
International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.22, June 2015

30

Cost Efficient Query Optimization in Mobile

Environment

Reena Kasana
Ph.D Scholar

School of Computer and Systems Sciences
Jawaharlal Nehru University, New Delhi

Saurabh Sharma
Software Engineer, Prompt Cloud

2
nd

 Floor 118/1
80ft Road, Indira Nagar, Bangalore

ABSTRACT
Today, we live in the world of internet. With the advancement

of technology, the amount of data access has increased too

many folds. Internet access now is not only limited to

computer devices but can now be easily accessed through

mobile devices viz. Smartphones, tablets, PDA’s. The

internet is now available to every common man, and with its

use he fires many queries on servers and uploads or

downloads data from the internet. In fact, 90% of the world’s

data came in existence in the last three-four years, and that too

because the internet is readily available to each and every

common individual. Of these, much data is being uploaded

and queried upon by mobile devices. As the number of

devices for Internet access has increased, and so is the number

of queries fired by the users on a particular server. The time

taken by a query to process totally depends on the complexity

involved in joining the tables distributed along the network

and finally extracting the desired result out of it. Processing

and optimization of various queries in mobile devices involve

much join computation among data present at different sites

that may be static or mobile which in turn requires much

energy consumption. A mobile device has limited energy, so,

it must be utilized efficiently. Much research work have been

done till now, in the field of mobile computation and making

efficient use of energy. However, as the mobile devices

possess some asymmetric features, and because of that the old

techniques used in distributed databases cannot be applied

directly. This paper brings out some methods, to efficiently

utilize mobile energy by employing per split semi-join using

MapReduce Framework of Hadoop.

General Terms
Per-Split Semi-Join, MapReduce, Hadoop, Cost Optimization,

Distributed Databases

Keywords

Per-Split Semi-Join, MapReduce, Hadoop, Cost Optimization,

Distributed Databases

1. INTRODUCTION
The amount of data has grown tremendously in last two years.

In fact, 90% of the world’s data came into existence in the last

3-4 years. Moreover, to perform computation on such massive

datasets, a very high computational time is required. Today

we live in the world of internet. Most of the peoples access the

internet through their mobile devices viz. Smartphones,

tablets, PDA, etc. Moreover, an enormous number of queries

are being fired every second by the increasing mobile device

users. Data is being added every time on the internet and

processing large data we require an extensive query

processing. Moreover, doing computation on large data would

require much energy consumption [1] [2] [3][4]. Moreover, if

the querying device is a mobile device, then the energy to

process these queries, which involves a high computation time

is utilized from the mobile device’s battery. Internet search

engine’s like Google, Yahoo and many more are relying on

Hadoop [3] [4] [5] [6] and Map-Reduce Framework [7] to

increase their efficiency and reduce search time. The main

purpose of Map-Reduce is to perform computation on these

large set of data. Map-Reduce systems are known for

scalability, fault tolerance and flexibility to handle semi-

structured and unstructured data.

Intuitively, the cost incurred in the transmission of data and

energy consumed in the whole process will be reduced by

employing per-split semi-join in the field of mobile

computing environment. A per-split semi-join operation,

which is being initiated by a mobile device, is termed a

Mobile-Initiated (MI) per-split semi-join. And query initiated

by the server is Server Initiated (SI) per-split semi-join. [8]

In this paper, we bring out some methods, to efficiently utilize

mobile energy by employing per split semi-join using

MapReduce Framework of Hadoop. Per-split semi-join is an

extension of semi-join operation that takes much less time and

is much efficient with the large amount of data. Also, we have

discussed and compared the transfer cost and energy

consumption in employing per-split semi-join operation with

other operations and hence, reducing the amount of load on

the mobile devices.

The rest of the paper is organized as follows. Section 2

discusses some related terminology. Our proposed work is

discussed in Section 3. The obtained results after performing

experiments are discussed in Section 4. Finally, we give some

concluding remarks and its future aspects.

