International Journal of Computer Applications (0975 — 8887)
Volume 120 — No.21, June 2015

A Multi — Faceted Approach to Mobile Agent Security

Anthony M. Ngereki
Department of Computer Science
Chuka University, Kenya

ABSTRACT

Mobile agents are increasingly becoming popular in the
development of current distributed applications. However, the
mobility and autonomy factors of mobile agents present a host
of security challenges in a distributed environment. In an
attempt to ensure security of the mobile agent against a
malicious host, a security framework is proposed. Our
security mechanism uses a multi-faceted approach to protect
mobile agents and must be incorporated from the design stage
of agent systems. We identify major security threats against
mobile agents by a malicious platform and propose algorithms
to counter them. We then test a multi-agent system that
incorporates these algorithms against one that doesn’t and
compare the results.

General Terms
Multi-agent System, Security, Encryption

Keywords

Agent, Security, Authentication, Authorization, Monitoring,
Supervision, Secure Sockets Layer (SSL), Transport Layer
Security (TLS), Agent Communication.

1. INTRODUCTION

Mobile agents present an evolution in computing that allows
for complete mobility of cooperating applications among
supporting platforms to form a large-scale, loosely-coupled
distributed system. Though there a number of models that can
be used to describe agent systems, a simple model consisting
of two components: the agent and the agent platform is
sufficient to discuss security in mobile agents. Here, an agent
comprises the code and state information needed to carry out
some computation. The agent platform provides the
computational environment in which an agent operates. [2]

The platform from which an agent originates or is created is
known as the home platform and is usually the most trusted.
An agent however can move (hop) from one execution
environment to another in a network. This new environment is
called the host environment and takes over full control over
the agent’s over agent’s code, data and execution state [1][3].
This control of the host over all executing programs makes it
difficult to protect mobile agents from malicious hosts [12]
and as such exposes them to various security threats.

Basically, the security requirements of any computer system
are confidentiality, integrity, authentication, authorization,
non-repudiation and availability [6][7][15]. A malicious host
environment can compromise the security requirements of a
mobile agent in a number of ways. This include denial of
service, eavesdropping, interception, alteration, replays and
masquerading [6][14][51[71[4].

While techniques such as access control, password protection
and sand boxes have been developed to protect agent
platforms against hostile agents [16], none of the approaches

Andrew M. Kahonge
School of Computing and Informatics
University of Nairobi, Kenya

to protect mobile agents against malicious hosts adequately
addresses every aspect of security [17].

2. MOBILE AGENT SECURITY
THREATS

Using a simple model comprising of an agent and agent
platform, security threats in mobile agent systems can be
categorised into four categories namely agent-to-platform,
agent-to-agent, platform-to-agent and other-to-agent platform.
A simple agent model as described by [2] is shown in figure

1.
' [’
,/’?
y)

N

1131

Agent

,—\

[.
Agent).
Platform -l [
A J
‘\ I,'/

»

o3

Figure 1. A simple Agent Model
2.1 Categories of Agent Security Threats

Agent-to-Platform: This category category represents the set
of threats in which agents exploit security weaknesses of an
agent platform or launch attacks against an agent platform.
This set of threats includes masquerading, denial of service
and unauthorized access.

Agent-to-Agent: The agent-to-agent category represents the
set of threats in which agents exploit security weaknesses of
other agents or launch attacks against other agents. This set of
threats includes masquerading, unauthorized access, denial of
service and repudiation. Many agent platform components are
also agents themselves.

Platform-to-Agent: The platform-to-agent category
represents the set of threats in which platforms compromise
the security of agents. This set of threats includes
masquerading, denial of service, eavesdropping, and
alteration.

Other-to-Agent Platform: The other-to-agent platform
category represents the set of threats in which external
entities, including agents and agent platforms, threaten the
security of an agent platform. This set of threats includes
masquerading, denial of service, unauthorized access, and
copy and replay.

