
International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.3, June 2015

10

Exploiting the Usage of Mobile Agents as a Network

Performance Monitoring Tool for Network Fault

Management – an Alternative to Other Traditional

Approaches

Isaac Bansah
Information Technology Department, Methodist

University College, Accra, Ghana

Tonny Montana Adegboyega
Information Technology Department, Methodist

University College, Accra, Ghana

ABSTRACT

The growth of heterogeneous networks has increased the

demand of adopting robust and an effective technology that can

cope with the trend. Developers have always thought of an

effective way to manage a network taking in to consideration

the current growth trend and the complexities of modern

network architecture. Extensive research yielded a concept

called the Mobile Agent paradigm. It came as an alternative to

the traditional client server paradigm has since proven to be the

obvious choice as far as effective network management is

concerned

This paper addresses the exploitation of Mobile Agents as a

Network Performance monitoring tool. The mobile agent agents

used is a prototype owned by IBM Tokyo called Aglet. The aim

is to provide an intelligent codebase in java for the Aglet to

retrieve performance variables and other relevant data on a

virtual network. Results are analyzed and conclusions are drawn

based on the analysis and evaluation

General terms
Client-Server Paradigm, Remote Procedure Call, Mobile Agent

Migration

Key words
Network Management, Fault Management, Performance

Management, Mobile Agents, Java, Aglet

1. INTRODUCTION
Mobile agent technology has been accepted as an alternative

solution for the challenges posed by managing large and

complicated network architectures. Its mobility and

communication features are believed to surmount over all other

paradigms. It shares similarities with java applets but what

makes it superior is the fact that apart from it carrying its class

along, it is also capable of carrying its executable state across

the network. It is also capable of executing its state on any host

on the network.

The prototype developed by IBM Tokyo called Aglet is the one

to be used for this task. The Aglet codebase is written in Java

which makes the aglet inherit all benefits and policies java

provides as well as the Aglet policy.

The object-oriented form of programming provided in java

helps to define appropriate variables in the codebase.

Mobile agents have proven to be the appropriate technology for

this task due to its robust and flexible nature.

2. CLIENT/SERVER PARADIGM
The Client/Server paradigm is a form of computer network

paradigm that involves request and dispatch of information

between the client and the server and has related remote

procedure call mechanism as follows: [1]

Client

 Any application program

 Makes a request

 Awaits a response

Server

 Specialized program (process)

 Awaits a request

 Computes an answer

 Issues a response

[2] Cited [3] where the remote procedure call (RPC) is an

interaction exercise to remedy these shortcomings by allow

client request transactions to be performed in the same way as a

local function call is made; all stages involved must be

transparent to the client

[4] also described the Client –Server paradigm as the traditional

design approach for distributed communication among sites, in

which messages are transferred from one site

to another, but actual code is not.

[5] registered a concern about the fact that synchronization

points and network addresses would always have to be

determined by developers because of the fact that the Client-

Server paradigm is too much of a low-level one. It went on to

say the exact services provided by the client must be known as

the Client-Server interaction is too specific.

The initial contact is always by the client to server in form of

information or service request. The server in this case has all

the resources and based on the kind of resource requested by the

client, the server honors it and execute as the client has not got

the resources to do so. [6] described the client as not intelligent

enough to execute this requests since the server has all the

know-how, processors and resources.

[7] Cited [8] who described the Message Passing and Remote-

Procedure calls as a very reliable means of client-server

communication in distributed applications.

These highlights the limitations this paradigm offers when put

to use though it is still supported by a couple of technologies.

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.3, June 2015

11

2.1 Code on Demand Paradigm
This form of paradigm is often described as a mobile code and

its characteristics are typically exhibited by java applets. Unlike

the client server paradigm, the client has some resources and the

ability to process information.

The client makes request to a host for codes to execute specific

tasks locally. The codes are then sent to the client by the host on

the network.