2. RELATED TERMINOLOGY AND

LITERATURE SURVEY

2.1. Mobile computing environment

The recent developments in the field of mobile computing and

handheld devices have made these devices capable of hosting

a server even with subtle memory size [9]. If we look at the

current development rate in the field of mobile technology, a

mobile device is seen to have a large number of capabilities

such as storage of small databases, rapid data processing

capacity etc. [10]. Consequently, there would be a large

number of users querying on a particular server or uploading

their data on the web. Consider an example; a salesperson

keeps on uploading and downloading data from the

company’s server. Similarly, another salesperson would also

be uploading and downloading data from the server.

Sometimes, there may be coherency depending upon the

mechanism being employed, and the data copied to the server

could be anachronistic [11]. As the most recent data is present

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.22, June 2015

31

in the mobile device, and the query generated by the

salesperson may perform a series of join operation among the

relations present at different sites, it might result in a very

different execution scenario from the one for query processing

in a traditional distributed system.

Some research work done in the field of distributed query

processing is depicted in [12] [13] [14] [15]. However, these

work were not able to depict the clear picture of mobile

environment interaction and thereby the asymmetric features.

Authors in [16] [17] present the model of pipelined and

parallel processing large scale mobile data using Hadoop.

These asymmetric features are explained below, and the

proposed algorithm has been designed keeping these

asymmetric features in mind. Moreover, the most important

criteria i.e. energy conservation was not been dealt with in the

traditional distributed databases. Resulting, these algorithms

corresponding to distributed query processing schemes were

not applicable to the mobile computing environment. The

three basic asymmetric feature of mobile, which we have

considered while designing the algorithm are:

 Computing Capability between a Mobile Computer and the
Server. The servers must be continuously active and to remain
active they require continuous power supply. However,
continuous power supply at all the places and all the time in a
mobile device is not possible. In traditional distributed
databases, the nodes were considered to be all of same level,
but some of them may be using mobile devices, and others
may be using an uninterrupted power supply.

 Energy Consumption While Sending and Receiving
Messages: It has been observed that the energy required in
sending data packet is more than the energy needed for
receiving the data set [18] [19]. This feature is to be
considered while designing some algorithms related to the
mobile environment.

 Active Mode Energy Consumption by Mobile Computers:

Mobile computer’s idleness state is also to be considered.

Active mode power consumption of a mobile device is always

greater than the device in ideal mode [19] [20]. So, a mobile

computer must be designed in such a way that the workload to

be done on Mobile Device is transferred to the server, and the

Mobile device can always remain in Ideal mode.

2.2. Hadoop
Various big companies like Yahoo, Google, and Facebook,
etc. have to deal with large amount of data. Moreover, with
each query being generated by the user, they are required to
process a large amount of data in a very less time. These
companies have their data distributed at different sites located
at various places in the world. Google’s File System (GFS)
[21] and Big Table [22] are examples of such distributed file
systems. These systems are a cluster of thousands of
commodity machines, and these machines assure reliability,
scalability and availability issues [21] [22] [23]. To reduce
input/output, each file in these storage systems is divided into
chunks or blocks of data and each block is present at the
different site. When some query is fired, parallel processing is
done on all these blocks.

Hadoop is open source software developed by Doug Cutting,
who also developed Apache Lucene, the most commonly used
text search library. Hadoop is meant for distributed processing
of large data sets distributed among different clusters of
commodity servers. The primary objective of Hadoop is to
join various single-node systems, forming a network using
and signaling the task coordinator to synchronize the task
computation at all the nodes and thereby enhancing parallel

computation. Hadoop has two main subprojects: MapReduce
and Hadoop Distributed File System (HDFS) [24]. In our
proposed work, we have focussed on Map-Reduce only.

2.3. Map-Reduce
Several algorithms have been proposed till now for evaluation

of operations in the field of parallel and distributed Relational

DBMS [25] [26] [27]. However, with the rapid increase in

data in last few years, Map Reduce based systems are the best-

suited alternative to getting acceptable performance [28].

Dean et. al in [29] introduced Map Reduce in the year 2004.

