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ABSTRACT 

In this paper, we present a layout algorithm for clustered 

graphs which is a modified force directed algorithm. We have 

used Spring Embedder algorithm by Eades as base for our 

algorithm and modified it to suit the constraints of general 

biological graphs. Our main contribution is adopting spring 

embedder algorithm to maintain clustered structure of original 

graph with inherent depth of nesting and handling different 

node sizes. Results show that our layout algorithm draws 

graphs with acceptable quality with respect to aesthetic 

criteria for graph drawing. The algorithm has been integrated 

with systems biology visualization suit called “eSkin”, which 

allows lay outing and analyze biological graphs. 
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1. INTRODUCTION 
A graph is a collection of points and lines connecting some 

(possibly empty) subset of them. The points of a graph are 

called graph vertices or nodes and the lines connecting the 

vertices of a graph are known as graph edges or lines [1]. For 

a long time graphs have been used to visualize complex data. 

A drawing of graph is the representation of nodes and edges 

on a surface. A graph can have many various drawings as the 

position of nodes on the surface does not matter. The process 

of drawing graphs using some algorithm is called automatic 

graph drawing. These algorithms are called as lay outing 

algorithms. Over the years, a set of assumed ‘graph drawing 

aesthetics’ has emerged, defining the criteria by which the 

‘goodness’ of the graph drawing produced by a layout 

algorithm can be assessed [2]. Such aesthetics include, for 

example, a minimum number of edge crossings, as few edge 

bends as possible, a display of symmetric sub-structures, and 

large angles between edges incident at a node. Graph layout 

algorithms thus are rated to the extent they conform to these 

criteria. Graphs drawn from such algorithms can alternately 

be valued upon the level of human cognition or 

comprehension of underlying data being represented [3].  

1.1 Biological Networks  
Networks have been used for a long time to represent 

important biological processes. Networks are now routinely 

used to show relationships between biologically relevant 

molecules. Analysis of these networks is important for 

understanding such relationships and formulate hypotheses 

about biological properties [4]. A biological pathway is a 

series of actions among molecules in a cell that leads to a 

certain product or a change in the cell [5].  

These pathways are represented as graphs with complex 

structures inside them representing complex molecules. These 

molecules are modelled as clusters in the graph. In addition 

there are constraints that child cluster or molecules of one 

cluster should not move outside the parent cluster, as well as 

should not enter other clusters. These constraints make 

drawing of biological pathways with traditional lay out 

algorithms not possible. In order to layout such graphs we 

have to make appropriate changes and consider various 

constraints for layout [6]. 

CONVENTIONS  
Formally, a graph is a pair of sets (V, E), where V is the set of 

vertices and E is the set of edges, formed by pairs of vertices. 

A cluster C is set of vertices and may or may not be the part 

of other clusters. A clustered graph G = (V, E, T) consist of E 

set of edges, V set of vertices and a rooted tree T such that 

children of T can be vertices of G or other clusters..  

 A cluster C is part of the graph G which contains other 

clusters or nodes. Cluster is interchangeably called a ‘sub 

graph’ from here onwards. An “inter graph edge” is an edge 

which is connecting two vertices that are part of different sub 

graphs.    

2. PROPOSED FORCE MODEL 
We propose a physical model which is the extension of 

traditional physical model proposed by Eades in his algorithm 

of Spring Embedder [7]. This physical model is modelled to 

adhere to constrains imposed by biological networks which 

are essentially clustered graphs in nature. Traditional force 

directed algorithms assign charge to each nodes in a graph 

such that every nodes repel every other node and adjacent 

nodes attract each other. The following modifications were 

made to the traditional force model. 

a) Nodes repel other nodes only if they are part of same 

cluster or sub graph. 

b) Nodes attract other adjacent nodes only if they are part 

of same cluster or sub graph. 

c) Edges going from one cluster to other clusters are split 

into smaller parts or springs from the point where it 

intersects the clusters. These parts then acts as 

individual springs for nodes they are connected to. 

d) Sub graphs or clusters repel other nodes present in the 

same cluster or sub graph. 

e) Sub graphs or clusters repel other clusters present in 

the same cluster or sub graph. 

f) Point of repulsion between two clusters and vertices of 

different size is calculated by joining the centers of two 

clusters and finding clipping points with the cluster.  
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Figure 1:  An edge between node of different sub graphs 

and its clipping point with sub graph. 

 

Figure 2:  Structure of clustered graph 

Fig. 1 shows an inter graph edge that connects two nodes of 

different sub graphs or clusters. Figure also shows the 

clipping point of edge with the boundary of graph. This point 

is used to divide the spring into two parts, each one attracting 

a node towards the clipping point. We calculate clipping point 

using Cohan and Sutherland algorithm [8]. 