[9] Cited [10] in his article describing the server as a code

repository whiles changing behavior of the client upon

successful execution of the codes it supplies.

[11] made mention of the Remote Evaluation Architecture,

where in this case the server is required to execute a code that is

sent from a requesting client and returns the results to the

clients; a direct reversal of the code in demand situation.

2.2 Mobile Agents
Mobile agents have been defined in so many ways by different

writers. [12], defined Mobile Agents as a software entity which

exists in a software environment. [13] also defined mobile

agents as an agent that is capable of moving between machines.

It was also described by [6] as an agent that has the unique

ability of transporting itself from one network to the other. In

short mobile agent is a form of software agent that is capable of

traveling across a network.

[6] mentioned that agents are capable of transporting itself with

its state and code. The state of the mobile agents consists of the

attributes and values of the mobile agent that helps in its

executions of its functions and the code is the class code of the

mobile agent in terms of mobile orientation.

The mobile agent needs to maintain the same state and code

while traveling down a network for unique identification and

form for execution of its functions at any point of the network.

The mobile agent is only capable of executing its functions or

interacts with an object across a network with the same host.

One feature of a mobile agent is the fact that it is heterogeneous

which makes it capable of traveling across heterogeneous.

Mobile agents have been accepted, tested and proven to be the

most effective way of managing networks. It allows flexibility,

automation and security. [14]

3. NETWORK MANAGEMENT

OVERVIEW
As computer networks grow, the task of managing also grows.

Large and complicated networks demanded effective

management practices to ensure optimal and efficient

performance. Adapting an efficient network management

system to keep with the growth is a need. [15] described

network management as a list of activities performed on a

network to ensure smooth and efficient running with minimal

downtime. The amount of downtime experienced by a network

determines the reliability of the network.

3.1 OSI Management Functions
Managing all aspects communication network requires many

tools. [16] Open System Interconnection (OSI) management

functions are required to be met by the activities of managing a

network. To successfully manage a network requires all these

functions to be carried out effectively. Listed below are the five

OSI management function practices: [17].

 Fault Management

 Configuration Management

 Performance Management

 Accounting Management

 Security Management

3.2 Fault Management
Fault management as one of the OSI management functions

captures activities like error detection, tracing and identifying

faults, information logging and fault ticketing as some of the

practices undertaken when managing faults. [18]. Other

activities involved in fault management includes executing

series of diagnostics tests, correcting faults as well as reporting

error conditions. Others including thorough and careful

examination of available information to help localize and trace

fault effectively. [18]

As networks keeps growing and its nature looking more

complicated, huge and heterogeneous, so is the need and desire

for network administrators to employ prudent and sustainable

fault management practices to maintain and cope with the pace

of growth. This trend has automatically rendered human

administrators obsolete as automated fault management systems

are being adopted for efficiency. The fault domain of a network

increases as the network grow larger and complicated because

the hardware and the software requirements of the physical

network also increases. Tracking and detection, logging and

ticketing, isolation and resolution , to mention a few, are also

some of the functions of fault management. [17]. Using the

above procedures would initially involve identifying faults by

possibly comparing sequences and later observing previously

logged faults patterns or better still identifying the fault

uniquely. A suitable solution is proposed after the exercise and

records or procedure of execution is recorded for future

references. Fault management according to [19] involves these

five step processes

 Fault detection

 Fault location

 Service restoration

 Identification of problem root cause

 Problem resolution

These two authors seem to be addressing the same problem

with similar processes but varying steps. Both have emphasized

the need for a systematic approach to fault management. These

approaches allow dynamism and give the opportunity for

feedback or revision of any of the steps involved for re-

examination. Each of the stages involved is very critical as the

next stage can only start at the end of the previous. Diagnostic

tools, network applications and applications and platforms have

subsequently being developed to make fault management

simple and effective. This allows the flexibility of accessing

and managing fault remotely. [20] mentioned that damages

created by fault and its cost of repair should be monitored by

collecting data on the effectiveness of the fault management

process. These data can then be normalized to account for

network specifications and parameters for which can be intend

be used to determine the performance of the fault management

process. Good monitoring and controlling practices keeps track

of the management and alleviate any possibility of deviation,

mistakes or bad practices. Ensuring an optimum level of

performance of the fault management process guarantees

efficiency and effectiveness of the whole process. [21]

4. AGLET OVERVIEW
In the early 1995s, the research laboratory of IBM Tokyo

developed the Aglet API as an agent development kit. [6].

