
International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.21, June 2015

42

A Force Directed Layout Algorithm for Biological

Networks

Pritish Dubey
M.Tech Student

Vishwakarma Institute of
Technology, Pune

Ashwini Shingare
Assistant Professor

Vishwakarma Institute of
Technology, Pune

Vrushali Inamdar
Team Lead

Persistent Labs, Pune

ABSTRACT

In this paper, we present a layout algorithm for clustered

graphs which is a modified force directed algorithm. We have

used Spring Embedder algorithm by Eades as base for our

algorithm and modified it to suit the constraints of general

biological graphs. Our main contribution is adopting spring

embedder algorithm to maintain clustered structure of original

graph with inherent depth of nesting and handling different

node sizes. Results show that our layout algorithm draws

graphs with acceptable quality with respect to aesthetic

criteria for graph drawing. The algorithm has been integrated

with systems biology visualization suit called “eSkin”, which

allows lay outing and analyze biological graphs.

General Terms

Graph Visualization, Layout Algorithm.

Keywords

Clustered Graph, Biological Pathways, Force Directed Layout

1. INTRODUCTION
A graph is a collection of points and lines connecting some

(possibly empty) subset of them. The points of a graph are

called graph vertices or nodes and the lines connecting the

vertices of a graph are known as graph edges or lines [1]. For

a long time graphs have been used to visualize complex data.

A drawing of graph is the representation of nodes and edges

on a surface. A graph can have many various drawings as the

position of nodes on the surface does not matter. The process

of drawing graphs using some algorithm is called automatic

graph drawing. These algorithms are called as lay outing

algorithms. Over the years, a set of assumed ‘graph drawing

aesthetics’ has emerged, defining the criteria by which the

‘goodness’ of the graph drawing produced by a layout

algorithm can be assessed [2]. Such aesthetics include, for

example, a minimum number of edge crossings, as few edge

bends as possible, a display of symmetric sub-structures, and

large angles between edges incident at a node. Graph layout

algorithms thus are rated to the extent they conform to these

criteria. Graphs drawn from such algorithms can alternately

be valued upon the level of human cognition or

comprehension of underlying data being represented [3].

1.1 Biological Networks
Networks have been used for a long time to represent

important biological processes. Networks are now routinely

used to show relationships between biologically relevant

molecules. Analysis of these networks is important for

understanding such relationships and formulate hypotheses

about biological properties [4]. A biological pathway is a

series of actions among molecules in a cell that leads to a

certain product or a change in the cell [5].

These pathways are represented as graphs with complex

structures inside them representing complex molecules. These

molecules are modelled as clusters in the graph. In addition

there are constraints that child cluster or molecules of one

cluster should not move outside the parent cluster, as well as

should not enter other clusters. These constraints make

drawing of biological pathways with traditional lay out

algorithms not possible. In order to layout such graphs we

have to make appropriate changes and consider various

constraints for layout [6].

CONVENTIONS
Formally, a graph is a pair of sets (V, E), where V is the set of

vertices and E is the set of edges, formed by pairs of vertices.

A cluster C is set of vertices and may or may not be the part

of other clusters. A clustered graph G = (V, E, T) consist of E

set of edges, V set of vertices and a rooted tree T such that

children of T can be vertices of G or other clusters..

 A cluster C is part of the graph G which contains other

clusters or nodes. Cluster is interchangeably called a ‘sub

graph’ from here onwards. An “inter graph edge” is an edge

which is connecting two vertices that are part of different sub

graphs.

2. PROPOSED FORCE MODEL
We propose a physical model which is the extension of

traditional physical model proposed by Eades in his algorithm

of Spring Embedder [7]. This physical model is modelled to

adhere to constrains imposed by biological networks which

are essentially clustered graphs in nature. Traditional force

directed algorithms assign charge to each nodes in a graph

such that every nodes repel every other node and adjacent

nodes attract each other. The following modifications were

made to the traditional force model.

a) Nodes repel other nodes only if they are part of same

cluster or sub graph.

b) Nodes attract other adjacent nodes only if they are part

of same cluster or sub graph.

c) Edges going from one cluster to other clusters are split

into smaller parts or springs from the point where it

intersects the clusters. These parts then acts as

individual springs for nodes they are connected to.

d) Sub graphs or clusters repel other nodes present in the

same cluster or sub graph.

e) Sub graphs or clusters repel other clusters present in

the same cluster or sub graph.

f) Point of repulsion between two clusters and vertices of

different size is calculated by joining the centers of two

clusters and finding clipping points with the cluster.