2.2 Platform-to-Agent Security Threats

An agent is most secure in its home platform since it is where
it is instantiated. However, mobility implies that this trusted
execution environment needs to be extended to other host

20

platforms in the agents’ itinerary. Such trust is difficult to
extend beyond a single hop especially because while the home
platform could trust the next host in the network, this bilateral
trust is not transitive i.e. just because the home platform (x)
trusts the next host (y), this doesn’t mean another host in the
network (z) also trusts (y). This complexity introduces a
multi-hop security problem.

Some of the possible platform-to-agent security threats
include the following [6][14][3]:

2.2.1 Denial of Service

An agent platform should faithfully execute an agents’
requests, allocate necessary resources and abide by the agreed
upon quality of services. However, a malicious agent
platform, may ignore agent service requests, introduce
unacceptable delays for critical tasks, refuse to execute the
agent’s code, or even terminate the agent without
notification. Non-responsive agents on malicious platforms
could either be deadlocked or livelocked.An Agent livelock
occurs when an agent is continuously given tasks to perform
and can never catch up or achieve its goal.

2.2.2 Masquerade

This happens when a malicious platform claims the identity of
another platform that the agent should actually visit. This
decieves the agent into giving the malicious host sensitive
information. Once the masquerading host is able to gain the
trust of the agent, it may then be able to read or modify any of
agent’s code, data and state. This can be prevented by use of a
strong authentication protocol to authenticate a host to an
agent. A masquerading platform can harm both the visiting
agent and the platform whose identity it has assumed.

2.2.2 Eavesdropping

The fact that an agent must execute on a host means that the
host is able to record instructions given to it by the agent. This
implies that a malicious host may try to determine the code,
data or flow control held by the agent. Even though the agent
may not be directly exposing secret information, the platform
may be able to infer meaning from the types of services
requested and from the identity of the agents with which it
communicates. This form of attack is difficult to prevent and
detect.

2.2.1 Alteration

A malicious host can alter an agent by changing the data, code
and control flow so that the agent performs other tasks than
what was intended by it’s creator. A mobile agent that visits
several platforms on its itinerary is exposed to a new risk each
time it is in transit and each time it is instantiated on a new
platform. Alteration can be detected by having the original
author digitally sign the agent's code. This detection however
becomes difficult for agents visiting several platforms (the
“mult-hop” problem).

3. PREVIOUS APPROACHES TO
MOBILE AGENT SECURITY

According to Lange and Oshima in [18], There are three
fundamental security issues specific to mobile agent systems.
These are:

International Journal of Computer Applications (0975 — 8887)
Volume 120 — No.21, June 2015

« Protecting the host (platform) from the mobile
agent.
» Protecting the mobile agent from other mobile
agents, and
« Protecting the mobile agent from the host.
Some of the proposals to protect a mobile agent from a
malicious host are discussed below:

3.1 Shadow and Primary Agent Approach
This security approach proposed by [11] aims to identify and
skip every blocking malicious host in the itinerary of a mobile
agent. The sheme relies on an acknowledgement and time-out
mechanism to ensure that a mobile agent has visited a host in
it’s itinerary and safely departed to the next one. It uses two
mobile agents; a primary (PA) and a shadow (SA). Normally,
SA is lagging one step in the itinerary behind PA.

The assumption is that a host is considered non-blocking
should it allow the PA to continue its task and safely depart to
the next host. The SA suspects a malicious action if it does
not receive an acknowledgement within a proper time-out T
after which it requests help from the home host to identify the
malicious host and take corrective action.

When the home host identifies the the malicious host, it sends
a new instance of the PA to a safe host to meet SA which
carries a copy of the collected data. SA will reload the
collected data into the empty PA. The newly loaded PA will
continue it’s itinerary skipping the malicious host.