Danny B Lange, a member of the research team initiated this

effort as cited by [6].

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.3, June 2015

12

Aglets can simply be defined as java mobile agents. Aglets as

java objects are capable of transporting themselves from one

host to the other on a network while maintaining its code and

data.

The earlier versions of Aglets developed was version 1.0.3

which later through the open source project became available

including the later versions (Aglets 2.0.2). [6] also mentioned

that you can think of an Aglet being generalized and extended

for java applets and Servlets. It also acknowledges the concept

of having its itinerary dynamically routed and executing

autonomously.

Aglets execute in an Aglet server host. The default Aglet server

host is called Tahiti.

4.1 Requirements
Mobile agent technology is now being adopted by both

developers and researchers to help solve some of the lapses

created by other traditional methodologies.

The ability of using mobile agents in various forms of network

solutions has been proven by good extensive work by

researchers and developers. This concept clearly demonstrated

superior performance which made it a preferred choice over the

traditional sever-client paradigm

The aim of this project is to use aglet (mobile agent) to

remotely monitor network performance for fault management

purposes. The monitoring would be done on a virtual network

with different subnets.

4.1.1 Requirement Analysis
Writing a codebase for aglets or developing an application

using agents gives the developer the opportunity to investigate

and find data of a particular area of concerned. Extensive

research has been done in various forms for the use of mobile

agents for network monitoring purposes. Most of these research

activities were based on the potential and basic functionality of

the mobile agent but not associating it with spe4cific tasks for

that matter putting it to test for specific duties. Developing an

application to retrieve network statistics like, throughput, delay,

availability and retrieving event log files remotely demonstrates

the practicality and the real situation benefits of using mobile

agents for monitoring purposes.

Retrieving these network statistics could briefly give one an

idea about the state of the network. The throughput and the

delay might also be tested against the varying load size of aglet.

Below is the listed summary of requirements:

 To be able to analyze data collected to tell the state of

the network

 To be able to use information retrieved to manage

network resource allocation and usage

 To be able to remotely monitor a network by

diagnosing, repairing and retrieving relevant network

data for network fault management.

4.2 Aglet Design Requirement
Aglet requires Aglet Software Development Kit (ASDK) which

is an open source program by IBM Tokyo to develop an aglet. It

is available for download on the internet for the earlier version

of 1.1.3 or later which in this case is 2.5.0. It requires an

additional software environment of a JDK platform which in

this case as J2SDK version 1.4.5_09. It is also an open source

program own by sun Microsystems and available for download

on the internet.

The ASDK package comes with a default server called Tahiti

which provides a Graphic User interface (GUI) for

manipulation of the aglet.

4.3 Aglet Data Retrieval
Quality or level of data retrieved bay an aglet is partly

determined by the intelligent request in the codebase. Data

retrieved by aglet is normally stored in an array. Effective use

of an array is required as an overload or storing too much

information on a single array may affect the performance of the

memory requirements.

It is always recommended to store each array in a single vector

for optimal performance. Vectors with singe stored arrays are

capable of expanding to accommodate more arrays as and when

needed.

5. AGLETS PROTOTYPE
The first issue considered in designing the aglets prototype was

the aglet being able to serve its purpose by retrieving the

required data. The accuracy of the data was not much concern at

this stage as all the remote hosts on the network were using

copies of the resources and processors available on the host

machine. The main aim was to demonstrate the possibility of

the aglet the task its being designed for.