Map Reduce does parallel processing on the data which is

distributed among various nodes. Hassan et. Al in [30] [31]

tried to explain the working of Map Reduce by using certain

algorithms. The working of Map-Reduce is divided into three

main operations. First is the Map operation, where parallel

processing is done on each node locally. Next, the data is

replicated on various nodes in the cluster. Moreover, finally,

the output of Map operation is fed as the input to the Reduce

operation. Google’s Map Reduce model is based on two

functions and is presented in [29] [21]. The two function viz.

Map and Reduce signatures are as given below:

The user-written Map function takes two values Key:

and the corresponding frequency value and outputs a list of

intermediate Key/Value pairs . The intermediate

Key/Value pairs are partitioned according to Key where

all the pairs have the same value for and belong to the

same group.

Map Reduce is best known for its fault tolerance, reliability,

scalability and ability properties to operate in the

heterogeneous environment. Map Reduce model is mainly

preferred for homogeneous datasets. It is not much feasible to

perform join operation where heterogeneous datasets need to

be merged [32]. However, applying the homogenization

process, it can still be used for heterogeneous datasets [28].

Fault tolerance is achieved by recognizing the failed jobs and

reassigning it to other resources.

Some of the previous studies [33] lead to some performance

related issues in Map Reduce. Most of the performance

enhancing tools or functions used in database systems like

view, stored procedure, etc. cannot be used because it does not

allow to the data to be modelled, thereby it could not be

loaded before pre-processing of the data.

2.4. Per-split semi join
Semi join has also been implemented using map reduce

framework in [34]. One of the main problems with Semi Join

is that not every record in the filtered version of map reduce

framework gets joined with records of the other table. Per

Split Semi-Join is an extension of Semi-Join. Per Split Semi

Join is divided into three phases. The first phase and the third

phase is the map only phase while the second phase is the

map-reduce phase. In the first phase, i.e. map only phase, the

input table is divided into many splits. Each split holds a

certain number of records. Each split is read by a mapper, and

each mapper generates a file Fi.uk, which holds a list of

unique keys from the split read by the mapper. On the basis of

these keys, join operation is performed. In the second phase,

records from the other table are brought into main memory by

the mapper module. This phase has two functions viz. Init ()

and Close (). The Init () function loads the keys of the file

Fi.uk into the hash table. The close () function matches each

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.22, June 2015

32

unique key and for each matching record found it projects the

result into the hash table. Matched records are tagged with the

table they belong to, which is used by the reduce phase to

summarize all the output. In the final phase, the files

generated for both the tables are joined, which gives the result

of per split semi join. The result generated is sent back to the

initial node to perform the join operation.

3. PROPOSED WORK
Here, we proposed a method for reducing the cost of join
methods and hence saving energy in mobile computing.
Overview of join processing in mobile computing is depicted
in figure 1. Here server has the relation S, and the mobile unit
holds the relation M. Let the mobile user put a query on a
server that requires join operation between S and M relations.

Figure 1. Join Processing in Mobile

The mobile user sends the relation M to the server S where

join operation is performed, and the result is sent back to the

mobile unit. The mobile user sends the relation M to the

server through the WAP gateway, where the server address is

recognized, and the various algorithms are applied to find the

shortest path to the server. When the relation M reaches the

server, the corresponding tuples are matched having the same

join key as the relation M. The desired result is again sent

back to the WAP gateway, where once again the same

procedure is repeated and finally the result is sent to the

mobile user.

3.1. The cost model
Cost model for the proposed algorithm performing the join

operation through the MapReduce framework is derived as in

[35]. Let consider two relations A and B. and we need to

compute with the help of per split. As the property

goes:

The two relations A and B are taken as input, which are

divided into various splits of the file which are stored in

distributed manner at different nodes of Hadoop. Some of the

notations used throughout the paper are:

• SA,i : Split i of relation A

• |SA,i| : Number of records in split i of relation A

• tL : Time taken to load data of a node/split

• tR : Time taken to read data by the mapper

• tW : Time taken to write a data into B+ tree

• tC : Time taken to compare data with the existing Key

in B+ tree

• tI : Time taken to create an index on a data.