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.21, June 2015

43

Figure 1: An edge between node of different sub graphs

and its clipping point with sub graph.

Figure 2: Structure of clustered graph

Fig. 1 shows an inter graph edge that connects two nodes of

different sub graphs or clusters. Figure also shows the

clipping point of edge with the boundary of graph. This point

is used to divide the spring into two parts, each one attracting

a node towards the clipping point. We calculate clipping point

using Cohan and Sutherland algorithm [8].

Fig. 2 shows the structure of a typical clustered graph. Graph

has two clusters with cluster C_1 containing three nodes and a

cluster C_2. According to our force model all the nodes

belonging to C_1 only (marked by blue color) will repel each

other. Only immediate nodes of C_1 which are adjacent to

each other will be subjected to spring forces. Immediate nodes

of cluster C_1 will be repelled by the cluster boundaries of

C_2. Inter graph edges between nodes of C_1 and C_2 are

split up at points where they intersect with cluster boundary of

C_1 and are called as clipping points. Edge is broken up into

two springs at clipping points and attracts the nodes towards

the clipping point.

3. PROPOSED LAY OUT ALGORITHM
The algorithm comprises of following seven phases for each

level of nesting depth in the graph. These five phases are

repeated until convergence is achieved or some default

numbers of iterations are done.

a) Relax Edges: Edges which are part of present sub

graph or nesting depth are relaxed.

b) Relax Inter graph edges: All the graph edges which

are connecting nodes of different graphs are relaxed.

c) Repel Nodes: Repel nodes which are part of current

nesting depth.

d) Repel Clusters: Repulsion forces are applied to

clusters and nodes at each nesting depth.

e) Move Clusters and Nodes: Move the clusters and

nodes at a nesting depth depending upon their

displacement.

Every node and cluster is associated with a ‘displacement’

value which denotes the amount by which that node or cluster

will be displaced. It is assumed that each sub graph has a

unique Id and it is same as that of immediate nodes of that sub

graph. It helps us check whether a node is the immediate

children of a given sub graph.

Figure 3: Flow of Algorithm

We start applying the algorithm from the lowest nesting depth

applies layout and then moves higher nesting.

Clustered Graph Layout

Input: Main graph G

For each nesting level ‘L’ in the graph

 For each sub graph G’ in current level ‘L’

 Relax Edges (G’)

 Relax Inter graph edges (G’)

 Repel Nodes (G’)

 Repel Clusters (G’)

 Move Clusters and Nodes (G’)

 End

End

The time complexity of our algorithm is found to be

 where ‘N’ is number

of iterations; ‘S’ is the number of total sub graphs. ‘ ’ is the

total number of nodes and cluster at a nesting depth ‘i’, ‘ ’ is

the immediate edges of a sub graph at a nesting depth ‘i’.

 is the total number of inter graph edges in the

graph.

As shown in figure 3, our algorithm will start layout with

nesting depth one, perform lay outing with three nodes and a

cluster, after that we move the inner nesting level (two) and

apply the above steps will be applied until all nesting levels

are applied.

3.1 Applying Spring Forces
We apply standard spring forces suggested by Eades which

were modelled on Hook’s Law. Force acting on the vertices of

an edge will become zero, when reaches a certain “desired

length”. Constant is the attraction multiplier, which is

similar to elasticity constant of springs and is used to

determine the rate at which edges contract or expand.

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.21, June 2015

44

Algorithm 1: Relax Edges

Input: Sub graph G

For each immediate edge ‘E’ of G connecting any two U and

V

 +v))

 End

End

Relaxing inter graph edges are similar to relaxing edges of the

same graph except that we need to calculate clipping points of

that edge with sub graph. Depending upon the level of nesting

of that inter graph edge the calculation of clipping points may

vary and can be costly.

Algorithm 2: Relax Inter Graph Edges

Input: Main graph G’

For each inter graph edge ‘E’ in graph G’ connecting any two

U and V

 Get Clipping points Cu and Cv for U and V

 Distance Du = LineSegment(Cu,V)

 Distance Dv = LineSegment(Cu,V)

 +v))

 +v))

 End

End

Here is the inter edge attraction multiplier. Both the above

algorithms require time, where is ‘E’ number of edges in

the graph.

3.2 Applying Repulsive Forces
We apply repulsive forces among nodes and clusters by

moving a node across the centers of all the other nodes and

clusters and adding to its displacement by some constant

distance. We calculate clipping points between nodes and

clusters for a line passing through their centers to

accommodate the difference of their sizes.

