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ABSTRACT 
Searching the World Wide Web is an NP complete problem with 

sparse hyperlink matrices. Thus searching the significant search 

results is a challenge. Google’s PageRank attempted to solve this 

problem using computing of principle Eigenvalues termed as 

PageRank vector. After this, a number of techniques were 

developed to speed up the convergence patterns of pages in the 

PageRank algorithm. This is paper, we have reviewed a number 

of of PageRank computation techniques. The main objective of 

all these techniques is the convergence rate along with space and 

time complexities. In this paper, a comparative study is 

presented among Standard Power method, Adaptive Power 

Method and Aitken’s method using SNAP Google web pages 

dataset.  
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1. INTRODUCTION 
In contemporary computer generation, internet has become 

indispensable in our lives and cognizance is only a click away. 

We just open our desired search engines, like Google, Yahoo, 

Bing, and the search engine will show the webpages appropriate 

for our search.  

Google’s humongous triumph as a search engine can be 

ascribing to numerous elements, including its naiveness, 

acceleration and ease of employ. Conversely, the most eminent 

grounds for their triumph is due to their search algorithm; 

contrast to other search engines; Google provides the most 

significant ensue first. 

Google as a search engine inevitably to be able to execute two 

errands. First it requires to acquire and retain all of the webpages 

it is able to; this attain by crawling the web ad indexing the data 

that it encounters. Second, it requires being able to figure out the 

order of pages resumed by any search survey. This is 

accomplished through Google’s PageRank algorithm as 

proposed by Wills[1], which assesses each webpage and its 

status relative to other webpages. “Significance”, as defined by 

PageRank algorithm, is subject on the number of other pages, 

linking to a webpage. This is a prejudiced factor which includes 

the importance of other pages, meaning that a high importance 

webpage will impart more importance to a linked page than an 

irrelevant page. 

Lin et.al [2] presented the idea of lumping to reduce the large 

Google matrix into small block matrices by knitting dangling 

nodes into a one node. It was observe that reduced Google 

matrix had same non-zero Eigenvalues as the full Google matrix 

had by the application of Power method. The reduced matrix 

was further lumped into weakly non-dangling nodes to another 

single node with the same non-zero Eigenvalues as the Google 

matrix. Kamvar, Haveliwala and Golub [3] detected that the web 

pages that converge more rapidly cannot be work out again and 

again. Considering this they reckon the simple algorithm named 

as Adaptive Algorithm to speeds up the estimation of PageRank 

up to 30%.Wills [1] studied the mystery behind the Google 

search engine. The PageRank score of a webpage symbolizes the 

probability that the random Web surfer select to view the web 

page. In 1998, Brin and Page originated the concept of 

personalized PageRank. Fu, Lin, Tsai [4] discussed that how 

Google PageRank have a great influence by damping factor. To 

replace the damping factor they proposed the design of modified 

algorithm ground on input-output ratio.  By using this modified 

algorithm instead of selecting the most desirable damping factor 

they observe the same effect on computation as the previous 

PageRank algorithms have Ispen and Selee [5] introduced a 

fundamental algorithm of Google matrix for the computation of 

PageRank vector. All dangling nodes were lump into a one node 

by this novel algorithm. The algorithm proceeds by reckoning 

PageRank of Non-dangling nodes individually than reckoning 

PageRank for Dangling nodes. They also discuss the case when 

all Web nodes are dangling nodes by presenting Jordan 

decomposition. Kamvar et. al [6] posed a modified algorithm to 

speed up the computation of PageRank, to estimate the 

significance of web pages. Power Method is the primal method 

of computing PageRank of Google stochastic matrix. The 

algorithm proposed here is Quadratic Extrapolation to quicken 

the rate of convergence of PageRank vector. 25-300% were 

fastens the computation of PageRank by Quadratic Extrapolation 

method. 

Wu and Wei [7]were originated the extrapolation method for the 

calculation of PageRank vector based on Ritz values to merge it 

with Arnoldi-type method. As Arnoldi-type algorithm delivered 

by Golub and Grief was not efficient for larger values of 

damping factor. They examine how to periodically entwine 

extrapolation and Arnoldi-type method. The rate of convergence 

of this new algorithm was inferred. Numerical behaviors of this 

novel algorithm were recognized by Numerical experiments. Yu 

et.al. [8] improved lumping the web matrix for five type pages 

and present a integrated form of widely appreciated lumping 

methods for PageRank. They prove that their novel policy for 

lumping demotes the PageRank problem to a littler form, and the 

full PageRank vector can be easily derived by some recursion 

designs. First order derivative is computed in lumping algorithm 

for PageRank. They observe in Numerical tests that their new 

algorithm support large matrices data and support when they are 

using large values of damping factor   

Kamvar et. al[3] posed a modified algorithm to speed up the 

computation of PageRank, to estimate the significance of web 

pages. The algorithm proposed by them is Quadratic 

Extrapolation to quicken the rate of convergence of PageRank 

vector. With their research the convergence rate decreased from 
25% to 300%. 
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The paper is organized as follows. In section 2, a brief review of 

