
International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.21, June 2015

20

A Multi – Faceted Approach to Mobile Agent Security

Anthony M. Ngereki

Department of Computer Science
Chuka University, Kenya

Andrew M. Kahonge
School of Computing and Informatics

University of Nairobi, Kenya

ABSTRACT
Mobile agents are increasingly becoming popular in the

development of current distributed applications. However, the

mobility and autonomy factors of mobile agents present a host

of security challenges in a distributed environment. In an

attempt to ensure security of the mobile agent against a

malicious host, a security framework is proposed. Our

security mechanism uses a multi-faceted approach to protect

mobile agents and must be incorporated from the design stage

of agent systems. We identify major security threats against

mobile agents by a malicious platform and propose algorithms

to counter them. We then test a multi-agent system that

incorporates these algorithms against one that doesn’t and

compare the results.

General Terms
Multi-agent System, Security, Encryption

Keywords
Agent, Security, Authentication, Authorization, Monitoring,

Supervision, Secure Sockets Layer (SSL), Transport Layer

Security (TLS), Agent Communication.

1. INTRODUCTION
Mobile agents present an evolution in computing that allows

for complete mobility of cooperating applications among

supporting platforms to form a large-scale, loosely-coupled

distributed system. Though there a number of models that can

be used to describe agent systems, a simple model consisting

of two components: the agent and the agent platform is

sufficient to discuss security in mobile agents. Here, an agent

comprises the code and state information needed to carry out

some computation. The agent platform provides the

computational environment in which an agent operates. [2]

The platform from which an agent originates or is created is

known as the home platform and is usually the most trusted.

An agent however can move (hop) from one execution

environment to another in a network. This new environment is

called the host environment and takes over full control over

the agent’s over agent’s code, data and execution state [1][3].

This control of the host over all executing programs makes it

difficult to protect mobile agents from malicious hosts [12]

and as such exposes them to various security threats.

Basically, the security requirements of any computer system

are confidentiality, integrity, authentication, authorization,

non-repudiation and availability [6][7][15]. A malicious host

environment can compromise the security requirements of a

mobile agent in a number of ways. This include denial of

service, eavesdropping, interception, alteration, replays and

masquerading [6][14][5][7][4].

While techniques such as access control, password protection

and sand boxes have been developed to protect agent

platforms against hostile agents [16], none of the approaches

to protect mobile agents against malicious hosts adequately

addresses every aspect of security [17].

2. MOBILE AGENT SECURITY

THREATS
Using a simple model comprising of an agent and agent

platform, security threats in mobile agent systems can be

categorised into four categories namely agent-to-platform,

agent-to-agent, platform-to-agent and other-to-agent platform.

A simple agent model as described by [2] is shown in figure

1.

Figure 1. A simple Agent Model

2.1 Categories of Agent Security Threats
Agent-to-Platform: This category category represents the set

of threats in which agents exploit security weaknesses of an

agent platform or launch attacks against an agent platform.

This set of threats includes masquerading, denial of service

and unauthorized access.

Agent-to-Agent: The agent-to-agent category represents the

set of threats in which agents exploit security weaknesses of

other agents or launch attacks against other agents. This set of

threats includes masquerading, unauthorized access, denial of

service and repudiation. Many agent platform components are

also agents themselves.

Platform-to-Agent: The platform-to-agent category

represents the set of threats in which platforms compromise

the security of agents. This set of threats includes

masquerading, denial of service, eavesdropping, and

alteration.

Other-to-Agent Platform: The other-to-agent platform

category represents the set of threats in which external

entities, including agents and agent platforms, threaten the

security of an agent platform. This set of threats includes

masquerading, denial of service, unauthorized access, and

copy and replay.

2.2 Platform-to-Agent Security Threats
An agent is most secure in its home platform since it is where

it is instantiated. However, mobility implies that this trusted

execution environment needs to be extended to other host

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.21, June 2015

21

platforms in the agents’ itinerary. Such trust is difficult to

extend beyond a single hop especially because while the home

platform could trust the next host in the network, this bilateral

trust is not transitive i.e. just because the home platform (x)

trusts the next host (y), this doesn’t mean another host in the

network (z) also trusts (y). This complexity introduces a

multi-hop security problem.