Algorithm 3: Repel Nodes

Input: Sub graph G

 For each immediate node U of sub graph do

 For each immediate node V of sub graph do

 Distance D = LineSegment(U,V) Width(U,V)

 Dx = U - V

 Fr = * (Dx/ D)

 Dispacement(U) += Fr/

 End

 End

End

In the above algorithm we traverse all the immediate children

nodes to apply repulsive force between them. is the

repulsion constant and affects the amount by which nodes

repel each other. We have taken default value 100. This step

is costliest and requires time. Similarly here also we

have taken width of nodes to accommodate different vertex

sizes.

Algorithm 4: Repel Clusters

Input: Sub graph G

For each Cluster “C” in current graph G

 For each Node “n” in current nesting depth

 Get Clipping points Cu between n and C

 Distance D = LineSegment(Cu,n)

 MovementVector = Cu – Position(n)

 Fr = MovementVector/D

 Dispacement(n) = Fr/

 Dispacement(U) += Fr/

 Limit Displacement(U) by two units only

 End

 For each Cluster “J” in graph G

 Get Clipping points Cu and Cv between C and J

 Distance D = LineSegment(Cu,Cv)

 MovementVector = Cu – Cv

 Fr = MovementVector/D

 Dispacement(J) += Fr/

 Dispacement(U) += Fr/

 Limit Displacement(C,J) by 15 units only

 End

End

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.21, June 2015

45

While applying repulsive forces between clusters and nodes

we traverse through the cluster at current nesting depth. For

each cluster we repel nodes and clusters at that level and to

their displacements the movement vectors. is the repulsion

constant and affects the amount by which nodes repel each

other. This step requires where C is the number of

clusters and n is the number of nodes at current nesting depth.

3.3 Moving Nodes and Clusters
We move the nodes and cluster a nudge. We try to avoid huge

changes to the positions of clusters so as to maintain user’s

mental map [9]. We also limit the movement of nodes if their

displacement value is too high, similar to that of ‘Simulated

Anneling’ method [10].

Algorithm 5: Move Cluster and Nodes

Input: Sub graph G

For each cluster ‘C’ in current graph G

 Limit Displacement(C) by some factor

 Move cluster by Displacement(C)

 End

For each node ‘n’ in current graph G

 Limit Displacement(n) by some factor

 Move node by Displacement(n)

 End

End

4. RESULTS AND ANALYSIS

We implemented the algorithm using C++ and Boost Graph

Library and are currently available as a part of “eSkin”

visualization suite. The results we got were satisfactory when

considering general aesthetic criteria like edge crossings,

bounding area of graph [11] and drawing time of the

algorithm. We tested and validated our algorithm with

standard systems biology pathways. Following are some of

sample graphs drawn with our algorithm.

Figure 4: a) Clustered graph before applying Layout

 Figure 4 b) Graph after applying lay outing algorithm

 Figure 5 a) Clustered graph before applying Layout

 Figure 5 b) Graph after applying lay outing algorithm

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.21, June 2015

46

Figure 6 a) Clustered graph before applying Layout

Figure 6 b) Clustered graphs after applying Layout

The above figure of graphs laid out with our algorithms

confirms the following points:

a) Inherent structure of clustered graph is maintained

and all the nodes remain in their respective clusters

after layout.

b) Algorithm exposes the underlying symmetry of

clustered graphs.

c) Edge crossings are reduced and in some cases

eliminated completely. However just like other

layout algorithms there is no guarantee.

d) Graphs turn out to be more aesthetically pleasing.

e) No violent changes are made to location of clusters

to maintain user’s mental map.

The algorithm was tested with the standard biological

pathways for skin cells [12]. The pathway graphs were

initially laid out randomly on a plane. On these initial random

layouts, our modified Force Directed Layout algorithm was

applied. Layout performance can be seen in Figure 7. The

figure shows the number of edge crossings in 35 standard

pathway graphs before and after applying the algorithm. We

observed that the edge crossings were reduced by 75% on an

average after applying the algorithm. Also the clusters in the

graph were preserved.

It is profoundly hard to consummately eliminate node

overlaps for non-uniform node dimensions that are

engendered by a spring embedder [13], this is due to the

reason that the constants associated with opposing

magnetization and repulsion forces are arduous to fine-tune

[14],[15]. The overlap amounts are virtually always

inconsequential.

