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ABSTRACT
In this paper, we have established coupled coincidence point re-
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ness of the coupled common fixed point.There are several corol-
laries which extend some known results of coupled coincidence
points and coupled fixed points. The main theorem is illustrated
with an example. The example demonstrates that our main result
is an actual improvement over the results which are generalized.
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1. MATHEMATICAL PRELIMINARIES
In 2004, Mustafa and Sims [2] introduced the concept of G-metric
spaces as follows:

DEFINITION 1.1. [19] Let X be a nonempty set and let G :
X ×X ×X −→ R+ be a function satisfying the following prop-
erties
(G1) G(x, y, z) = 0 if x = y = z,
(G2) 0 < G(x, x, y) for all x, y ∈ X , with x 6= y,
(G3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X , with y 6= z
(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = ..., (symmetry in all
three variables),
(G5) G(x, y, z) ≤ G(x, , a, a) +G(a, y, z), for all x, y, z, a ∈ X ,
(rectangle inequality).
Then the function G is called a generalized metric, or, more spe-
cially, a G-metric on X , and the pair (X,G) is called a G-metric
space.

DEFINITION 1.2. [19] Let (X,G) be a G-metric space and let
(xn) be a sequence of points of X , a point x ∈ X is said to be
the limit of the sequence (xn), if lim

n,m→+∞
G(x, xn, xm) = 0, and

we say that the sequence (xn) is G-convergent to x or (xn) G-
converges to x.

Thus, xn → x in a G-metric space (X,G) if for any ε > 0 there
exists k ∈ N such that G(x, xn, xm) < ε for all m,n ≥ k.

PROPOSITION 1.3. [19] Let (X,G) be a G-metric space.
Then, the following are equivalent
(1) {xn} is G-convergent to x
(2) G(xn, xn, x)→ 0 as n→ +∞
(3) G(xn, x, x)→ 0 as n→ +∞
(4) G(xn, xm, x)→ 0 as n,m→ +∞.

PROPOSITION 1.4. [19] Let (X,G) be aG-metric space. Then
f : X → X is G-continuous at x ∈ X if and only if it
is G-sequentially continuous at x, that is, whenever (xn) is G-
convergent to x, (f(xn)) is G-convergent to f(x).

PROPOSITION 1.5. [19] Let (X,G) be aG-metric space. Then
the function G(x, y, z) is jointly continuous in all three of its vari-
ables.

DEFINITION 1.6. (see [9]). Let (X,G) be a G-metric space.
A mapping F : X × X → X is said to be continuous if for any
two G-convergent sequences {xn} and {yn} converging to x and
y respectively, {F (xn, yn)} is G-convergent to F (x, y).

DEFINITION 1.7. [19] A G-metric space (X,G) is called G-
complete if every G-Cauchy sequence is G-convergent in (X,G).

DEFINITION 1.8. A G-metric space (X,G) is called a sym-
metric G-metric space if G(x, y, y) = G(y, x, x) for all x, y ∈ X .

PROPOSITION 1.9. [19] (i) Every G-metric space (X,G) will
define a metric space (X, dG) by dG(x, y) = G(x, y, y) +
G(y, x, x) for all x, y ∈ X .
(ii) If (X,G) is a symmetric G-metric space, then dG(x, y) =
2G(x, y, y) for all x, y in X.
(iii) However, if (X,G) is not symmetric, then it follows from the
G-metric properties that

3/2G(x, y, y) ≤ dG(x, y) ≤ 3G(x, y, y)forallx, yinX.

The concept of a mixed monotone property has been introduced by
Bhaskar and Lakshmikantham in [6].
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DEFINITION 1.10. (see [6]). Let (X,�) be a partially ordered
set. A mapping F : X × X → X is said to have mixed mono-
tone property if F (x, y) is monotone non-decreasing in x and is
monotone non-increasing in y; that is, for any x, y ∈ X ,

x1, x2 ∈ X, x1 � x2 implies F (x1, y) � F (x2, y),

y1, y2 ∈ X, y1 � y2 implies F (x, y2) � F (x, y1).