Some of the possible platform-to-agent security threats

include the following [6][14][3]:

2.2.1 Denial of Service
An agent platform should faithfully execute an agents’

requests, allocate necessary resources and abide by the agreed

upon quality of services. However, a malicious agent

platform, may ignore agent service requests, introduce

unacceptable delays for critical tasks, refuse to execute the

agent’s code, or even terminate the agent without

notification. Non-responsive agents on malicious platforms

could either be deadlocked or livelocked.An Agent livelock

occurs when an agent is continuously given tasks to perform

and can never catch up or achieve its goal.

2.2.2 Masquerade
This happens when a malicious platform claims the identity of

another platform that the agent should actually visit. This

decieves the agent into giving the malicious host sensitive

information. Once the masquerading host is able to gain the

trust of the agent, it may then be able to read or modify any of

agent’s code, data and state. This can be prevented by use of a

strong authentication protocol to authenticate a host to an

agent. A masquerading platform can harm both the visiting

agent and the platform whose identity it has assumed.

2.2.2 Eavesdropping
The fact that an agent must execute on a host means that the

host is able to record instructions given to it by the agent. This

implies that a malicious host may try to determine the code,

data or flow control held by the agent. Even though the agent

may not be directly exposing secret information, the platform

may be able to infer meaning from the types of services

requested and from the identity of the agents with which it

communicates. This form of attack is difficult to prevent and

detect.

2.2.1 Alteration
A malicious host can alter an agent by changing the data, code

and control flow so that the agent performs other tasks than

what was intended by it’s creator. A mobile agent that visits

several platforms on its itinerary is exposed to a new risk each

time it is in transit and each time it is instantiated on a new

platform. Alteration can be detected by having the original

author digitally sign the agent's code. This detection however

becomes difficult for agents visiting several platforms (the

“mult-hop” problem).

3. PREVIOUS APPROACHES TO

MOBILE AGENT SECURITY
According to Lange and Oshima in [18], There are three

fundamental security issues specific to mobile agent systems.

These are:

• Protecting the host (platform) from the mobile

agent.

• Protecting the mobile agent from other mobile

agents, and

• Protecting the mobile agent from the host.

Some of the proposals to protect a mobile agent from a

malicious host are discussed below:

3.1 Shadow and Primary Agent Approach
This security approach proposed by [11] aims to identify and

skip every blocking malicious host in the itinerary of a mobile

agent. The sheme relies on an acknowledgement and time-out

mechanism to ensure that a mobile agent has visited a host in

it’s itinerary and safely departed to the next one. It uses two

mobile agents; a primary (PA) and a shadow (SA). Normally,

SA is lagging one step in the itinerary behind PA.

The assumption is that a host is considered non-blocking

should it allow the PA to continue its task and safely depart to

the next host. The SA suspects a malicious action if it does

not receive an acknowledgement within a proper time-out T

after which it requests help from the home host to identify the

malicious host and take corrective action.

When the home host identifies the the malicious host, it sends

a new instance of the PA to a safe host to meet SA which

carries a copy of the collected data. SA will reload the

collected data into the empty PA. The newly loaded PA will

continue it’s itinerary skipping the malicious host.

3.2 Partial Mobility Mechanism
[7] Proposes partial mobility mechanism (PMM) to protect

mobile agents integrity and privacy against malicious hosts. In

PMM, the mobile agent has two types:

1. A One_Hop_Agent (OHA) that represents tasks to be

executed in an untrusted host and can only visit one

host.

2. The Multi-Hop-Agent (MHA) that represents tasks to

be executed in trusted hosts. The MHA can visit

multiple trusted hosts.

To represent one MA, PMM needs only one MHA and at

least one OHA which is embedded in the MHA. In PMM, the

Agent’s home platform creates an agent and determines all the

hosts to be visited by the agent. Hosts are classified as either

trusted (serves MHAs only) or untrusted (serves OHAs only).

One backdrop of this mechanism is that an agent’s itinerary is

known priori which compromises the autonomy property of

an agent. It is also difficult to keep track of the security status

of hosts in a distributed network. The use of the

One_Hop_Agent (OHA) also limits mobility of an agent and

therefore abuses the undelying concept of a mobile agent.

The architecture of this mechanism is shown in figure 2

below.

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.21, June 2015

22

Fig. 2: PMM Architecture (Proposed by [7]

3.3 The Secure-Image Mechanism
The main objective of Secure-Image Mechanism as proposed

by [4] is to protect the mobile agents against malicious hosts.