Directed acyclic graphs (DAG) approaches of the World Wide 

Web, concepts of dangling nodes and development of Google 

matrix is presented. In section 3, a review of different numerical 

methods for PageRank vector is presented. In Section 4, 

simulation applications are presented using the different 

PageRank techniques. Finally a comparative study is presented 

with conclusion and future work.  

2. THE HYPERLINK ANATOMY OF THE 

WEB 
The number of pages in the web may be demonstrated as nodes 

in a directed graph. The edges between nodes represent links 

between graphs. A graph of a simple 5-node web is 

demonstrated in Figure 1 below. The directed edge from node a 

to node b signifies that page a links to page b. However, page b 

does not link to page a, so there is no edge from node b to node 
a. 

 

 

Fig 1:  DAG of webpages 

 

Fig 2:  Graphical Demonstration of five-page Web 

Usually, most important pages will have more inlinks. Inlinks 

from important pages will also have a more effect on PageRank 

for a particular page than inlinks from marginal pages. The 

calculation of PageRank is recursive. 

The method for evaluating PageRank starts by demonstrating the 

directed Web graph as the square matrix of dimension 

named “Adjacency Matrix”, A, where n is the number of 

webpages. If webpage  has  links to other webpages 

and webpage  links to the webpage  of Else, 

 For the above directed graph Adjacency matrix is: 

 

Where page e is a dangling node that is row 5 of matrix A. 

Links are number of non-zero elements in Adjacency matrix or 

Hyperlink matrix. 

2.1 Dangling Nodes 
The Web pages with no outlinks are called dangling nodes. 

Further, the remaining Web pages, having at least one outlink 

are identified as Non-Dangling nodes. For the execution of 

PageRank we must have to resolve how to deal with dangling 

nodes and this decision has influence on PageRank that we will 

compute. 

For above graph dangling node can be handled by replacing 

dangling node row of Hyperlink matrix  by the probability 

distribution vector, , the stochastic n-dimensional row vector 

that sum equals to 1, n is number of Web pages or nodes. The 

resultant matrix can be of the form, , where 

 is a dangling node vector, n-dimensional column vector that 

is: 

 

 

The most appropriate selection for  is the uniform row 

vector [3] that is represented by: 

 

Similarly for above directed graph  will be: 

 

This novel matrix P should not contain any zero row means that 

all nodes have at least one outlink. On this ground matrix P for 
above 5 Web page directed graph can be written as: 

= 

 

  

 
 
 
 
 
 
         
     
 
 
 

 

 
 
 

 

 
 
 

 

 
 
 

 

 
 
 

  
 
 
 
 
 

 

2.2 Google Matrix 
Google figure the matrix as: 

 

Where, 

is damping factor,  

 is a column array containing all elements equal to 1. 

is a personalization vector that is n- dimensional column 

vector. 
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2.3 Personalization vector 
Personalization vector is added to control the resultant PageRank 

vector that can be biased to prefer certain kind of pages after 

landing to Dangling node. It represent uniform probability 

distribution over all nodes.[1] 

By any time, with probability , a surfer touring any 

Web page will jump to a random node. The destination of the 

random jump is selected according to the probability distribution 

displayed in  is known teleportation. [3] 

Google matrix G is a Markov matrix that is a row stochastic 

matrix. Such that , where  represents 

each element of Google matrix and sum of each row of G is 

equal to 1. In numerous research articles values of  was taken 

between 0.85 and 0.99 for the computation of PageRank 
vector.[1] 

3. NUMERICAL METHODS FOR 

COMPUTING PAGERANK VECTOR 
In the following, we have reviewed a number of iterative 

techniques that are used for PageRank computation for 

numerical approximation to deal with problems in mathematical 

inference. These techniques include a number of sub techniques 
as well. 