Fig. 2 shows the structure of a typical clustered graph. Graph 

has two clusters with cluster C_1 containing three nodes and a 

cluster C_2. According to our force model all the nodes 

belonging to C_1 only (marked by blue color) will repel each 

other. Only immediate nodes of C_1 which are adjacent to 

each other will be subjected to spring forces. Immediate nodes 

of cluster C_1 will be repelled by the cluster boundaries of 

C_2. Inter graph edges between nodes of C_1 and C_2 are 

split up at points where they intersect with cluster boundary of 

C_1 and are called as clipping points. Edge is broken up into 

two springs at clipping points and attracts the nodes towards 

the clipping point. 

3. PROPOSED LAY OUT ALGORITHM 
The algorithm comprises of following seven phases for each 

level of nesting depth in the graph. These five phases are 

repeated until convergence is achieved or some default 

numbers of iterations are done. 

a) Relax Edges: Edges which are part of present sub 

graph or nesting depth are relaxed. 

b) Relax Inter graph edges: All the graph edges which 

are connecting nodes of different graphs are relaxed. 

c) Repel Nodes: Repel nodes which are part of current 

nesting depth. 

d) Repel Clusters: Repulsion forces are applied to 

clusters and nodes at each nesting depth. 

e) Move Clusters and Nodes: Move the clusters and 

nodes at a nesting depth depending upon their 

displacement. 

Every node and cluster is associated with a ‘displacement’ 

value which denotes the amount by which that node or cluster 

will be displaced. It is assumed that each sub graph has a 

unique Id and it is same as that of immediate nodes of that sub 

graph. It helps us check whether a node is the immediate 

children of a given sub graph. 

 

Figure 3: Flow of Algorithm 

We start applying the algorithm from the lowest nesting depth 

applies layout and then moves higher nesting.   

 

Clustered Graph Layout  

Input: Main graph G 

For each nesting level ‘L’ in the graph  

      For each sub graph G’ in current level ‘L’ 

            Relax Edges (G’) 

            Relax Inter graph edges (G’) 

            Repel Nodes (G’) 

            Repel Clusters (G’) 

            Move Clusters and Nodes (G’) 

      End 

End 

The time complexity of our algorithm is found to be 

       
                          where ‘N’ is number 

of iterations; ‘S’ is the number of total sub graphs. ‘  ’ is the 

total number of nodes and cluster at a nesting depth ‘i’, ‘  ’ is 

the immediate edges of a sub graph at a nesting depth ‘i’. 

               is the total number of inter graph edges in the 

graph. 

As shown in figure 3, our algorithm will start layout with 

nesting depth one, perform lay outing with three nodes and a 

cluster, after that we move the inner nesting level (two) and 

apply the above steps will be applied until all nesting levels 

are applied.  

3.1 Applying Spring Forces 
We apply standard spring forces suggested by Eades which 

were modelled on Hook’s Law. Force acting on the vertices of 

an edge will become zero, when reaches a certain “desired 

length”. Constant    is the attraction multiplier, which is 

similar to elasticity constant of springs and is used to 

determine the rate at which edges contract or expand.  
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Algorithm 1: Relax Edges 

Input: Sub graph G 

For each immediate edge ‘E’ of G connecting any two U and 

V 

                                

                                         

                                  +v))  

                       

                        

  End 

End 

 

Relaxing inter graph edges are similar to relaxing edges of the 

same graph except that we need to calculate clipping points of 

that edge with sub graph. Depending upon the level of nesting 

of that inter graph edge the calculation of clipping points may 

vary and can be costly.   

 

Algorithm 2: Relax Inter Graph Edges 
 

 

Input: Main graph G’ 

For each inter graph edge ‘E’ in graph G’ connecting any two 

U and V  

    Get Clipping points Cu and Cv for U and V  

    Distance Du  = LineSegment(Cu,V) 

    Distance Dv =  LineSegment(Cu,V) 

                                             

                                    +v))           
                                             

                                   +v))  

                        

                         

  End 

End  

   

Here    is the inter edge attraction multiplier. Both the above 

algorithms require      time, where is ‘E’ number of edges in 

the graph.  

3.2 Applying Repulsive Forces 
We apply repulsive forces among nodes and clusters by 

moving a node across the centers of all the other nodes and 

clusters and adding to its displacement by some constant 

distance. We calculate clipping points between nodes and 

clusters for a line passing through their centers to 

accommodate the difference of their sizes. 

 

 

 

 

 

Algorithm 3: Repel Nodes 

  

Input: Sub graph G 

   For each immediate node U of sub graph do  

         For each immediate node V of sub graph do 

      Distance D = LineSegment(U,V)  Width(U,V) 

      Dx = U  - V 

      Fr =   * ( Dx/ D) 

     Dispacement(U) += Fr/      

         End 

     End 

End  

 

In the above algorithm we traverse all the immediate children 

nodes to apply repulsive force between them.   is the 

repulsion constant and affects the amount by which nodes 

repel each other. We have taken default value 100. This step 

is costliest and requires        time. Similarly here also we 

have taken width of nodes to accommodate different vertex 

sizes. 