• N(A)m : No of mappers involved in relation A

• N(A)r : No of reducers mappers involved in relation A

• MP : Message Protocol cost

• ML : Message latency cost

• ρ : Selectivity Factor

• LK(B)i,k: The number of local keys of relation B generated

by i mapper and being fed to k reducer

• GBT : Global B+ Tree holding the index of final join

keys.

As discussed in section 2.4, Per Split Semi Join is divided into

three phases. We will discuss each phase one by one.

3.1.1. Phase1
There are two groups of mappers; one manages the chunks of
relation A and other manages the chunks of relation B. These
chunks are the splits of relation A and B stored in DFS at
different nodes in Hadoop File System. Each group of mapper
reads the split(s) assigned to it. All the unique key elements
with their frequency count are stored with hash indexes in the
form of B+ Trees. At the end of this phase, each mapper
outputs a file, Fi.uk containing a set of unique keys with their
frequency count. The time/cost calculation of this phase is
given in equation 1:

------ (1)

Where denotes the cost/time of loading a single split

i in the memory hash table.
Indicates the time taken to read the join keys, compare with

existing keys, writing the data and creating indexes for the

relation A. and indicates the number of tuples in a

particular split i of relation A.

3.1.2. Phase2
Each mapper of the relation A outputs a file Fi.uk which

contains a set of unique keys on which join will take place.

The unique keys identified by the mappers of relation B stored

in form of B+ tree along with the unique key file Fi.uk

brought as output by the mappers of relation A, are fed as

input to the reducer. Each reducer reads the corresponding

split of relation B and all the files generated by relation A

mappers. On applying the same hash function as applied on all

the mappers in phase 1 while partitioning (key, n), allows us

to forward all entries having same value of key to partitions of

all local B+ trees holding the same index on all the mappers.

So, each reducer fetches the associated records from the

mappers of relation B along with the files generated by the

mappers of A relation. Each reducer updated the frequency

count of the keys.

The cost of forwarding the files Fi.uk and the corresponding

records of relation B to the reducers is given in equation 2.

 ------ (2)

Where represent the number of mappers in relation A.

As each mapper produces a file Fi.uk at the end of phase 1 and

these files are sent to the reducer. So the number of mappers is

equal to the number of files generated. represents

the message protocol cost and message latency.

 Gives the cost of forwarding keys of relation B

generated by ith mapper and fed to k reducer.

To prove the scalability of our approach, for the first half i.e.

sending the relation to the corresponding set of mappers, we

consider the equation 3 as the lower bound to our cost model.

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.22, June 2015

33

 , + ------ (3)

The cost of receiving the records from the corresponding

mapper of relation B and the files Fi.uk from the mappers of

relation A is given in equation 4:

------ (4)

Here, we propose scalability of our approach for the phase in

which the records from the respective mappers are fed into

corresponding reducers. The equation 5 proposes the lower

bound cost model for this phase:

 + , + + ------ (5)

So, the total time/cost of this phase is given by equation 6.

 ------ (6)

3.1.3. Phase3
This is the last phase called join phase. In this phase, the index

of B+ Tree extracted is sent to the site where the result of join

is to be sent. So a direct join is performed. The final cost of

this phase is given by equation 7.

 ------ (7)

Moreover, the cost of receiving these at the nodes is given by

equation 8:

 ------ (8)

Table 1. Algorithms for Per-Split Semi

Join

Algorithm 1: Per Split Semi- Join algorithm workflow

Each Mapper
• Reads the assigned split of both the relation from the DFS
• Partitions the data according to the join key and also maintains the frequency count of each key element
• Unique key generated from each split is stored in file Fi.uk

Each Reducer
• Remotely reads the local B+ tree partitions holding its index for the relation B and all the Fi.uk files generated after map phase of

relation A.
• Each reducer checks for the matching key from the file Fi.uk. If no match found, an entry is added else the frequency is updated.
• Each reducer generated a global B+ tree.
• Merging of all the global trees is done.

 Join
• The indexes of the keys are used to fetch the desired tuples, and direct join is performed.