3.1 Simple Power Method 
For the determination of leading eigenvalue and its 

corresponding eigenvector the method famous for its simplicity 

is power method. It can be applied to approximate the dominant 

eigenvalue of the Google matrix. Eigenvalues must be arranged 
as  

              

λ1 must be strictly greater than λ2 that is larger than or equal to 

the remaining Eigenvalues. Therefore this method is known for 
its consistent and authentic executions.[1] 

3.1.1. Aggregation or Disaggregation Iterative 

Approach 
Aggregation or Disaggregation iterative method is used to 

expeditiously compute PageRank vector than the Power Method 

as studied by Zhu, Yu and Li [10]. Aggregation or 

Disaggregation iterative approach develop from the concept of 

Markov chains. Ipsen and Kirkland [11] proved that the iterative 

aggregation or disaggregation had the fastest convergence rate as 

compared to Power method for the computation of PageRank 

vector. 

3.1.2. Lumping 
Lin et. al. [2] presented the idea of lumping to reduce the large 

Google matrix into small block matrices by knitting dangling 

nodes into a one node. It was observe that reduced Google 

matrix had same non-zero Eigenvalues as the full Google matrix 

had by the application of Power method. Through lumping 

concept a numerous calculation can be avoided for computation 
of full PageRank vector. 

3.2 Adaptive Method 
Kamvar, Haveliwala and Golub [3] detect that the web pages 

that converge more rapidly cannot be work out again and again. 

Considering this they reckon the simple algorithm named as 

Adaptive Algorithm to speeds up the estimation of PageRank up 
to 30%. 

3.3 Aitken’s Method 
The linear convergence of the iterative methods can be improved 

with the help of the Aitken's method. Let  be a sequence 

which converges to its limit p linearly. That is, there exists a 

positive number such that: 

 

Observe the following. For sufficiently large n, 

 

Algebraically these two formulas are equivalent, but numerically 

the first one is more stable than the second one. The sequence 

converges to p more rapidly. This method is called 

Aitken’s  Method. Observe the estimate  depends on 

estimates . So can be computed 

after  is computed. [6] [12] 

Algorithm: Aitken’s  

Let  be generated by a method which has a linear 

convergence. 

Having  compute  

Compute ; 

1. Compute 

 

2. The algorithm terminates and 

 

3.4 Quadratic Extrapolation Method 
This method intensifies the convergence of power method by 

periodically deducting off estimates of the non-principal 

eigenvector, from the present iteration of Power Method. [12] 

3.4.1 Definition of Dominant Eigenvalue and 

Dominant Eigenvector 
Let λ1 , λ2 , …….and λn  be the Eigenvalues of an n x n matrix A. 

λ1 is called the dominant eigenvalue of A if 

 

The eigenvectors corresponding to λ1 are called dominant 

eigenvectors of A. [13] 

3.5 Power Method 
The power method for approximating Eigenvalues is an 

iterative. First we assume that the matrix A has a dominant 

eigenvalue with corresponding dominant eigenvectors. Then we 

choose an initial approximation xo of one of the dominant 

http://en.wikipedia.org/wiki/Approximation
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eigenvectors of A. This initial approximation must be a nonzero 

vector in .Finally we form the sequence given by 

 

For greater powers of k, and by correctly scaling the vector, we 

can achieve a fine approximation of the dominant eigenvector of 

A. A dominant eigenvector of the matrix A was approximated 

by the power method. [13][14] 

3.6 Power Method with Scaling 
It is good to do “scaling” for each approximation before 

proceeding to the next iteration. One method to achieve this task 

of scaling to find the greatest component of that has the largest 

absolute value and then multiplies the matrix by the reciprocal of 

this component. The resulting matrix will have the less than or 

equal to 1 components. [13][14] 

A link from any page u to page v can be perceived as manifest 

that v is “paramount” page. Extent of significance of v allocate 

by u is directly proportional to the essentialness of u. 

Accidentally surfer touring page u at time k, thereafter surfers 

opt a node vi from among u’s out neighbor with probability 

1/deg(u) at time k+1. P is the stochastic transition matrix from I 

to j page with Pij=1/deg (i). For P to be authentic transition 

matrix, P should not comprises of rows consisting of all zeros. 

To recover this P’ introduce where each node has at least one 

outlink. 

Dangling node n-dimensional column vector is d’, n is number 

of pages, v is n-dimensional column vector representing a 

uniform probability distribution over all nodes and e is n-

dimensional column vector where every element is 1. 

The consequence of D is customizing the distribution given by v 

to update the transition probabilities so that a surfer visiting a 

dangling page randomly moves to any other page in succeeding 

time. 

The Markov chain outlined by P’ has a unique stationary 

probability distribution if P is aperiodic and irreducible; the 

latter holds for the Markov chain persuade by the Web graph. 

The former holds iff G is strongly connected, which is typically 

not the fact for the Web graph. In circumstance of computing 

PageRank, the standard way of ensuring this property is to add a 

new set of complete transition graph. In matrix notation, we 

construct the irreducible Markov matrix P’’ as follows: 

 

 

The consequence of E at each time step with probability 

 is when a surfer touring any node move to a random 

Web page instead of following at will outlink. This is referred to 

as teleportation. 