SIM generates a secure image for the mobile agent before it

arrives to the hosts that are classified as untrust hosts. The

mechanism prevents eavesdropping and alteration attacks.

If the next host in the agent’s itinerary is untrust, the agent

visits the near Secure-Image Controller (SIC) which generates

a secure image of the agent and sends it to the untrusted host.

This protects the original agent from visiting malicious hosts.

Alteration is detected by generating a digest of data of tasks

implemented in untrusted hosts and comparing with a digest

of the original data.

Just as is the case with PMM discussed in 3.1 above, this

mechanism requires that trusted and untrusted hosts are

known a priori which is difficult in a distributed system.

Figure 3 presents a Mobile Agent System with SIM.

Fig. 3 Mobile Agent System with SIM (Proposed by [4])

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.21, June 2015

23

3.4 Keylets Mechanism
This mechanism presented by [19] protects a mobile agent’s

code. It partitions the mobile agent code and state information

into self-contained components which are then encrypted

using symmetric keys and made available to platforms that

will host the mobile agent in the network. A Keylet is a

specific type of mobile code that determines the distribution

of keys to platforms.

This mechanism however suffers various drawbacks. First,

code partitioning is done by a third party code producer who

supplies the mobile agent as a template to the agent owner.

Secondly, a large number of transactions are related to the

Keylet and a host may not be willing to support the increased

computation. Thirdly, key revocation is not good in quality

and requires a complicated mechanism to categorize tasks of

the mobile agent. Finally, this mechanism does not protect the

mobile agent code completely.

3.5 The Ajanta Mechanism
The mechanism proposed by [20]. Is used for mediating

access to system-level resources. It protects hosting resources

through an ad hoc security manager that uses identity-based

access control lists to grant or deny agent access. For

application-defined resources, Ajanta uses a proxy-based

mechanism where a proxy intercepts agent requests and

denies or grants based on its own security policy and on the

agent’s credentials. Ajanta security has a few weaknesses:

1. The proxy generator would have to be rather

intelligent to create a dynamic policy that would

also ensure that whatever it is bypassing is still

secure.

2. Key distribution mechanism is not covered in this

mechanism.

3. Sending information back the agent owning server

is sometimes necessary but not always possible.

4. Ajanta provides a mechanism of spying on the

agents and to replay the agent to create their own for

piracy. Such requests can be logged and be used to

create an agent based on its actions.

4. A MULTI-FACETED APPROACH TO

MOBILE AGENT SECURITY
Most mobile agent security mechanisms proposed only detect

rather than protect [9][11]. Literature reveals that a single

approach cannot protect a mobile agent from all the security

challenges that dog this exciting paradigm [8][10]. We

therefore propose a multi-faceted approach to dealing with

security threats in mobile agent systems. Such a solution must

be implemented right from the design stage to implementation

if a mobile agent system has to be truly secure. Sections 4.1 to

4.3 describe the algorithms that we have embedded in our

mobile agent code to mitigate against threats posed by a

malicious host.

4.1 Protection Against Blocking and Denial

of Service
Using time to live (TTL) and heart beat mechanisms, a mobile

agent can be protected against blocking or denial of the

service by a malicious host. The following steps describe how

the mechanism detects and protects against blocking or denial

of service.

While not Successful;

1. Parent Agent

a) Creates a new agent (Either in the present or

alternative host)

b) The created Agent:

Checks resource availability (If enough

resources, Acknowledge ability to execute

else dies)

c) Transfer data to the created agent

d) Sets TTL and Starts timer

2. While child Agent Not Done (Sends heartbeat to

parent)

3. While Timer < TTL (Waits for result from child

agent)

4. If Timer >= TTL (Attempt to destroy

child agent)

5. Else If Not Successful (Cut off communication from

child agent)

6. If there is a free agent (Assign task of child agent to

free agent)

7. Else (Create another child agent in

another host)

4.2 Protection Against Masquerading
We have achieved this by centralizing the security

requirements of any agent to itself. This implies that when an

agent desires to migrate, it creates its instance in a new host

and kills itself in the current host. It also informs its parent

host of this move. This completely abstracts the use of host

identity in the migration process making it difficult for a host

to masquerade as another. Further to this requirement, a

parent agent assigns a child agent ID for each of the children

it creates.

This ID is irreplicable as it uses a one-way hashing algorithm.