Table 2. Algorithm for Map and Reduce operations

Algorithim2 Map Function for computing local B+ Tree

Map(char* relation, const char* key){
/* relation : is the relation name, key : the join attribute*/ Create

a B+ tree.

For tuple t in split i of relation {

 Hash t into the memory hash table by applying hash_function(t.v);

if join key is already present in the B+ tree then increment the

frequency of the particular key in B+ tree else

 add the entry (key,1) to the B+ tree

Algorithm 3 Reduce function

Reduce (int reducer_id, DS B+ Tree, File Fi.uk) {
/*reducer_id : id of the reducer, Fi.uk : files generated in

phase 1*/
Create global B+ tree
For each mapper in relation B {
Read the local B+ tree corresponding to each reducer_id and

the keys in files Fi.uk

 For each pair in B+ tree {

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.22, June 2015

34

 Endif
 }

}

 If key already exists in global B+ tree then,
 Update frequency of the corresponding key as freqv

+= nv

 Endif
 }

}

4. RESULTS AND DISCUSSION

4.1. Notations and assumptions
The experiment conducted involves some notation and

assumption. The cardinality of a relation R is denoted by

and an attribute’s cardinality is being denoted by .

Denote the size of the attribute A. The notation and

 denotes the Semi Join and Per Split Semi Join

operation respectively between relations Ri and Rj. And let

 and denote the cardinality of Semi Join

and Per Split Semi Join respectively. Let ρ denote the

selectivity factor of a particular attribute in a relation Ri.

Let denote an attributes width and correspondingly

denotes the width of a relation’s tuple. So the total size of the

file can be calculated as . For any join operation we

define selectivity factor for an attribute A as

 (for

Semi-Join operation) and

 (for Per Split Semi-Join

operation).

4.2. Cost model for join operation

Now we will derive the cost model, keeping asymmetric

features of mobile discussed in section 2.1, in mind. The cost

model being derived will lead to a better Join methodology

and hence, enhance query processing by reducing the amount

of data transferred between different sites. To project the cost

and energy involved in data transmission from one node to

another, some assumptions were made. Let and

denote the amount of energy consumed in receiving a tuple

from a relation R. denote the send-receive energy ratio. The

value of will always be greater than 1, because the energy

involved in receiving a relation is always greater than the

energy involved in sending the relation. Moreover, the send-

receive energy ratio can be assumed to lie in between the

range of 2-10 [36]. If the cardinality of a relation is . Then

the total energy involved in sending the relation R is

 . Let and denote the total time

spend in processing Semi Join and Per Split Semi Join

respectively. Let denote the processing time per tuple in

a relation.

If denote the mobile-server processing ratio then

correspondingly the time spend in processing Semi Join and

Per Split Semi Join can be denoted as

 and

 . As the processing capacity of mobile is

less than that of home computer or server, hence its value will

always remain less than 1.

Now, we calculate the estimated cost of the transfer of data

and the overall energy consumed in the scenario. Let and

 be two relations present at Mobile and Server respectively.

Let and denote the amount of data transfer on

employing Per Split Semi Join and Semi Join respectively.

Similarly, and denote the amount of energy

consumed at Mobile end in processing Per Split Semi Join and

Semi Join respectively.

4.2.1. Cost computation when join processing is

done at Mobile End
In this case, the server sends the particular join key attribute of

relation to the Mobile Unit. Suppose the Join operation is

done on the basis of attribute ‘A’ of relations and . Then

• For Semi Join:

• For Per Split Semi Join:

4.2.2. Cost computation when join processing is

done at Server End
In this case, the Mobile user sends the particular join key

attribute of relation to the Server. Suppose the Join

operation is done on the basis of attribute ‘A’ of relations

and . Then:

• For Semi Join

• For Per Split Semi Join:

5. IMPLEMENTATION
After theoretical evaluation of both the join techniques,

experiments were performed on both the techniques by

analyzing for different selectivity factor with data set of

various sizes. The datasets were generated by a program,

keeping in mind the value of selectivity factor for which the

experiment is to be performed. Files for different sizes were

generated for the same selectivity factor and were placed in

various nodes of a network, forming a cluster. The experiment

was performed one after the other, on the same set of nodes,

so as to reduce the errors with respect to different processing

capabilities of different nodes. Table 3 and Table 4 specifies

the time taken (in seconds) to get the results for joining two

relations, distributed along the network using per split semi-

join and semi-join respectively.