Security was a major problem which prevented data retrieval

remotely. Further research revealed how permissions could be

enabled to allow read and write permissions to aglets.

The first move was to disable the aglets.props file in the cnf

directory of the aglet.

It is done by setting it to false which disables the aglet security

as shown below:

Aglet.secure=true – original state

Aglet.secure=false- disabled state

Before using the OnCreation method to create the aglet, the

vectors are defined and variables stated in the extended class of

the aglet.

The variables defined included the home variable which is

meant to record the dispatch location of the created aglet and

also serves as a ‘reminder’ for where the aglet finally returns.

This is done by obtaining the aglet context and the URL of the

host as shown below:

Home = getAgletContext().getHostingURL().toString();

AgletContext ac = getAgletContext();

Specifying the travel itinerary was next as it needs to know

where it’s going. The itinerary is normally listed depending on

the number of destinations to visit and what pattern to follow.

The travel pattern of this aglet was to start from the first URL

address through to the last one ad return. Another option is to

dispatch randomly or broadcast. Shown below is the travel

itinerary of the aglet.

itinerary.addElement (new URL (“atp://Isaac:7201”));

itinerary.addElement (new URL (“atp://Isaac:7402”));

itinerary.addElement (new URL (“atp://VM1:7601”));

itinerary.addElement (new URL (“atp://VM1:7804”));

itinerary.addElement (new URL (“atp://nana:8105”));

itinerary.addElement (new URL (“atp://nana:8306”));

The next stage involved deciding on the aglets packets to be

transmitted across the network for the next. It was decided to

measure the throughput and latency against five aglets packet

and also to test the effect of load on these performance

variables. This was done by allowing the original aglets to clone

itself five times and dispatch them automatically.

This was done by introducing a new ‘isClone’ Boolean in the

extended aglet class and was set to false. Anew private vector

and string was also defined for cloned copies.

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.3, June 2015

13

Boolean isClone = false;

Private Vector nanas;

Private String nanaName = null;

The five copies were cloned and time interval was indicated to

space up the cloning process. This allows the dispatch time of

each cloned aglet to be note. Created aglets are automatically

dispatched since the itineraries are specified in the code. Each

of the cloned aglets carries that same code as the original. The

cloning and the specified time for one copy are shown below:

Nanas = new vector();

{

Try {

 Thread.sleep(1000);

 } catch

(InterruptedException e) {}

}

Subsequent copies were made with varying time intervals. A

clone listener and adapter were added to allow the use of the

OnClone Method. This method is used to change the value of

the Boolean variable ‘isclone’ to false which prevents the clone

from cloning itself again.

addCloneListener(new CloneAdapter() {

 public void onClone(CloneEvent

ce){

 isClone = true;

 }

 });

During the cloning process, the original aglet was delayed to

accommodate to time spent in cloning and dispatching.

The throughput was obtained taking in to consideration the total

aglet packets sents, the time interval between their dispatches

and the latency attained by the last aglet packet to arrive.

The latency was also calculated by the time difference between

the start time of the first aglet and finish time of the last aglet.

Since all the aglets including the clones carries the same

codebase, the last aglet to arrive returns the required value of

the throughput and latency. Accordingly, the diagnosing time

was also obtained by reading the time the aglet reached the host

and the time it leaves the host.

long latency = finish-start;

long latencyInSec = latency;

//the thread sleeptime is converted to seconds.

//and the latency is also converted from milliseconds.

//to seconds

long throughput =

5/1+2+2=3+2+(latencyInSec/1000);

long delayInServer = finishserver-startserver;

long delayinServerInSec = delayInServer;

system.out.println(“\nDisagnosis time: “ +

delayinServerInSec + “milliseconds.\n”);

system.out.println(“\nNetwork Latency: “ +

latencyInSec + “milliseconds.\n”);

system.out.println(“\nDisagnosis throughput: “ +

throughput + “bytes/seconds.\n”);

The calculation of the throughput was on this formula deduced

from the pattern of dispatch.