The terminus of the random move is chosen consequently to the 

probability distribution specified by v. 

By delineating the vector v specified in above Equation to be 

non-uniform, so that D and E add artificial transitions with non-

uniform probabilities. The outcome PageRank vector can be 

prejudiced to opt certain kind of pages for this reason v is known 
to be personalization vector. [3] 

4. PAGERANK COMPUTATIONS USING 

DIFFERENT METHODS  
In this section we have compared a number of different methods 

that are used for computing PageRank. For each method an 
algorithm is also presented. 

4.1 PageRank Computation by Power 

Method: 

An iterative method that is Power Method is used to estimate the 

stationary distribution PageRank vector  from as 

until converges to a preferred 

tolerance level. When converges, that vector is the 

eigenvector for the specified matrix and dominant eigenvalue. 
The PageRank algorithm is an employment of power method. 

Algorithm: 1 PageRank by Power Method 
 

function PageRank(G,π0) 

repeat 

πk+1 = G πk ; 

r = || πk+1 – πk|| ; 

until r < ε 

return πk+1 ; 

 

where r is the difference between the  iteration to the 

        iteration and  is the intended convergence level. 

4.2 Adaptive Method: 

Kamvar et.al. [3] studied the rate of convergence of PageRank. 

Various pages converge to their true PageRank rapidly. Pages 

which have low rate of convergence have high PageRank. 

They proposed that for quick processing the pages that have fast 

convergence rate means pages that converges in few iterations 

excluded the calculations of subsequent iterations for that pages. 

By Power method in algorithm: 1, we estimate  from 

as . Power method involves repetitious 

reckoning for pages that have previously converged. 

Suppose C contains the converged  pages for the 

iteration , and suppose N contains the not converged m 

pages. Now current iteration may be written as: 

 

The matrix G may also rend into two sub-matrices. Let be 

the  sub-matrix associated to the pages that have not 

converged, and  the  sub-matrix associated 

to those pages that have converged. The Power method would 
be: 
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The vector  
  demonstrates the pages that have already 

converged, so no further calculation is needed for   
 . The next 

iteration will be: 

  
     

      

  
     

   
  

Thus the computations of PageRank for already converged pages 

are not recomputed for the desired tolerance level.  

Algorithm: 2 PageRank by Adaptive Method 

function AdaptivePageRank(G,π0) 

repeat 

πN
k+1 = GNπk ; 

πC
k+1 = πC

k ; 

[N,C] =detectConverged(πk , πk+1 , ε ); 

 r = ||Gπk – πk||1; 

until r < ε; 

returnπk+1 ; 

 

Kamvar et.al [3] also proposed a Filter-Based Adaptive method 

for the computation of PageRank. The matrix G can be 
symbolized by Filter-based Adaptive Method as: 

 

So that the sub-matrix replaced by zero matrix. The matrix 

G’ is sparse as contrast to G, which computes PageRank in less 

time, since non-zero entries slow matrix multiplication. G’ can 
be characterized as: 

 

The PageRank vector of the converged pages are build as: 

  
    

  
           

               
  

In matrix G’ the converged pages have been replaced zero 

matrix, the PageRank of those pages must be added to the 
PageRanks of the nonconverged nodes for the present iteration. 

Algorithm: 3 The Filter-Based Adaptive PageRank 

Algorithm 

function filterAdaptivePR(G,π0) 

repeat 

πN
k+1 = G’πk+ π’; 

periodically, 

[N,C] =detectConverged(πk , πk+1 , ε ); 

A’ = filter(A’,N,C); 

π’ = filter(πk,C); 

periodically, r = ||Gπk – πk||1; 

until r < ε; 

return πk+1 ; 

 
The Modified algorithm is more polished than the previous two 

algorithms introduced by Kamvar et.al. They further reduced 

repetitious computation of PageRank by excluding the 

recompilation of the nodes in N due to inlinks from C. The 
matrix G can be represented as: 

 

Where  are the entries associated to links within nodes 

that have not converged to the preferred tolerance level.  

Correspondingly,  are the entries associated to linked 

pages that have converged to that pages that have not converged 

and accordingly. Since the PageRank of a given page is the sum 

of the PageRanks of inlinking pages, calculations can be done 

for only nonconverged nodes that have inlinks. Computation of 

PageRank for matrices  and  

Algorithm: 4 Modified Adaptive Method 

function ModifiedAdaptivePR(G,π0) 

repeat 

πN
k+1 = GNNπN

k+y; 

πC
k = πC

k; 

periodically, 

[N,C]= detectConverged(πk,πk+1,ε); 

y = GNC πC
K; 

periodically, r =||Gπk – πk||1; 

until r < ε; 

returnπk+1; 

 

Here we figure two extrapolation techniques: Aitken’s 

extrapolation and Quadratic extrapolation, both of which try to 

estimate the stationary distribution. 