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.22, June 2015

35

Table 3. Experimental results for Per-Split Semi-Join

(Time in Seconds)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1 111 94 90 96 88 90 93 90 89 88

5 98 94 94 93 91 89 92 92 92 92

10 96 94 95 89 90 91 89 90 88 90

15 106 89 89 90 89 88 89 90 89 89

20 105 94 87 89 91 91 89 88 90 90

25 93 91 89 113 88 88 90 98 92 89

30 95 128 91 91 90 90 95 100 94 93

35 96 99 91 107 91 90 91 89 99 89

40 138 97 92 137 90 132 96 89 90 92

45 98 93 95 93 94 95 93 93 91 94

50 137 193 95 97 92 92 94 105 94 88

Selectivity Factor

Si
ze

 (
M

B
)

Table 4. Experimental results for Semi-Join (Time in

Seconds)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1 74 75 75 74 74 74 75 74 76 74

5 102 110 110 107 107 106 109 107 100 106

10 127 129 129 133 129 134 131 133 129 127

15 151 148 148 150 148 148 149 156 155 154

20 174 174 174 175 179 183 176 178 179 180

25 204 205 205 212 209 200 249 224 208 205

30 241 236 236 240 242 240 242 242 237 270

35 258 263 263 264 260 262 263 258 259 264

40 308 305 305 307 310 306 306 311 311 314

45 336 334 334 329 329 333 331 329 329 332

50 357 354 354 350 352 354 353 354 352 354

S

iz
e

(M
B

)

Selectivity Factor

Using the data obtained after performing experiments, graphs

were plotted to understand the clear difference in processing

times. The graph figure 3 shows the comparison of both the

techniques. Further, the graphs Figure 2, 4-7 shows the

comparison of both the techniques simultaneously, for a

particular selectivity factor.

Figure 2. Comparison of Selectivity Factor 0.1 and 0.2

Figure 3. Comparison of Per-Split Semi Join and Semi-Join

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.22, June 2015

36

Figure 4. Comparison of Selectivity Factor 0.3 and 0.4

Figure 5. Comparison of Selectivity Factor 0.5 and 0.6

Figure 6. Comparison of Selectivity Factor 0.7 and 0.8

Figure 7. Comparison of Selectivity Factor 0.9 and 1.0

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.22, June 2015

37

6. CONCLUSION AND FUTURE WORK
With the result of the experiments performed and our

theoretical evaluations, we come to a conclusion that, the cost

and time taken to perform a Per-Split Semi Join operation is

far much better than Semi-Join operation. As the whole

experiment was conducted using MapReduce operations on

Hadoop clusters, which further concludes that MapReduce

based systems are scalable, fault-tolerant and are easily

programmable. They automatically take care of parallel

computation and hence reduce the computation time. Against

all the existing algorithms based on hashing like some of them

are presented in [35], our algorithm is insensitive to data

skew. In the presence of skewed data, and right choice of the

hashing function, doing join and semi-join computations are

very efficient. In this paper, we have computed join of two

relations using the concept of per split semi join through Map

Reduce framework of Hadoop.

As we have seen that per-split semi-join is better that semi-

join operation as it consumes less power, which would be

beneficial for the mobile environment, and it will save the

mobile device’s power. But still the use of the mobile device

as a distributed database is an ongoing research topic, which

requires further more extensive study in this area, to

implement things like per-split semi-join on mobile devices.

7. REFERNCES
[1] D. Barbara, “Mobile Computing and Databases - A

Survey,” IEEE Transactions on Knowledge and Data

Engineering, vol. 11, no. 1, pp. 108-117,

January/February 1999.

[2] M. A. H. Hassan and M. Bamha, “Semi-join

Computation on Distributed File System Using Map-

Reducr-Merge Model,” ACM, 22-26 March 2010.