3.2 Partial Mobility Mechanism

[7] Proposes partial mobility mechanism (PMM) to protect
mobile agents integrity and privacy against malicious hosts. In
PMM, the mobile agent has two types:

1. A One_Hop_Agent (OHA) that represents tasks to be
executed in an untrusted host and can only visit one
host.

2. The Multi-Hop-Agent (MHA) that represents tasks to
be executed in trusted hosts. The MHA can visit
multiple trusted hosts.

To represent one MA, PMM needs only one MHA and at
least one OHA which is embedded in the MHA. In PMM, the
Agent’s home platform creates an agent and determines all the
hosts to be visited by the agent. Hosts are classified as either
trusted (serves MHAs only) or untrusted (serves OHAs only).

One backdrop of this mechanism is that an agent’s itinerary is
known priori which compromises the autonomy property of
an agent. It is also difficult to keep track of the security status
of hosts in a distributed network. The use of the
One_Hop_Agent (OHA) also limits mobility of an agent and
therefore abuses the undelying concept of a mobile agent.

The architecture of this mechanism is shown in figure 2
below.

21

International Journal of Computer Applications (0975 — 8887)
Volume 120 — No.21, June 2015

>

-—r---_

= e

. — -

- ad

-

Fig. 2: PMM Architecture (Proposed by [7]

3.3 The Secure-Image Mechanism

The main objective of Secure-lImage Mechanism as proposed
by [4] is to protect the mobile agents against malicious hosts.
SIM generates a secure image for the mobile agent before it
arrives to the hosts that are classified as untrust hosts. The
mechanism prevents eavesdropping and alteration attacks.

If the next host in the agent’s itinerary is untrust, the agent
visits the near Secure-Image Controller (SIC) which generates
a secure image of the agent and sends it to the untrusted host.

Umtrmst Host Host

This protects the original agent from visiting malicious hosts.
Alteration is detected by generating a digest of data of tasks
implemented in untrusted hosts and comparing with a digest
of the original data.

Just as is the case with PMM discussed in 3.1 above, this
mechanism requires that trusted and untrusted hosts are
known a priori which is difficult in a distributed system.
Figure 3 presents a Mobile Agent System with SIM.

Untrust Host

Mobile Agent

Fig. 3 Mobile Agent System with SIM (Proposed by [4])

22

3.4 Keylets Mechanism

This mechanism presented by [19] protects a mobile agent’s
code. It partitions the mobile agent code and state information
into self-contained components which are then encrypted
using symmetric keys and made available to platforms that
will host the mobile agent in the network. A Keylet is a
specific type of mobile code that determines the distribution
of keys to platforms.

This mechanism however suffers various drawbacks. First,
code partitioning is done by a third party code producer who
supplies the mobile agent as a template to the agent owner.
Secondly, a large number of transactions are related to the
Keylet and a host may not be willing to support the increased
computation. Thirdly, key revocation is not good in quality
and requires a complicated mechanism to categorize tasks of
the mobile agent. Finally, this mechanism does not protect the
mobile agent code completely.

3.5 The Ajanta Mechanism

The mechanism proposed by [20]. Is used for mediating
access to system-level resources. It protects hosting resources
through an ad hoc security manager that uses identity-based
access control lists to grant or deny agent access. For
application-defined resources, Ajanta uses a proxy-based
mechanism where a proxy intercepts agent requests and
denies or grants based on its own security policy and on the
agent’s credentials. Ajanta security has a few weaknesses:

1. The proxy generator would have to be rather
intelligent to create a dynamic policy that would
also ensure that whatever it is bypassing is still
secure.

2. Key distribution mechanism is not covered in this
mechanism.

3. Sending information back the agent owning server
is sometimes necessary but not always possible.

4. Ajanta provides a mechanism of spying on the
agents and to replay the agent to create their own for
piracy. Such requests can be logged and be used to
create an agent based on its actions.