Throughput = n/T1+T2+T3+T4+……Ln

Where;

 n = number of aglet packets

 T1….Tn = time of departure of aglets

Ln = Latency of last aglet to arrive

A vector of netInfoData is added for storage of retrieved data

which is eventually displayed or written to file.

For the network to be tested against varied aglet packet sizes

(load), a public string was introduced that allow the file size to

be increased as shown below:

Public static Sting PacketSize=

“abcdefghijklmnopqrstuvwxyz,

abcdefghijklmnopqrstuvwxyz”+

“abcdefghijklmnopqrstuvwxyz,

abcdefghijklmnopqrstuvwxyz”;

The aglets, after dispatch, travels to its specified destinations.

Aglets packet size was varied to evaluate the effect of load on

the network throughput and latency. There were two outs to

data retrieved from this test as described below:

 Username

 PC Architecture

 Operating system

 Operating system Version

 Architecture

 Computer name

 URL of java vendor

The first group of data above was printed to command prompt

based on the assumption that it was meaningful at its state

without any further analysis.

The second group of data below was written to file for analysis

purposes.

 Throughput

 Latency

 Diagnosing Time

Figure 1. Preview of report printed to command prompt

Figure 2. Preview of data written to file

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.3, June 2015

14

Figure 3. Chart of latency against throughput with 11.35KB

packet size of Aglets

Figure 4. Chart of latency against throughput with 26.5KB

packet size of Aglets

6. EFFECTS OF LOAD ON

THROUGHPUT AND LATENCY
Referencing the chart developed from the throughput and

latency figures obtained, the highest throughput value registered

the highest latency of the test where the lowest throughput

value registered the lowest latency.

This is due to the fact that at the highest throughput state, there

might have been congestion on the available bandwidth in an

attempt to send that size of packet across the network. This

might have resulted in retransmission of unsent packets which

intends courses accumulation of latency.

The smaller packets had low latency due to availability of

bandwidth hence the transfer rate was not impeded in anyway

apart from the default delay that the system might provide.

The system was tested against different sizes of aglet packets.

The behavior pattern of the throughput and latencies were

similar. But in the case of the higher load, maximum latency

attained at its highest throughput was higher than the maximum

attained in the case of lesser aglet size. Similarly the minimum

latency obtained by the smallest throughput value was also

higher than the one obtained in the smaller aglet packet size as

shown in the previous charts. This shows that the network

clearly reacted to the change in packet sizes.

This pattern clearly shows that the size of the load could be

directly proportional to the latency having the Bandwidth as a

constant.

7. CONCLUSION
Mobile agent, a computer network multi-functional tool has

proven to be the technology of the future. Numerous

exploitation and excessive and experimental work have testified

the success story of this concept. The mobile concept was born

due to ever growing nature of computer networks. The

complexity of designs and architecture needed a more robust

and efficient way of managing it.

Mobile agents were tried, tested and adopted to be the

appropriate technology for this challenge. This concept was

chosen over old paradigms like code on demand and the client

and server. This was the motivation behind this publication.

Putting the mobile concept to test again by using it as

performance monitoring tool was a step forward in stretching

the capabilities of the mobile agent and confirming its

characteristic of been flexible.

Aglet which is mobile agent with a java code base offers the

same services as any other mobile agent. The intelligence of an

aglet depends on what the developer wants to achieve. The

accuracy of the data retrieved might also depend on the

assumptions made by the developer. Assumptions might be

made taking in to consideration previous fault patterns, logs and

tickets.

Throughput and latency are major determinants on a computer

network as far as performance is concerned. The ultimate aim

of managing any network is to ensure optimal performance

variables at an acceptable level.

