxy.UIR;

3.2 EHUIM Algorithm
After constructing a Utility information record a EHUIM

Algorithm can mine all high utility itemset from database.

3.2.1 Domain Space
The domain space of the high utility itemset mining

problem can be represented as a combination tree. Given a set

of items I = {i1, i2, i3, . . . in} and a total order on all items

(suppose i1 < i2 < · · · < in), a combination tree representing all

itemsets can be constructed as follows.

Firstly, the root of the tree is created; secondly, the

n-child nodes of the root representing n 1-itemsets are created,

respectively; thirdly, for a node representing itemset{is · · · ie}

(1 ≤ s ≤ e < n), the (n−e) child nodes of the node representing

itemsets {is · · · iei(e+1) },{is · · · iei(e+2)}, ...,{is · · · iein} are

created. The third step is done repeatedly until all leaf nodes

are created. For example, given I = {e, c, b, a, d} and e < c < b

< a < d, a combination tree representing all itemsets of I is

depicted in Fig. 1.

Figure 1: Combination Tree

3.2.2 Pruning Strategy
For a database with n items, exhaustive search has

to check 2n itemsets. To reduce the search space, we can

exploit the iutils and rutils in the utility information record of

an itemset. The sum of all the iutils in the utility information

record of an itemset is the utility of the itemset according to

Definition 5, and thus the itemset is high utility if the sum

exceeds a given minutil. The sum of all the iutils and rutils in

the utility information record provides EHUIM Algorithm

with the key information about whether the itemset should be

pruned or not.

Lemma 1. Given the utility information record of itemset X, if

the sum of all the iutils and rutils in the utility information

record is less than a given "minutil", any extension X' of X is

not high utility.

3.2.3 EHUI Mining Algorithm
Algorithm 2 shows the pseudo-code of EHUIM

Algorithm. For each utility information record X in ULs (the

second parameter), if the sum of all the iutils in X exceeds

minutil, and then the extension associated with X is high

utility and outputted. According to Lemma 1, only when the

sum of all the iutils and rutils in X exceeds minutil should it

be processed further. The initial utility information records are

constructed from a database and they are sorted and processed

in transaction-weighted utility ascending order. Therefore, all

the utility information records in UIRs are ordered as the

initial utility information record are. To explore the search

space, the algorithm intersects X and each utility information

record Y after X in UIRs. Suppose X is the utility information

record of itemset Px and Y that of itemset Py, and then

 Φ

 e c b a d

 ec eb ea ed cb ca cd ba bd ad

ecb eca ecd eba ebd ead cba cbd cad bad

ecba ecbd ecad ebad cbad

 ecbad

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.4, June 2015

37

Build(P.UIR, X, Y) in line 8 is to construct the utility

information record of itemset Pxy as stated in Algorithm 1.

Finally, the set of utility information record of all the 1-

extensions of itemset Px is recursively processed. Given a

database and a minutil, after the initial utility information

record IUIRs are constructed, EHUIM(∅, IUIRs, minutil) can

mine all high utility itemsets.

Algorithm 2: EHUI Mining Algorithm

Input: P.UIR, the utility information record of itemset P,

initially empty; UIRs, the set of utility information record of

all P’s 1-extensions;

minutil, the minimum utility threshold.

Output: all the high utility itemsets with P as prefix.

1. for each utility information record X in UIRs do

2. if SUM(X.iutils)≥minutil then

3. output the extension associated with X;

4. end if

5. if SUM(X.iutils)+SUM(X.rutils)≥minutil

then

6. exULs = NULL;

7. for each utility information record Y after X in UIRs do

8. exUIRs = exUIRs+Build(P.UIR, X, Y);

9. end for

10. EHUI(X, exULs, minutil);

11. end if

12. end for

4. EXPERIMENTAL EVALUATION
Performance of proposed algorithm is evaluated in this

section. The experiments were performed on 2.20 GHz Core2

Duo Processor with 2GB memory. The operating system is

Linux Fedora 14. The algorithms are implemented in Java

language. Both real and standard datasets are used in this

experiment. Standard data sets are obtained from FIMI

Repository. Real datasets were generated from the actual

values. Parameter descriptions and default values of datasets

are shown in Table no. Educational dataset for evaluation of

feedback report of faculty member is used as a real dataset.

Table 3: Statistics about Databases

Dataset Chess Dataset Feedback Dataset

Size 642kb 26kb

Transactions 3196 500

Items 75 10

Avg Length 37 10

4.2 Performance comparison on different

data sets
Running Time

When measuring running time, we varied the minutil for

each database. The lower the minutil is, the larger the number

of high utility itemsets is, and thus the more the running time

is. For example, for database chess in Fig.4 , when the

minutils are 80% and 90%, the running times of EHUI are

1400 mSec and 800 mSec.

For almost all databases and minutils, EHUI

performs the best. In Fig. , EHUI is slower than UPGrowth

and UPGrowth+ for low minutils, and we found out in this

case that UPGrowth+ requires less time. However, for high

minutils, EHUI is even an order of magnitude faster than

UPGrowth and UPGrowth+. For the Educational Feedback

Dataset, when minutils are 50%, 60%, and 70%, the running

time required for EHUI are 40mSec.