Lakshmikantham and Ćirić in [16] introduced the concept of a g-
mixed monotone mapping.

DEFINITION 1.11. (see [16]). Let (X,�) be a partially or-
dered set. Let us consider mappings F : X × X → X and
g : X → X . The map F is said to have mixed g-monotone prop-
erty if F (x, y) is monotone g-non-decreasing in x and is monotone
g-non-increasing in y; that is, for any x, y ∈ X ,

x1, x2 ∈ X, gx1 � gx2 implies F (x1, y) � F (x2, y),

y1, y2 ∈ X, gy1 � gy2 implies F (x, y2) � F (x, y1).

DEFINITION 1.12. (see [6]). An element (x, y) ∈ X × X is
called a coupled fixed point of a mapping F : X ×X → X if

F (x, y) = x and F (y, x) = y.

DEFINITION 1.13. (see [16]). An element (x, y) ∈ X ×X is
called a coupled coincidence point of the mappings F : X ×X →
X and g : X → X if

F (x, y) = gx and F (y, x) = gy.

DEFINITION 1.14. (see [16]). We say that mappings F : X ×
X → X and g : X → X are commutative if

g(F (x, y)) = F (gx, gy) for all x, y ∈ X.

DEFINITION 1.15. [2] The mappings F : X × X → X and
g : X → X are called w-compatible if g(F (x, y)) = F (gx, gy)
whenever g(x) = F (x, y) and g(y) = F (y, x).

Using the concept of continuous, mixed monotone property and
coupled fixed point, Choudhary and Maity [9] introduced the fol-
lowing theorem:

THEOREM 1.16. Let (X,�) be a partially ordered set and let
G be a G-metric on X such that (X,G) is a complete G-metric
space. Let F : X × X → X be a continuous mapping having
mixed monotone property on X. Assume that there exist a k ∈ [0, 1)
such that for x, y, u, v, w, z ∈ X , the following holds

G(F (x, y), F (u, v), F (w, z)) ≤ k

2
[G(x, u,w) +G(y, v, z)],

for all x � u � w and y � v � z where either u 6= w or
v 6= z. If there exist x0 and y0 ∈ X , such that x0 � F (x0, y0)
and y0 � F (y0, x0), then F has a coupled fixed point in X , that
is, there exist x, y ∈ X such that x = F (x, y) and y = F (y, x).

We denote by Φ the set of functions φ : [0,+∞) → [0,+∞)
satisfying

(a) φ−1({0}) = {0},
(b) φ(t) < t for all t > 0,
(c) lim

r→t+
φ(r) < t for all t > 0.

Very recently, Aydi et al. [5] generalized the above theorem using
commutative mappings and g-mixed monotone property in the fol-
lowing way:

THEOREM 1.17. Let (X,�) be a partially ordered set and G
be aG-metric onX such that (X,G) is a completeG-metric space.
Suppose that there exist φ ∈ Φ, F : X ×X → X and g : X → X
such that

G (F (x, y), F (u, v), F (w, z)) ≤ φ
(
G(gx, gu, gw) +G(gy, gv, gz)

2

)
(1.1)

for all x, y, u, v, w, z ∈ X with gw � gu � gx and gy �
gv � gz. Suppose also that F is continuous and has the mixed
g-monotone property, F (X × X) ⊆ g(X) and g is continu-
ous and commutes with F . If there exist x0, y0 ∈ X such that
gx0 � F (x0, y0) and F (y0, x0) � gy0, then F and g have a
coupled coincidence point, that is, there exists (x, y) ∈ X × X
such that gx = F (x, y) and gy = F (y, x).