4. AMULTI-FACETED APPROACH TO
MOBILE AGENT SECURITY

Most mobile agent security mechanisms proposed only detect
rather than protect [9][11]. Literature reveals that a single
approach cannot protect a mobile agent from all the security
challenges that dog this exciting paradigm [8][10]. We
therefore propose a multi-faceted approach to dealing with
security threats in mobile agent systems. Such a solution must
be implemented right from the design stage to implementation
if a mobile agent system has to be truly secure. Sections 4.1 to
4.3 describe the algorithms that we have embedded in our
mobile agent code to mitigate against threats posed by a
malicious host.

4.1 Protection Against Blocking and Denial

of Service

Using time to live (TTL) and heart beat mechanisms, a mobile
agent can be protected against blocking or denial of the
service by a malicious host. The following steps describe how
the mechanism detects and protects against blocking or denial
of service.

International Journal of Computer Applications (0975 — 8887)
Volume 120 — No.21, June 2015

While not Successful;
1. Parent Agent
a) Creates a new agent (Either in the present or
alternative host)
b) The created Agent:
Checks resource availability (If enough
resources, Acknowledge ability to execute
else dies)
¢) Transfer data to the created agent
d) Sets TTL and Starts timer
2. While child Agent Not Done (Sends heartbeat to

parent)
3. While Timer < TTL (Waits for result from child
agent)
4. If Timer >= TTL (Attempt to destroy
child agent)
5. Else If Not Successful (Cut off communication from
child agent)

6. Ifthere is a free agent (Assign task of child agent to
free agent)
7. Else (Create another child agent in
another host)

4.2 Protection Against Masquerading

We have achieved this by centralizing the security
requirements of any agent to itself. This implies that when an
agent desires to migrate, it creates its instance in a new host
and kills itself in the current host. It also informs its parent
host of this move. This completely abstracts the use of host
identity in the migration process making it difficult for a host
to masquerade as another. Further to this requirement, a
parent agent assigns a child agent ID for each of the children
it creates.

This ID is irreplicable as it uses a one-way hashing algorithm.
The parent agent keeps a repository of all 1Ds of the children
it has created and tries to match this with the ID of any agent
that tries to communicate with it. If a match cannot be found,
communication is denied. Communication between a parent
agent and a child is that a child must identify itself when
communicating with the parent or any other agent in the
network while a parent agent must not necessarily identify
itself with its children.

The following steps describe the process of generating an
irreplicable child 1D:

1. Call a hashing function (We propose a 256 bit
SHAL algorithm)
2. Call a timestamp retrival function.
e Generate current timestamp (Computed to
nanosecond precision)
e Host timezone
3. Call an agent ID generator function (Concatenates
Hash value + Timestamp + Timezone)

This process creates a unique 1D for any agent created. The
reasoning here is that even in a synchronized environment, it
is difficult for a malicious host to precisely fake an ID with
precision to the nanosecond.

4.3 Protection Against Eavesdropping and

Alteration

We use encryption and decryption mechanisms to achieve
this. Eavesdropping is only possible in the host environment
since in our mechanism, communication between remote
hosts is via SSL/ TLS. We further make eavesdropping on an
agent’s code by using a production ready tool (Scala) in

23

development of our agents. This implies that the agents’ code
is compiled and not visible to the host environment.

The files and data created during execution are however
visible by the host. To counter eavesdropping, we use an
encryption algorithm to encrypt the temporary files and data
before writing to memory of the host environment and a
decryption algorithm whenever we need to read them.