[3] K. Shvachko, H. Kuang, S. Radia and R. Chansle, “The

Hadoop Distributed File System,” in Proceedings of the

2010 IEEE 26th Symposium on Mass Storage Systems

and Technologies (MSST), 2010.

[4] J. Venner, Pro Hadoop, Apress, June 22, 2009.

[5] T. White, Hadoop: The Definitive Guide, O'Reil.

[6] K. Karun A. and C. K., “A review on hadoop — HDFS

infrastructure extensions,” in Information &

Communication Technologies (ICT), 2013 IEEE

Conference, pp. 132-137, April 11-12, 2013. .

[7] R. M. Arasanal and D. U. Rumani, “Improving

MapReduce Performance through Complexity and

Performance Based Data Placement in Heterogeneous

Hadoop Clusters,” 9th International Conference, ICDCIT

2013, vol. 7753, no. 1, pp. 115-125, February 5-8, 2013 .

[8] S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J. Shekita

and Y. Tian, “A Comparison of Join Algorithms for Log

Processing in Map-Reduce,” in SIGMOD’10,

Indianapolis, Indiana, USA., June 6–11, 2010.

[9] “Applications of Mobile Computing,” 2005. [Online].

Available: http://www.nokia.com/3g/ index.html.

[10] “Palm Pilots of 3com,” 2005. [Online]. Available:

http://www.palm.com.

[11] P. S. Yu, M. S. Chen and T. H. Yang, “On Coupling

Multiple Systems with a Global Buffer,” IEEE Trans.

Knowledge and Data Engineering, vol. 8, no. 2, pp. 339-

344, April 1996.

[12] P. S. Yu and M. S. Chen, “Interleaving A Join Sequence

with Semijoins in Distributed Query Processing,” IEEE

Trans. Parallel and Distributed Systems, vol. 3, no. 5, pp.

611-622, September 1992.

[13] P. S. Yu and M. S. Chen, “Combining Join and Semi-

Join Operations for Distributed Query Processing,” IEEE

Trans. Knowledge and Data Engineering, vol. 5, no. 3,

pp. 534-542, June 1993.

[14] M. J. Franklin, B. T. Jonsson and D. Kossman,

“Performance Tradeoffs for Client-Server Query,” ACM

SIGMOD International Conference on Management of

Data, pp. 149-160, June 1996.

[15] C. Wang and M. S. Chen, “On the Complexity of

Distributed Query Optimization,” IEEE Transactions on

Knowledge and Data Engineering, vol. 8, no. 4, pp. 650-

662, August 1996.

[16] M. Koca, I. Ari, U. Kocak, O. Calikus and C. Sezgin,

“Parallel and Pipelined processing of Large Scale Mobile

communication data using Hadoop open-source

framework,” in 20th conference on Signal Processing and

Communications Applications Conference (SIU), 2012,

April 18-20, 2012.

[17] O. Choi, W. Jung, K. Kim and H. Yeh, “Mobile Cloud

Computing Model for Data Processing,” in 6th

International Conference on New Trends in Information

Science and Service Science and Data Mining (ISSDM),

2012, October 23-25, 2012.

[18] A. Datta, D. E. VanderMeer, A. Celik and V. Kumar,

“Broadcast protocols to support efficient retrieval from

databases by mobile users,” ACM Transactions on

Database Systems (TODS), vol. 24, no. 1, pp. 1-79,

March 1999.

[19] R. Jain and N. Krishnakumar, “An asymmetric cost

model for query processing in mobile computing

environments,” Wireless Information Networks, vol. 351,

no. 1, pp. 363-377, 1996.

[20] R. Jain and N. Krishnakumar, “Asymmetric Costs and

Dynamic Query Processing in Mobile Computing,” 5th

WINLAB workshop, April 1995.

[21] S. Ghemawat, H. Gobioff and S. T. Leung, “The Google

File System,” in SOSP '03 Proceedings of the nineteenth

ACM symposium on Operating systems, The Sagamore,

Bolton Landing (Lake George), October 19-22, 2003.