Motivated by [8], we define the notion of compatibility in the fol-
lowing:

DEFINITION 1.18. Let F : X × X → X and g : X → X .
The mappings F and g are said to be compatible if

lim
n→∞

G(g(F (xn, yn)), F (gxn, gyn), F (gxn, gyn)) = 0,

and

lim
n→∞

G(g(F (yn, xn)), F (gyn, gxn), F (gyn, gxn)) = 0,

whenever {xn} and {yn} are sequences in X such that
limn→∞ F (xn, yn) = limn→∞ g(xn) and limn→∞ F (yn, xn) =
limn→∞ g(yn) for all x, y ∈ X are satisfied.

Now we introduce the notion of w-compatibility in the in the setting
of G-metric space as following:

DEFINITION 1.19. Let F : X × X → X and g : X →
X . The mappings F and g are said to be w-compatible if
G(g(F (x, y)), F (gx, gy), F (gx, gy)) = 0 whenever F (x, y) =
gx and F (y, x) = gy.

2. MAIN RESULTS
Our first result is the following:

THEOREM 2.1. Let (X,�) be a partially ordered set andG be
a G-metric on X . Let F : X ×X → X and g : X → X such that
F has the mixed g-monotone property. Suppose there exist non-
negative real numbers p, α, β and L with α + β < 1 such that

G (F (x, y), F (u, v), F (w, z))

≤ pG(F (w, z), gy, gv)
G(F (x, y), gx, gw)

1 +G(F (y, x), gv, gz)

+ αG(gx, gu, gw) + βG(gy, gv, gz)

+ Lmin{G(F (x, y), gu, gw), G(F (w, z), gx, gu),

G(F (y, x), gv, gz), G(F (u, v), gx, gw))},

(2.1)

for all x, y, u, v, w, z ∈ X with gw � gu � gx and gy � gv �
gz. Suppose that F (X × X) ⊆ g(X) and g(X) is a complete
subset of X . Assume also X satifies:
(i) if a non-decreasing sequence (xn) is such that xn → x, then
xn � x for all n,
(ii) if a non-increasing sequence (yn) is such that yn → y, then
y � yn for all n.
If there exist x0, y0 ∈ X such that gx0 � F (x0, y0) and
F (y0, x0) � gy0, then F and g have a coupled coincidence point,
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that is, there exists (x, y) ∈ X × X such that gx = F (x, y) and
gy = F (y, x).

PROOF. Let x0, y0 be such that gx0 � F (x0, y0) and gy0 �
F (y0, x0). Since F (X ×X) ⊆ g(X), we can choose x1, y1 ∈ X
such that gx1 = F (x0, y0) and gy1 = F (y0, x0). Continuing like
this we can construct two sequences {gxn} and {gyn} such that

gxn = F (xn−1, yn−1) and gyn = F (yn−1, xn−1) ∀ n ≥ 1.
(2.2)

Since F has mixed g-monotone property, then it is obvious that

gxn � gxn+1 and gyn+1 � gyn ∀ n ∈ N. (2.3)

If for some integer n, we have (gxn+1, gyn+1) = (gxn, gyn), then
F (xn, yn) = gxn and F (yn, xn) = gyn, that is, F and g have a
coincidence point. So from now on, we assume (gxn+1, gyn+1) 6=
(gxn, gyn) for all n ∈ N, that is, we assume that either gxn+1 =
F (xn, yn) 6= gxn or gyn+1 = F (yn, xn) 6= gyn. From (2.11),
we have

G(F (xn, yn), F (xn, yn), F (xn−1, yn−1))

≤ pG(F (yn−1, xn−1), gyn, gyn)
G(F (xn, yn), gxn, gxn−1)

1 +G(F (yn, xn), gyn), gyn−1)

+ αG(gxn, gxn, gxn−1) + βG(gyn, gyn, gyn−1)

+ Lmin{(G(F (xn, yn), gxn, gxn−1), G(F (xn−1, yn−1), gxn, gxn),

G(F (yn, xn), gyn, gyn−1), G(F (xn, yn), gxn, gxn−1)},

that is, thanks to (2.2),

G(gxn+1, gxn+1, gxn) ≤ α
G(gxn, gxn, gxn−1) + βG(gyn, gyn, gyn−1). (2.4)