We further protect against alteration by adding a CRC based
on our encrypted data and compare it when retrieving data to
detect alteration and take corrective actions. The steps below
describe how we achieve this:

Writing Temporary Files to Host
1. Encrypt data before writing to host file system.
2. Generate CRC based on data in step 1 above.
3. Write out the data to the file system

Reading Data from Temporary Files
1. Retrieve data.
2. Calculate CRC.
3. Calculate CRCs to see if data is modified
4. If CRC1is NOT equal to CRC2
a. Inform the parent

r|:| Edit Data - PostgreSQL 9.3 (lo
File Edit View Tools Help
| e | | 6| W | T i 100 rows -
file_sta file_na total_records
[PK] serial | character varying(254) bigint
1 [355]cRreRG120140930001.8063.2015-01-19#19:27:13 2809
2 |zo0sa CREBCIZ0141010001.B041.2015-01-18418:27:13 7788
3 |aoss CREBSIZ0140930001.B063.2015-01-19¢19:27:13 9252
a4 2086 CREBCA20140930001.B06E. 2016-01-19819:27:13 38111
5 |2057 CREBGI20141010001.B041.2015-01-18#18:27:13 3312
& |zoss CREBGIZ0140930001.B003.2015-01-18419:27:13 5150
7 |z0se CREBCAZ0140930001.5003.2015-01-19¢19:27:13 111784
® 2060 CREBGIZ0140930002,B026.2015-01-19#19:27:13 13
s |2061 CRBBCI20140930002.B063.2016-01-18818:27:13 ssas
10 |2082 CREBGI20140930001.B065.2015-01-19#19:27:13 7467
11 2063 CREBCEZ20140930001.B003.2015-01-18419:26:40 4
12 |2084 CREBSIZ0140930001.5003.2015-01-19¢19:27:13 1119
13 |2065 CREBS120140930002.B026.2015-01-19819:27:13 1991
14 |2066 CRBBCI20140930001.B003.2015-01-18¢18:27:13 1274
15 |z087 CRBBCR20141010001.5041.2015-01-19#19:27:13 38316
16 |2088 CREBCE20141010001.B041.2015-01-18418:27:13 ze088
17 |2069 CREBSIZ0140930001.B068.2015-01-19419:27:13 16861
18 2070 CREBBC20141010001.B041.2016-01-1918:27:13 FETS
19 |2071 CREBBC20140930001.B003.2015-01-19#18:27:13 11
20 |2072 CREBCIZ0140930002.B026.2015-01-18419:27:13 1623
Seratch pad
Data from 1 row copied to dinboard,

total_tu_valid

bigint
2809
4788
9226
as111
3304
s150
111794
13
5403
7467
a
1119
1927
1274
38416
1sees
16827
as1
11
1535

International Journal of Computer Applications (0975 — 8887)
Volume 120 — No.21, June 2015

b. Cease processing
The parent agent then decides whether to transfer task to a
free agent or to start the agent in a new host.

5. EVALUATION AND RESULTS

Any secure computer system must conform to several security
requirements namely; confidentiality, integrity, availability
and non-repudiation [15]. Using a credit bureau use case, we
developed a mobile agent system implementing the
approaches discussed in section 4. We then evaluated the
system against one without a multi-faceted security approach.

We used a simulated environment with six hosts some of
which we purposely sconstructed to corrupt other multi-agent
systems’ states and data by injecting random data and setting
the agents’ states to random values. We simulated the hosts by
having them listen on different ports.

The logs generated from the tests indicated attacks ranging
from interceptions on agent data to deadlocks in the
unprotected system while tests with the protected system
always yielded expected results.

The diagrams below show the results of the tests conducted.

total_kba_valid total_amoun v total_missing_mandatory -
bigint double precision bigint
2809 o o
1362 1078582320931 o1
9226 o o
35109 1220094416525 o
s168 o o
s1s0 o o =
111794 2087659339505 o
13 o o
4546 4575704876644 4
7467 o o
) o o
1119 o o
1927 o o4
524 40290438750 o
32179 94345533639783 o
s300 sen1s8231492 1
16827 o o
a30 12624521180 o
1 30966135 o
1433 342323183897 B
®

oL)