Figure 2: Time for Educational Dataset (Separate File)

Figure 3: Time for Educational Dataset (Combine File)

27

28

29

30

31

32

33

34

50 55 60 65 70 80 90 100

R
u

n
n

in
g

Ti
m

e
 i

n
 m

se
c

Minimum Utility

Time required for Feedback datasets

UPG UPG+ EHUI

26

27

28

29

30

31

32

50 60 70 80 90 100

R
u

n
n

in
g

Ti
m

e

Minimum Utility

Running Time required for Feedback
dataset

UPG UPG+ EHUI

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.4, June 2015

38

Figure 4: Time for Chess Dataset

Memory Consumption

Figure 5: Memory Space for Educational Dataset

(Separate File)

Figure 6: Memory Space for Educational Dataset
(Combine File)

Generally, the memory consumption of the

algorithms is proportional to the number of candidate itemsets

they generate. For example, for database Chess, UP Growth

generates 623, UP Growth+ generates 551 and that of IHUP

generates 30 candidate itemsets and consumes 17.60MB,

21.81MB, and 16.02MB of memory respectively. Similar case

is there for Educational Feedback Dataset. EHUI require less

space than UPGrowth and in some cases of UPGrowth+

algorithm.

Figure 7: Memory Space for Chess Dataset

Itemsets Found

Higher the number of candidate itemsets in a algorithm,

lower is the performance. EHUI mining always generate less

number of itemsets than UPGrowth and UPGrowth+. In both

chess and educational feedback datasets, the numbers of

generated itemsets are less for EHUI mining algorithm for

high value of minutil.

Figure 8: Itemset for Educational Dataset (Separate File)

0

500

1000

1500

2000

2500

50 60 70 80 90 100

R
u

n
n

in
g

Ti
m

e

Minimum Utility

Time required for chess datasets

UP Growth UP Growth Plus

EHUI

0

2

4

6

10 20 30 40 50 60

M
e

m
o

ry
 S

p
ac

e
 In

 M
B

Minimum Utility (%)

Memory space required for Feedback
datasets

UPG UPG+ EHUI

0

2

4

6

10 20 30 40 50 60

M
e

m
o

ry
 s

p
ac

e

Minimum Utility

Memory space required for Feedback
dataset

UPG UPG+ EHUI

0

5

10

15

20

25

30

35

40

50 60 70 80

It
e

m
se

ts

Minimum Utility

Itemset found from Feedback dataset

UPG UPG+ EHUI

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.4, June 2015

39

Figure 9: Itemset for Educational Dataset (Combine File)

Figure 10: Itemset for Chess Dataset

5. CONCLUSION
In this paper, we have proposed a novel data structure, utility

information record, and developed an efficient algorithm,

EHUI, for high utility itemset mining. Utility information

record provide not only utility information about itemsets but

also important pruning information for EHUI. We have used

Educational real time and standard datasets. Previous

algorithms have to process a very large number of candidate

itemsets during their mining processes. However, most

candidate itemsets are not high utility and are discarded

finally. EHUI Algorithm can mine high utility itemsets

without candidate generation, so that complexity of

UPGrowth and UPGrowth+ is reduced as it require less time

and space, which avoids the costly generation and utility

computation of candidates. However in future we can again

reduce the complexity by reducing the joining cost of utility

information record.

6. REFERENCES
[1] Jyothi Pillai, O.P.Vyas “Overview of Itemset Utility

Mining and its Applications” IJCA(0975 – 8887)

Volume 5– No.11, August 2010.

[2] J. Han, H. Cheng, D. Xin, and X. Yan. Frequent pattern

mining: Current status and future directions. Data Mining

and Knowledge Discovery, 15(1):55–86, 2007.

[3] C. F. Ahmed, S. K. Tanbeer, B.-S. Jeong, and Y.-K.Lee.

Efficient tree structures for high utility patternmining in

incremental databases. IEEE Transactions onKnowledge

and Data Engineering, 21(12):1708–1721,2009.

[4] Frequent Itemset Mining Implementations Repository,

http://fimi.cs.helsinki.fi/, 2013.

[5] Vincent S. Tseng, Bai-En Shie, Cheng Wei Wu, and

Philip S. Yu, Fellow, “Efficient Algorithms for Mining

High Utility Itemsets from Transactional Databases”

IEEE TRANSACTIONS ON KNOWLEDGE AND

DATA ENGINEERING, VOL. 25, NO. 8, AUGUST

2013.

[6] Y. Liu, W. Liao, and A. Choudhary. A fast high utility

itemsets mining algorithm. In Proc. of the Utility-Based

Data Mining Workshop, 2005.

[7] C. F. Ahmed, S. K. Tanbeer, B.-S. Jeong, and Y.-K. Lee.

Efficient tree structures for high utility pattern mining in

incremental databases. In IEEE Transactions on

Knowledge and Data Engineering, Vol. 21, Issue 12, pp.

1708-1721, 2009.

0

10

20

30

40

50 60 70 80

It
e

m
se

ts

Minimum Utility

Itemset found from Feedback dataset

UPG UPG+ EHUI

0

200

400

600

800

50 60 70 80 90 100

It
e

m
se

ts

Minimum Utility in (%)

Itemsets found in chess datasets

UPG UPGPlus EHUI

IJCATM : www.ijcaonline.org