[22] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.

Wallach, M. Burrows, T. Chandra, A. Fikes and R. E.

Gruber, “Bigtable: A Distributed Storage System for

Structured Data,” OSDI ’06: 7th USENIX Symposium

on Operating Systems Design and Implementation,

Berkeley, CA, USA, vol. 5, no. 1, pp. 205-218, 2006.

[23] “Apache Hadoop,” [Online]. Available:

http://hadoop.apache.org/core/.

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.22, June 2015

38

[24] J. Xu and J. Liang, “Research on Distributed File System

with Hadoop,” Internatiaonal Journal of Communications

in Computer and Information Science, vol. 345, no. 1,

pp. 148-155, December 7-9, 2012.

[25] M. Bamha, “An Optimal Skew-insensitive Join and

Multi-join Algorithm for Distributed Architectures,”

International Conference on Database and Expert System

Applications, vol. 3588, no. 1, pp. 616-625, August 22-

26, 2005.

[26] M. Bamha and G. Hains, “A Skew-Insensitive Algorithm

for Join and Multi-join Operations on Shared Nothing

Machines,” International Journal of Database and Expert

Systems Applications, vol. 1873, no. 1, pp. 644-653,

2000.

[27] M. Bamha and G. Hains, “Frequency-Adaptive Join for

Shared Nothing Machines,” Journal of Parallel and

Distributed Computing Practices (PDCP), vol. 2, no. 3,

pp. 333-345, September 1999.

[28] H. C. Yang, A. Dasdan, R. L. Hsiao and D. S. Parker,

“Map-reduce-merge: simplified relational data

processing on large clusters,” Proceedings of the 2007

ACM SIGMOD international conference on

Management of data, New York, USA, pp. 1029-1040,

2007.

[29] J. Dean and S. Ghemawat, “MapReduce: simplified data

processing on large clusters,” in Proceedings of the 6th

conference on symposium on operating systems design

and implementation, 2004.

[30] M. A. Hassan and M. Bamha, “Semi-join computation on

distributed file systems using map-reduce-merge model,”

SAC '10 Proceedings of the 2010 ACM Symposium on

Applied Computing, pp. 406-413, 2010.

[31] H. H. Le, S. Hikida and H. Yokota, “NameNode and

DataNode Coupling for a Power-Proportional,” 18th

International Conference, DASFAA 2013, vol. 7826, no.

1, pp. 99-107, April 22-25, 2013.

[32] R. Pike, S. Dorward, R. Griesemer and S. Quin,

“Interpreting the data: Parallel analysis with Sawzall,”

Scientific Programming - Dynamic Grids and Worldwide

Computing, vol. 13, no. 4, pp. 277-298, October 2005.

[33] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J.

DeWitt, S. Madden and M. Stoneb, “A comparision of

approaches to Large-Scale Data Analysis,” in

SIGMOD'09, June 29-July 2, 2009.

[34] S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J. Shekita

and Y. Tian, “A comparison of join algorithms for log

processing in MaPreduce,” SIGMOD '10 Proceedings of

the 2010 ACM SIGMOD International Conference on

Management of data, pp. 975-986, 2010.

[35] K. Shvachko, H. Kuang, S. Radia and R. Chansl, “The

Hadoop Distributed File System,” in Proceedings of the

2010 IEEE 26th Symposium on Mass Storage Systems

and Technologies (MSST), 2010.

[36] S. Ganguly and R. Alonzo, “Query Optimization in

Mobile Environments,” 5th Workshop on Foundations of

Models and Languages for Data and Objects, pp. 1-17,

September 1993.

[37] M. H. Dunham and A. Helal, “Mobile Computing and

Databases: anything new?,” ACM SIGMOD Record, vol.

23, no. 4, pp. 5-9, December 1995.

[38] J. Jing, A. S. Helal and A. Elmagarmid, “Client-Server

computing in mobile environments,” ACM Computing

Surveys (CSUR), vol. 31, no. 2, pp. 117-157, June 1999.

IJCATM : www.ijcaonline.org