= SE =l N =%

Fig 4. Results of computation in a secure MAS

2 Mo € a & "\

| = | | G| |5 | 100 rows -
file_stat_wd | fil total_records rotal_tu_wald rotal_kba_vald total_amount total_missing_mandatory o
[PK] sernal bigint bigint bigint double precision bigint
a |zosa 2213 2813 2808 1300200 °
% |zoe1 CRBBCIZ0140930002.B063.2015-01-19819:27:13 ssea s403 4546 4575704876644 a .
l 11 2063 CREBCEZ0140830001.8003.2015-01-18#18:26:40 4 a o o o
- -

D MR M Ve aE M a0

Fig 5. Results of computation in unsecured MAS

Figure 5 shows the result of computation on the same sets of
files as those shown in figure 4. Unlike in figure 4, however,
the multi-agent system that produced this output did not
implement our proposed security mechanism. As such,

another multi-agent system was able to introduce new records
in the processing pipeline of the multi-agent system. The
result, as illustrated by record 1 in figure 5, is an output that

24

includes records and balance amount measures that were not

B Smartsnift
File Edit View Options Help

L |7 AL Gall s G
Tndex Pratocal Lacal Address Remote Address Locol Part Remote Port | Local Host Remate Hast
@157 Tce 1010.312 1010312 60106 9092 i i
@158 TCP 1010.312 1010312 60107 9092

159 UDP 1010.3.130 224.00.252 52379 5355
@160 TCP 1010.312 1010312 9092 G010
@161 Tcp 1010.3.12 1010312 60110 9092

1010312 1010312
@184 uDP 101015 10.10.255.255 138 138

@185 TCP 1010312 1010312 2092 s0114
@186 TCP 1010312 1010312 60114 2092
@167 TCP 1010312 1010312 2092 60116
@168 TCP 1010312 1010312 60116 @092
@180 uDP 1010.3.124 224.0.0.252 56528 5155

@170 TCP 1010312 1010312 2092 80122

CRB155.crbafrica.c

International Journal of Computer Applications (0975 — 8887)
Volume 120 — No.21, June 2015

contained in the original files.

| |
Service Name Packets Dasta Size Total Size Data Speed Capture Time Last Pack: ~
5,125 94,758 Bytes 299,832 Bytes 4.0 KB/Sec . 172272015
4,313 80,002 Bytes 252,596 Bytes 3.4 KB/Sec 172272015
2 52 Bytes 162 Bytes 0.5 KB/Sec . 172272015
5,615 1,383,322 Bytes 1,608,565 Bytes 59.3 KB/Sec 1/22/2015
5,316 95,974 Bytes 311,685 Bytes 4.2 KB/Sec

1/22/2015
1/22/2019

96,641 Bytes 3.4 KB/Sec

23,792 Bytes 0.3 KB/Sec 1/22/2015
458 Bytes . 1s2272015
2,506 Bytes 0.1 KB/Sec . 1s2272015
7 136 Bytes 490 Bytes 0.0 KB/Sec 1/22/2015 8:56:30 .. 1/22/2015
2771 540,610 Bytes 651,894 Bytes 238 KB/Sec 1/22/2015 8:56:30 .. 1/22/2015
2534 49,188 Bytes 150,632 Bytes 2.2 KB/Sec 1/22/2015 8:56:30 .. 1/22/2015,
e 2 44 Bytes 150 Bytes 0.5 KB/Sec 1/22/2015 8:56:30 .. 1722720155 |

4,713 845,850 Bytes 1,038,761 Bytes 38.6 KB/Sec
- e i e

1/22/2015 8:56:31 1/22/2015 _

00 1E
o0

[E005) <= - 1 i 4>

Fig 6. Communication traffic in unsecured MAS

Figure 6 shows intercepted communication traffic in a multi-
agent system which has not implemented our security

mechanism. As shown, the data can be easily converted into
readable format with appropriate conversion tools.

e . | -~ |+ —cie|

TR 1010312 1010312
TeR 1010212 1010212
TP 10.10.3.12 10.10.3.12
TeR 100,312 100,312
uop 10103124 22400252
e 1010302 1010302
Tee 1010212 1010212

uoe 10103124 10.10,255,255
uop 10.10.1.245 10.10.255.255
uoe 1010388 10.10.255.255
uop 1010122

uoe 10.10.3.50

Index Protocal | Local Address Remote Address | Locasl Part | Remote Port | Lacal Host Remote Host