Similarly, we can prove

G(gyn+1, gyn+1, gyn) ≤ α
G(gyn, gyn, gyn−1) + βG(gxn, gxn, gxn−1). (2.5)

adding (2.4) to (2.5), we get that

G(gxn+1, gxn+1, gxn) +G(gyn+1, gyn+1, gyn)

≤ (α+ β)(G(gxn, gxn, gxn−1) +G(gyn, gyn, gyn−1)).(2.6)

Set, dn = G(gxn+1, gxn+1, gxn) + G(gyn+1, gyn+1, gyn) and
δ = α+ β. By (2.6), we have

dn ≤ δdn−1 ≤ · · · ≤ δnd0,

Since δ = α+ β < 1, then

lim
n→∞

dn = lim
n→∞

[G(gxn+1, gxn+1, gxn)+G(gyn+1, gyn+1, gyn)] = 0.

(2.7)
Thus,

lim
n→∞

G(gxn+1, gxn+1, gxn) = lim
n→∞

G(gyn+1, gyn+1, gyn) = 0.

(2.8)

Next we show that {gxn} and {gyn} areG-Cauchy sequences. Let
m,n ∈ N with m < n.

G(gxm, gxm, gxn) +G(gym, gym, gyn)

≤ G(gxm, gxm+1, gxm+1) +G(gym, gym+1, gym+1)

+G(gxm+1, gxm+2, gxm+2) +G(gym+1, gym+2, gym+2)

+ · · ·+G(gxn−1, gxn−1, gxn) +G(gyn−1, gyn−1, gyn)

= dm + dm+1 + · · ·+ dn−1

≤ (δm + δm+1 + · · · δn−1)d0

≤ δm

1− δ
d0 → 0 as m→∞.

Hence, lim
m,n→∞

G(gxm, gxm, gxn) =

lim
m,n→∞

G(gym, gym, gyn) = 0. Therefore, both {gxn} and

{gyn} are Cauchy sequences in g(X). From the completeness of
g(X), there exist x, y ∈ X such that

lim
n→∞

F (xn, yn) = lim
m,n→∞

gxn+1 = gx and

lim
m,n→∞

F (yn, xn) = lim
m,n→∞

gyn+1 = gy. (2.9)

By the conditions (i)-(ii) and (2.3), (2.9), we get that, for all n ≥ 0

gxn � gx and gy � gyn. (2.10)

From (2.11)

G(F (x, y), F (x, y), F (xn−1, yn−1))

≤ pG(F (yn−1, xn−1), gy, gy)
G(F (x, y), gx, gxn−1)

1 +G(F (y, x), gy, gyn−1)

+αG(gx, gx, gxn−1) + βG(gy, gy, gyn−1)

+Lmin{G(F (x, y), gx, gxn−1), G(F (xn−1, yn−1), gx, gx),

G(F (y, x), gy, gyn−1), G(F (x, y), gx, gxn−1)}.

Letting the limit as n→∞ in the above inequality, using (2.9), we
have G(F (x, y), F (x, y), gx) = 0, that is, gx = F (x, y). Using
the same idea, we obtain gy = F (y, x). We have proved that (x, y)
is a coupled coincidence of F and g. This completes the proof of
Theorem 1.17

Setting L = 0 in Theorem 3.1, we have following corollary:

COROLLARY 2.2. Let (X,�) be a partially ordered set and
G be a G-metric on X . Let F : X × X → X and g : X → X
such thatF has the mixed g-monotone property. Suppose there exist
non-negative real numbers p, α, β with α+ β < 1 such that

G (F (x, y), F (u, v), F (w, z))

≤ pG(F (w, z), gy, gv)
G(F (x, y), gx, gw)

1 +G(F (y, x), gv, gz)

+ αG(gx, gu, gw) + βG(gy, gv, gz)