What this paper addressed was exploiting the possibility of

using mobile agents to monitor these performance variables to

aid effective fault management. Effective fault management

practices reduce downtime of networks and improve network

availability.

There is nothing important and appropriate than a network

administrator being able to manage a network remotely. Apart

from that, it saves time, cost and labor, the convenience it

provides is unquestionable.

8. REFERENCE
[1] Ostermann S., Comer D., 2011 Networking Applications

Available from:

http://oucsace.cs.ohiou.edu/~osterman/class/cs544.archive/

notes/apps.pdf

[2] Reinhartz-Berger I., Dori D. and Katz S., 2005 ‘Modelling

code mobility and migration: an OPM/Web approach’, Int.

J. Web Engineering and Technology, Vol. 2, No. 1, pp.6–

28.

[3] Bloomer, J. 1992 Power Programming with RPC,

Sebastopol, CA: O’Reilly and Associates.

[4] Renaud, P.E. 1993 Introduction to Client/Server Systems: A

Practical Guide for Systems Professionals, Hoboken, NJ:

Wiley & Sons.

[5] Dale, J. and DeRoure, D. 1997 ‘A mobile agent architecture

to support distributed resource information management’,

Proceedings of the International Workshop on the Virtual

Multicomputer. Available from:

http://www.mmrg.ecs.soton.ac.uk/publications/archive/dal

e1997b/vim97.pdf

[6] Lange D.B., and Oshima M., 1998. Programming and

Deploying Java Mobile Agents with Aglets. Addison

Wesley longman, Inc.

[7] Al-Kasassbeh M, Adda M.(2007) The analysis of mobile

agent in network fault management.

[8] Nikaein N. Reactive autonomous mobile agent, 1999.

[9] Picco G. P., 2000. Glossary of Code Mobility Terms.

Available from:

http://mucode.sourcefourge.net/docs/info/glossary.html

http://oucsace.cs.ohiou.edu/~osterman/class/cs544.archive/notes/apps.pdf
http://oucsace.cs.ohiou.edu/~osterman/class/cs544.archive/notes/apps.pdf

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.3, June 2015

15

[10] Fuggetta, G. P. Picco, and G. Vigna Understanding Code

Mobility IEEE Transactions on Software Engineering

archive Vol. 24, No. 5, May 1998.

[11] Bohoris C. Network performance management using

mobile software agents. In: School of electronic

engineering, information technology and mathematics, vol.

Doctor of Philosophy Guildford: University of Surrey,

June 2003. p. 154.

[12] Chess D., Grosof B., Harrison C., Levine D., 1995

Itinerant agents for mobile computing. IEEE Personal

Commun 1995;2:34.

[13] Tanenbaum A. S., 1996 Computer Networks. London:

Prentice Hall

[14] Hovart D., Cvetkovic D., Milutinovic V., Kocovic P., and

Kovacevic V., 2000. Mobile Agents and Java Mobile

Agents Toolkits, Proceedings of the 33rd HICSS, IEEE

[15] Carr J., 1990 Network Management. [Online]. Available

from

http://www.itarchitect.com/article/NMG20000724S0049

[16] Bieszczad A., Pagurek B., And White T., (1998) Mobile

Agents For Network Management IEEE Communications

Surveys • http://www.comsoc.org/pubs/surveys • Fourth

Quarter 1998 • Vol. 1 No. 1

[17] Held G., 1992. Network Management – Techniques, Tools

and Systems. John Wiley & Sons, Ltd., West Sussex

England.

[18] Anonymous, 2001. Fault Management

[19] Subramanian M., 2000 Network Management – Principles

and Practice. Addison Wesley Longman, Inc.

[20] Byrne C. J., 1994. Fault Management –

Telecommunications Network Management in the 21st

Century. New York: IEEE Press.

[21] Terplan K., 1996. Effective Management of local Area

Network. 2nd Ed. The McGraw Hill Companies Inc

IJCATM : www.ijcaonline.org