01 KB/Sec 172272015 8:56:30 1/22/2015

480 Bytes 0.0 KB/Sec 1/22/2015 8:56:30 ... 1/22/3015
651,894 Bytes 23.8 KB/Sec 1/22/2015 8156130 ... 1/22/2015
150,632 Byte: 2.2 K/ Se 1/22/2015 8:56:30 1/22/2015
130 Bytes 0.5 KB/S 1/22/2015 8:36:30 ... 1/22/2015
1038761 Bytes 386 KB/Sec 172272015 8:56:31 12272015
258,158 Bytes 2.7 KB/Sec 1/22/20158:156:31 ... 1/22/2015
2 Bytes 01 KB/Sec 1/22/20158:56:31 .., 1/22/2015
458 Bytes 1/22/2015 8:56:31 ... 1/22/2015

172272015
172272015

22 1/22/2015
39 .. 1722720150 |
. /2202015 _

1 Selected

> S =& @ &

Fig 7. Communication traffic in unsecured MAS

Figure 7 shows the same traffic but in an environment that has
implemented our security mechanism. As shown, traffic data
is encrypted and thus cannot be easily interpreted.

6. CONCLUSION

This work aimed at proposing a security approach that
addresses most of security threats that dog multi-agent
systems especially from malicious hosts.. Security threats in a
multi-agent system come in a number of ways; a hosting
environment may try to exploit agents resident on it, a
malicious person may launch a man-in-the-middle attack on a
multi-agent system, a hosting environment may attempt,
deliberately or otherwise, to corrupt an agent’s data or state,
and a malicious agent may deliberately feed an agent the
wrong data on which to act on.

A secure multi-agent system is the one that can protect both
its internal state, data its working on, and the data it produces.
Internal state of an agent refers to the agent’s attribute values.
If these values can be changed by an external program in
unpredictable ways, then such an agent is not secure and,
therefore, is not reliable. Agents act on data and produce data
that correspond to results of their computation. Once an agent
gets data, it is the agent’s responsibility to guard that data for
the duration of its computation. Any results from computation
should also be protected from accidental or deliberate

manipulation from any other agent. If an agent is incapable of
guaranteeing the security of the data it’s acting on, then such
an agent cannot be relied upon to produce correct computation
results.

To achieve security in multi-agent systems, a multi-faceted
approach to security must be adopted. This multi-faceted
approach should start from requirements engineering phase all
the way to maintenance of the developed system This
approach makes agent execution faster by localizing security
controls. It also makes the system robust because an exception
to the top level agent is escalated up the agent hierarchy until
a definite resolution is taken.

The future scope of this idea would be integration of the
mechanism in well known mobile agent development tools
and platforms such as java.

6.1 Further Work
This research project concentrated on securing agent systems
to mitigate against security threats imposed by malicious
executing environments. The approach used mitigates against
majority of such threats. Further study can be done to improve
this work in the following.

25

1. Include a mechanism in the approach to flag
malicious hosts when detected so as to be avoided
by successive agents. This would reduce latency.

2. Areverse mechanism for the point noted in 1 above
when the threts in malicious host are resolved.

3. The use of sophisticated cryptographic algorithms
and emerging security patches in the proposed
approach.

7. ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their
detailed and valuable comments.

8. REFERENCES

[1] Shzrivastava, S. & Nandi, G.C., (2014) Fragmentation
based encryption approach for self protected mobile
agent. Journal of King Saud University - Computer and
Information Sciences, 26, pp.131- 142.

[2] Jansen W. A. (1998) Mobile Agents And Security.
National Institute of Standards and Technology, USA.