(2.11)

for all x, y, u, v, w, z ∈ X with gw � gu � gx and gy � gv �
gz. Suppose that F (X ×X) ⊆ g(X) and g(X) is a complete sub-
set of X . Assume also X satifies:
(i) if a non-decreasing sequence (xn) is such that xn → x, then
xn � x for all n,
(ii) if a non-increasing sequence (yn) is such that yn → y, then
y � yn for all n. If there exist x0, y0 ∈ X such that gx0 �
F (x0, y0) and F (y0, x0) � gy0, then F and g have a coupled
coincidence point, that is, there exists (x, y) ∈ X × X such that
gx = F (x, y) and gy = F (y, x).
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Again, setting p = 0 in Corollary 2.2, we have:

COROLLARY 2.3. Let (X,≤) be a partially ordered set and
G be a G-metric on X . Let F : X × X → X and g : X → X
such thatF has the mixed g-monotone property. Suppose there exist
non-negative real numbers α, β with α+ β < 1 such that

G (F (x, y), F (u, v), F (w, z)) ≤ αG(gx, gu, gw)+βG(gy, gv, gz),
(2.12)

for all x, y, u, v, w, z ∈ X with gw � gu � gx and gy � gv �
gz. Suppose that F (X ×X) ⊆ g(X) and g(X) is a complete sub-
set of X . Assume also X satifies:
(i) if a non-decreasing sequence (xn) is such that xn → x, then
xn � x for all n,
(ii) if a non-increasing sequence (yn) is such that yn → y, then
y � yn for all n. If there exist x0, y0 ∈ X such that gx0 �
F (x0, y0) and F (y0, x0) � gy0, then F and g have a coupled
coincidence point, that is, there exists (x, y) ∈ X × X such that
gx = F (x, y) and gy = F (y, x).

REMARK 2.4. In Corollary 2.3, taking g to be identity func-
tion and alpha = β = k

2
(k ∈ [0, 1)), we get Theorem 3.1 of

Choudhary and Maity [9] which is also stated here in this paper
as Theorem 1.16. Further, above corollary is also an extension of
Corollary 3.1 and Corollary 3.2 which are special case of main
result of Aydi et al. [5].

REMARK 2.5. If in the theorem 3.1 and in both of corollary the
mappings are compatible then the results will remain true.

Next our aim is to prove the uniqueness of coupled fixed point in
the above theorem. For this, note that if (X,≤) is partially ordered
set, then we endow the product spaceX×X with following partial
order:

for (x, y), (u, v) ∈ X×X, (u, v) ≤ (x, y)⇐⇒ u ≤ x, y ≤ v.

THEOREM 2.6. In addition to the hypotheses of Theorem 1.17,
suppose that for every (x, y), (x∗, y∗) ∈ X × X , there exists a
(u, v) ∈ X × X such that (F (u, v), F (v, u)) is comparable to
(F (x, y), F (y, x)) and (F (x∗, y∗), F (y∗, x∗)) and, also F and g
are weakly compatible. Then F and g have a unique coupled com-
mon fixed point. Moreover, the common fixed of F and g is of the
form (u, v) for some u ∈ X

PROOF. From theorem 1.17, the set of coupled coincidence
point is non-empty. Suppose (x, y) and (x∗, y∗) are coupled co-
incidence point of F and g, that is, gx = F (x, y), gy = F (y, x)
and gx∗ = F (x∗, y∗), gy∗ = F (y∗, x∗). Now we show

gx = gx∗ and gy = gy∗. (2.13)

By the assumption, there exists (u, v) ∈ X × X such
that (F (u, v), F (v, u)) is comparable to (F (x, y), F (y, x)) and
(F (x∗, y∗), F (y∗, x∗)). Put u0 = u, v0 = v and choose u1, v1 ∈
X , so that gu1 = F (u0, v0) and gv1 = F (v0, u0). Then, repeat-
ing the same argument, we can inductively define sequences {gun}
and {gvn} where

gun = F (un−1, vn−1) and gvn = F (vn−1, un−1) ∀ n ∈ N.