 

Algorithm 4: Repel Clusters 

  

Input: Sub graph G 

For each Cluster “C” in current graph G 

  For each Node “n” in current nesting depth 

        Get Clipping points Cu between n and C 

        Distance D = LineSegment(Cu,n) 

        MovementVector = Cu – Position(n) 

        Fr =    MovementVector/D 

       Dispacement(n) = Fr/      

       Dispacement(U) += Fr/      

      Limit Displacement(U) by two units only 

   End 

    For each Cluster “J” in graph G 

    Get Clipping points Cu and Cv between C and J 

     Distance D = LineSegment(Cu,Cv) 

     MovementVector = Cu – Cv 

     Fr =    MovementVector/D 

    Dispacement(J)  += Fr/      

    Dispacement(U) += Fr/      

   Limit Displacement(C,J) by 15 units only 

      End  

End  
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While applying repulsive forces between clusters and nodes 

we traverse through the cluster at current nesting depth. For 

each cluster we repel nodes and clusters at that level and to 

their displacements the movement vectors.    is the repulsion 

constant and affects the amount by which nodes repel each 

other. This step requires         where C is the number of 

clusters and n is the number of nodes at current nesting depth. 

3.3 Moving Nodes and Clusters 
We move the nodes and cluster a nudge. We try to avoid huge 

changes to the positions of clusters so as to maintain user’s 

mental map [9]. We also limit the movement of nodes if their 

displacement value is too high, similar to that of ‘Simulated 

Anneling’ method [10]. 

 

Algorithm 5: Move Cluster and Nodes 

  

Input: Sub graph G 

For each cluster ‘C’ in current graph G 

       Limit Displacement(C) by some factor 

       Move cluster by Displacement(C) 

        End 

For each node ‘n’ in current graph G 

       Limit Displacement(n) by some factor 

       Move node by Displacement(n) 

       End 

End 

 

4. RESULTS AND ANALYSIS 

We implemented the algorithm using C++ and Boost Graph 

Library and are currently available as a part of “eSkin” 

visualization suite. The results we got were satisfactory when 

considering general aesthetic criteria like edge crossings, 

bounding area of graph [11] and drawing time of the 

algorithm. We tested and validated our algorithm with 

standard systems biology pathways.  Following are some of 

sample graphs drawn with our algorithm. 

 
Figure 4: a) Clustered graph before applying Layout 

 
  Figure 4 b) Graph after applying lay outing algorithm 

 

 
 Figure 5 a) Clustered graph before applying Layout 

 

 Figure 5 b) Graph after applying lay outing algorithm 
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Figure 6 a) Clustered graph before applying Layout 

 

Figure 6 b) Clustered graphs after applying Layout 

The above figure of graphs laid out with our algorithms 

confirms the following points: 

a) Inherent structure of clustered graph is maintained 

and all the nodes remain in their respective clusters 

after layout. 

b) Algorithm exposes the underlying symmetry of 

clustered graphs. 

c) Edge crossings are reduced and in some cases 

eliminated completely. However just like other 

layout algorithms there is no guarantee. 

d) Graphs turn out to be more aesthetically pleasing. 

e) No violent changes are made to location of clusters 

to maintain user’s mental map.  

The algorithm was tested with the standard biological 

pathways for skin cells [12]. The pathway graphs were 

initially laid out randomly on a plane. On these initial random 

layouts, our modified Force Directed Layout algorithm was 

applied. Layout performance can be seen in Figure 7. The 

figure shows the number of edge crossings in 35 standard 

pathway graphs before and after applying the algorithm. We 

observed that the edge crossings were reduced by 75% on an 

average after applying the algorithm. Also the clusters in the 

graph were preserved.  

It is profoundly hard to consummately eliminate node 

overlaps for non-uniform node dimensions that are 

engendered by a spring embedder [13], this is due to the 

reason that the constants associated with opposing 

magnetization and repulsion forces are arduous to fine-tune 

[14],[15]. The overlap amounts are virtually always 

inconsequential. 

  

 

Figure 7:  Edge Crossings of biological pathways before and after lay outing. 

5. CONCLUSION  
We present a novel algorithm for layout of complex biological 

networks which are inherently clustered in nature. We 

modelled spring embedder algorithm to handle additional 

constraints of clustered graphs and irregular node sizes. We 

considered variable node sizes and clusters of different sizes 

in our physical model. Our algorithm does not impose any 

limitation of nesting depth of the graph and produces 

satisfactory results for general metrics including 

computational efficacy. The results show 75% reduction in 

edge crossing number in the resulting layout. 

As a future work, we will try to reduce the computational time 

of the algorithm. The main drawback of this algorithm is its 

large running time. As discussed in section 3, the running time 

depends on number of clusters, number of nodes at each level 

of clusters and number of iterations. As we are using recursive 

approach to layout a cluster, we can make use of parallel 

computing approaches. By this, we will be able to layout 

disjoint clusters in parallel. This is expected to reduce the 

computational time. 
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