[3] Razouki, H. & Hair, A., (2014). Towards A New
Security Architecture of Mobile Agents. International
Journal of Soft Computing and Engineering (IJSCE), Vol
3 Issue 6, 55-60.

[4] Ahmed, T.M. (2009) 'Using Secure-Image Mechanism to
Protect Mobile Agent against malicious Hosts ',
International Scholarly and Scientific Research &
Innovation, 3(11), pp. 364-369.

[5] Mahmoodi, M., Varnamkhasti, M. M. (2013) 'A Secure
Communication in Mobile Agent System', International
Journal of Engineering Trends and Technology
(IJETT), 6(2), pp. 186-188.

[6] Dadhich, P., Dutta, K., Govil, M. C. (2010) 'Security
Issues in Mobile Agents', International Journal of
Computer Applications, 11(4), pp. 1-7.

[71 Ahmed, T.M. (2013) 'Protect Mobile Agent Against
Malicious Host Using Partial-Mobility
Mechanism', International Journal in Foundations of
Computer Science & Technology (IJFCST), 3(6), pp. 41-
52.

[8] D'Anna, L., Matt, B., Reisse, A., Vleck, T.V., Schwab, S.
and LeBlanc, P (2003) Self-Protecting Maobile Agents
Obfuscation Report, DARPA: Network Associates
Laboratories.

[9] Gupta, S. (2013) 'A Secure Architecture for Mobile
Agent Based Communication System ‘', International

IJCA™ : www.ijcaonline.org

International Journal of Computer Applications (0975 — 8887)
Volume 120 — No.21, June 2015

Journal of Latest Trends in Engineering and Technology
(IJLTET), 2(2), pp. 160-164.

[10] Ismail, L. (2008) 'A Secure Mobile Agents
Platform’, Journal of Communications, 3(2), pp. 1-12.

[11] Madkour, M.A,, Eassa, F.E., Ali, A.M., & Qayyum, N.U
(2014) 'Securing Mobile-Agent-Based Systems Against
Malicious Hosts',World Applied Sciences Journal, 29(2),
pp. 287-297.

[12] Dey, S & Sinha, D., (2014) A Survey on Protection
Techniques of Mobile Agents from Malicious Hosts.
International Journal of Innovative Research in
Computer and Communication Engineering, Vol 2, Issue
8.

[13] Mishra, P.K., Singh, R. (2014) 'A Survey on Reliability
Estimation Techniques for Mobile Agent based Systems
', International Journal of Advanced Computer
Research, 4(14), pp. 123-133.

[14] Pai, P., Shinde, S.K., Khachane, A.R. (2012) 'Security in
Mobile Agent Communication’, International Journal of
AdvancedEngineering Research and Studies, 1(4), pp.
74-80.

[15] Singh, D., Thakur, A., Gupta, D. (2015) 'A Review of
Mobile Agent Security', International Journal of
Advanced Research in Computer Science and Software
Engineering, 5(2), pp. 188-190.

[16] Lee, H., Alves-Foss, J., and Harrison, S. (2004)'The Use
Of Encrypted Functions For Mobile Agent
Security'. Hawaii International Conference On System
Sciences. Hawaii: DARPA. 1-10.

[17] Shrivastava, R., Mehta, P. (2012) 'Securing Mobile
Agent And Reducing Overhead Using Dummy And
Monitoring Mobile Agents', International Journal of
Management, IT and Engineering, 2(4), pp. 296-303.

[18] Ebietomere, E.P. & Ekuobase, G.O., (2014) Issues on
Mobile Agent Technology Adoption. African Journal of
Computing & ICT, 7.

[19] Hock Kim T. &. Moreau L, (2001), Mobile Code For
Key Propagation, Paper, Notes in theoretical Computer
Science 63, UK,.

[20] Anand T.& Neeran K. (2000) A Security Architecture
for Mobile Agents in Ajanta, Proceedings of the
International Conference on Distributed Computing
Systems.

26