Hence (F (x, y), F (y, x)) = (gx, gy) and (F (u, v), F (v, u)) =
(gu1, gv1) are comparable. Without loss of generality, suppose that
(gu0, gv0) ≤ (gx, gy). Proceeding similarly as in [16], we check
that (gun, gvn) ≤ (gx, gy), for each n ∈ N.

Since gun � gx and gy � gvn, using the contractive condition
(2.11), we have

G(gx, gx, gun) = G(F (x, y), F (x, y), F (un−1, vn−1))

≤ pG(F (vn−1, un−1), gy, gy)
G(F (x, y), gx, gun−1)

1 +G(F (y, x), gy, gvn−1)

+ αG(gx, gx, gun−1) + βG(gy, gy, gvn−1)

+ Lmin{(G(F (x, y), gx, gun−1), G(F (un−1, yn−1), gx, gx),

G(F (y, x), gy, gvn−1), G(F (x, y), gx, gun−1)}

that is,

G(gx, gx, gun) ≤ αG(gx, gx, gun−1) + βG(gy, gy, gvn−1).
(2.14)

Repeating the same reasoning, we obtain

G(gy, gy, gvn) ≤ αG(gy, gy, gvn−1) + βG(gx, gx, gun−1).
(2.15)

Adding (2.14) to (2.15), we have

G(gx, gx, gun)+G(gy, gy, gvn)

≤(α+ β)[G(gx, gx, gun−1) +G(gy, gy, gvn−1)]

≤ · · ·
≤(α+ β)n[G(gx, gx, gu0) +G(gy, gy, gv0)].

Since α+ β < 1, taking the limit as n→∞, we get

lim
n→∞

[G(gx, gx, gun) +G(gy, gy, gvn)] = 0.

It implies that

lim
n→∞

G(gx, gx, gun) = lim
n→∞

G(gy, gy, gvn) = 0. (2.16)

Repeating the similar argument, we find that

lim
n→∞

G(gx∗, gx∗, gun) = lim
n→∞

G(gy∗, gy∗, gvn) = 0. (2.17)

By (2.16), (2.17) and the uniqueness of the limit, we get that gx =
gx∗ and gy = gy∗. Thus, we proved (2.13).
Repeating the same argument, we prove that gx = gy∗ and gy =
gx∗. Thus gx = gy. Therefore, (gx, gy) is unique coupled point
of coincidence of F and g. Now, let g(x) = u. Then we have
u = gx = F (x, x). By w-compatibility of F and g, we have

gu = g(gx) = g(F (x, x)) = f(gx, gx) = F (u, u).

Then (gu, gu) is coupled point of coincidence of F and g. Conse-
quently gu = gx. Therefore, u = gu = F (u, u). Hence (u, u) is
unique common coupled fixed point of F and g.

EXAMPLE 1. Let X = [0, 2] and G(x, y, z) = (|x− y|+ |y −
z| + |z − x|) for all x, y, inX be G-metric defined on X. Then,
(X,�) is a partial ordered set with natural ordering of real num-
bers. Let g : X → X and F : X × X → X be defined as
g(x) = x/2 for all x in X and

F (x, y) =

{
(x− y/2)2, if x, y ∈ [0, 1], x ≤ y
0, if x < y.

Clearly, F (X×X) ⊆ g(X), also F obeys mixed g-monotone prop-
erty. Let xn and yn be two sequences in X defined respectively by

xn = 2 + 1/n and yn = 1− 1/n,
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then we have by letting n→∞

g(F (xn, yn)) = g(F (2 + 1/n, 1− 1/n)) = g

(
1 + 2/n

2

)2

= g(1/4) = 1/8 6= 1/16 = F (gxn, gyn).

Also

g(F (1, 0)) = g(1/4) = 1/8 6= 1/16 = F (g1, g0).

Which shows that the mappings F and g are neither compatible nor
commutative, but obviously the are w-compatible. So, this example
is not applicable to known results. Also the mappings satisfies all
the condition of theorem 3.1. Hence (0, 0) in coupled fixed point of
F and g.
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