Assume we obtain  after  iterations. And now we 

approximate it with the fist two  

 

Then we use a mixture of the previous iterations to get a new 

estimation to the true eigenvector. As we favor  is 

closer to the true value than , so we substitute the latter 

with the former in our practice. Also, we have to re-normalize 

the computing outcome by setting as zero those negative 

substances caused by the subtraction job. 

 

Approximating the iterations with the first three eigenvectors of 

the Google matrix, which is called the quadratic 

extrapolation.[6] 

 

Algorithm: 5 Aitken’s Extrapolation 

function y = Aitkenpagerank(π(k),π(k+1),π(k+2)) 

g= (π(k+1) – π(k))2; 

h=π(k+2)+2π(k+1)+π(k); 

f= g .h ; 

y= π(k+2)–f; 

renormalize y; 

return 
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Fig 3:  Google Matrix of 1000 x 1000 

In the following, we have presented comparison Tables of 

Number of  Iterations(Computational Time) for Estimating 

PageRank by Power Method, Adaptive Method and Aitken’s 

Extrapolation Method: 

 

Table 1. Google Matrix of 50000 x 50000 with tolerance level 

of  

 

 
PageRank Adaptive 

PageRank 

Aitken’s 

PageRank 

0.7 44(4.1) 44(18.4) 87(1.03) 

0.85 50(4.1) 57(18.5) NAN 

0.9 53(5.3) 57(22.9) NAN 

0.99 58(6.4) 58(28.32) NAN 

 

 

Table 2.  Tolerance level of  

 

 

PageRank Adaptive 

PageRank 

Aitken’s 

PageRank 

0.7 24(1.9) 24(6.2) 38(4.1) 

0.85 27(2.5) 27(6.5) NAN 

0.9 28(2.5) 34(19.4) NAN 

0.99 30(2.9) 34(24.3) NAN 

 

 
Fig 4: PageRank vector for Google Matrix 

 

 

 

 

 

 

Table 3.  Comparison Table of Number of iteration(Elapsed 

Time, in sec) for Estimating PageRank: Considering, 

Damping Factor ,Tolerance level  

 

Matrix size

 

PageRank Adaptive 

PageRank 

Aitken’s 

PageRank 

100 24(50) 25(119) 31(78.2) 

200 26(62) 28(224) 97(570) 

300 26(62) 28(334) 97(690) 

400 27(112) 28(534.7) 365(383) 

500 29(155.6) 28(668) NAN 

600 56(1099) 59(3445) NAN 

700 76(2549) 69(854.9) NAN 

  
Table 4. Comparison Table of Number of iteration(Elapsed 

Time) for Estimating PageRank: Considering, Damping 

Factor Tolerance level  

 

Matrix 

size

 

PageRank Adaptive 

PageRank 

Aitken’s 

PageRank 

100 24(0.5) 25(1.1) 72(3) 

200 27(0.7) 28(1.6) NAN 

300 26(0.8) 33(2.3) NAN 

400 29(1.903) 33(4.5) NAN 

500 32(2.353) 35(7.9) NAN 

600 694(133.02) 430(624.8) NAN 

700 750(200) 650(850) NAN 

 

5. CONCLUSION AND FUTURE 

DIRECTIONS 
Web search has become an integral part of modern information 

access, posing many interesting challenges in developing 

effective and efficient strategies for ranking search results. One 

of the most well-known Web-specific ranking algorithms is 

PageRank – a technique for computing the authoritativeness of 

web pages using the hyperlink graph of the Web. Although 

PageRank is largely an offline computation, performed while 

preprocessing and indexing a Web crawl before any queries 

have been issued, it has become increasingly desirable to speed 

up this computation. Rapidly growing crawl repositories, 

increasing crawl frequencies, and the desire to generate multiple 

topic-based PageRank vectors for each crawl are all motivating 

factors for our work in speeding up PageRank computation. 

For each data size used in this study, the adaptive method 

required more iterations than Standard Power method, but the 

average cost in reckoning time for every iteration is lower for 

big data of web. Aitken’s  method works appropriately on small 

values of damping factor  

We aim to work on fuzzification of page rank algorithms as the 

graph connecting nodes are inherited with fuzziness due to 

search agent’s environmental uncertainties. 
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