Figure 7: Edge Crossings of biological pathways before and after lay outing.

5. CONCLUSION
We present a novel algorithm for layout of complex biological

networks which are inherently clustered in nature. We

modelled spring embedder algorithm to handle additional

constraints of clustered graphs and irregular node sizes. We

considered variable node sizes and clusters of different sizes

in our physical model. Our algorithm does not impose any

limitation of nesting depth of the graph and produces

satisfactory results for general metrics including

computational efficacy. The results show 75% reduction in

edge crossing number in the resulting layout.

As a future work, we will try to reduce the computational time

of the algorithm. The main drawback of this algorithm is its

large running time. As discussed in section 3, the running time

depends on number of clusters, number of nodes at each level

of clusters and number of iterations. As we are using recursive

approach to layout a cluster, we can make use of parallel

computing approaches. By this, we will be able to layout

disjoint clusters in parallel. This is expected to reduce the

computational time.

6. REFERENCES
[1] Eric Weisstein, “Graph Theory”, May 13 2015

Available: http://mathworld.wolfram.com/Graph.html

[2] Coleman and Stott Parker, 12 Dec. 1996, “Aesthetics-

Based Graph Layout for Human Consumption”,

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

P
at

h
w

ay
 1

P
at

h
w

ay
 3

P
at

h
w

ay
 5

P
at

h
w

ay
 7

P
at

h
w

ay
 9

P
at

h
w

ay
 1

1

P
at

h
w

ay
 1

3

P
at

h
w

ay
 1

5

P
at

h
w

ay
 1

7

P
at

h
w

ay
 1

9

p
at

h
w

ay
 2

1

p
at

h
w

ay
 2

3

P
at

h
w

ay
 2

5

P
at

h
w

ay
 2

7

P
at

h
w

ay
 2

9

P
at

h
w

ay
 3

1

P
at

h
w

ay
 3

3

P
at

h
w

ay
 3

5

Edge Crossings Before

 Minimum Crossings achieved upto
1000 Iterations

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.21, June 2015

47

Journal of Software Practice & Experience, Volume 26,

p 1415-1438

[3] Helen C. Purchase, Beryl Plimmer, Baker, Pilcher, 2010,

“Graph Drawing Aesthetics in User-Sketched Graph

Layouts”, AUIC '10 Proceedings of the Eleventh

Australasian Conference on User Interface, Volume 106,

p 80-88.

[4] John Morris, Allan Kuchinsky, 2014, “Analysis and

Visualization of Biological Networks with Cytoscape”.

[5] “Biological Pathways”,National Human Genome

Research Institute. April 5 2015,[Online] Available

https://www.genome.gov/27530687 .

[6] Kathy Ryall, Joe Marks and Stuart Shieber, 1997, “An

interactive constraint-based system for drawing graphs”,

Proceedings of the 10th annual ACM symposium on

User interface software and technology, p 97-104.

[7] Peter Eades, 1984, “A heuristic for graph drawing”.

Congressus Numerantium, 42:149–160.

[8] P. Asokarathinam, Cohen – Sutherland Line Clipping

Algorithm, November 27, 1996. [Online]

http://www.cs.helsinki.fi/group/goa/viewing/leikkaus/lin

eClip.html

[9] Yi-Yi Lee, Chun-Cheng Lin, Hsu-Chun Yen, 2006

“Mental Map Preserving Graph Drawing Using

Simulated Annealing” at Asia Pacific Symposium on

Information Visualization (APVIS 2006).

[10] T. Fruchterman and E. Reingold, 1991, “Graph drawing

by force-directed placement”, Software Pract. Exp.,

21(11), p 1129–1164.

[11] H. C. Purchase, 2002, “Metrics for Graph Drawing

Aesthetics”, at Journal of Visual Languages and

Computing.

[12] KEGG Pathway Database April 27, 2015. [Online]

http://www.genome.jp/kegg/pathway.html

[13] Josep Díaz, Jordi Petit and Maria Serna, September

2002, “A survey of graph layout problems”, Journal of

ACM Computing Surveys (CSUR) Surveys Homepage

archive Volume 34 Issue 3, Pages 313-356.

[14] Yifan Hu, 2005, “Efficient and high quality force-

directed graph drawing”. The Mathematica Journal,

10:37–71.

[15] J. B. Kruskal, 1964, “Multidimensional scaling by

optimizing goodness of fit to a nonmetric hypothesis”,

Psychometrika, 29:1–27.

IJCATM : www.ijcaonline.org