The parent agent keeps a repository of all IDs of the children

it has created and tries to match this with the ID of any agent

that tries to communicate with it. If a match cannot be found,

communication is denied. Communication between a parent

agent and a child is that a child must identify itself when

communicating with the parent or any other agent in the

network while a parent agent must not necessarily identify

itself with its children.

The following steps describe the process of generating an

irreplicable child ID:

1. Call a hashing function (We propose a 256 bit

SHA1 algorithm)

2. Call a timestamp retrival function.

 Generate current timestamp (Computed to

nanosecond precision)

 Host timezone

3. Call an agent ID generator function (Concatenates

Hash value + Timestamp + Timezone)

This process creates a unique ID for any agent created. The

reasoning here is that even in a synchronized environment, it

is difficult for a malicious host to precisely fake an ID with

precision to the nanosecond.

4.3 Protection Against Eavesdropping and

Alteration
We use encryption and decryption mechanisms to achieve

this. Eavesdropping is only possible in the host environment

since in our mechanism, communication between remote

hosts is via SSL/ TLS. We further make eavesdropping on an

agent’s code by using a production ready tool (Scala) in

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.21, June 2015

24

development of our agents. This implies that the agents’ code

is compiled and not visible to the host environment.

The files and data created during execution are however

visible by the host. To counter eavesdropping, we use an

encryption algorithm to encrypt the temporary files and data

before writing to memory of the host environment and a

decryption algorithm whenever we need to read them.

We further protect against alteration by adding a CRC based

on our encrypted data and compare it when retrieving data to

detect alteration and take corrective actions. The steps below

describe how we achieve this:

Writing Temporary Files to Host
1. Encrypt data before writing to host file system.

2. Generate CRC based on data in step 1 above.

3. Write out the data to the file system

Reading Data from Temporary Files
1. Retrieve data.

2. Calculate CRC.

3. Calculate CRCs to see if data is modified

4. If CRC1 is NOT equal to CRC2

a. Inform the parent

b. Cease processing

The parent agent then decides whether to transfer task to a

free agent or to start the agent in a new host.

5. EVALUATION AND RESULTS
Any secure computer system must conform to several security

requirements namely; confidentiality, integrity, availability

and non-repudiation [15]. Using a credit bureau use case, we

developed a mobile agent system implementing the

approaches discussed in section 4. We then evaluated the

system against one without a multi-faceted security approach.

We used a simulated environment with six hosts some of

which we purposely sconstructed to corrupt other multi-agent

systems’ states and data by injecting random data and setting

the agents’ states to random values. We simulated the hosts by

having them listen on different ports.

The logs generated from the tests indicated attacks ranging

from interceptions on agent data to deadlocks in the

unprotected system while tests with the protected system

always yielded expected results.

The diagrams below show the results of the tests conducted.

Fig 4. Results of computation in a secure MAS

Fig 5. Results of computation in unsecured MAS

Figure 5 shows the result of computation on the same sets of

files as those shown in figure 4. Unlike in figure 4, however,

the multi-agent system that produced this output did not

implement our proposed security mechanism. As such,

another multi-agent system was able to introduce new records

in the processing pipeline of the multi-agent system. The

result, as illustrated by record 1 in figure 5, is an output that

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.21, June 2015

25

includes records and balance amount measures that were not contained in the original files.

Fig 6. Communication traffic in unsecured MAS

Figure 6 shows intercepted communication traffic in a multi-

agent system which has not implemented our security

mechanism. As shown, the data can be easily converted into

readable format with appropriate conversion tools.

Fig 7. Communication traffic in unsecured MAS

Figure 7 shows the same traffic but in an environment that has

implemented our security mechanism. As shown, traffic data

is encrypted and thus cannot be easily interpreted.

6. CONCLUSION
This work aimed at proposing a security approach that

addresses most of security threats that dog multi-agent

systems especially from malicious hosts.. Security threats in a

multi-agent system come in a number of ways; a hosting

environment may try to exploit agents resident on it, a

malicious person may launch a man-in-the-middle attack on a

multi-agent system, a hosting environment may attempt,

deliberately or otherwise, to corrupt an agent’s data or state,

and a malicious agent may deliberately feed an agent the

wrong data on which to act on.

A secure multi-agent system is the one that can protect both

its internal state, data its working on, and the data it produces.

Internal state of an agent refers to the agent’s attribute values.

If these values can be changed by an external program in

unpredictable ways, then such an agent is not secure and,

therefore, is not reliable. Agents act on data and produce data

that correspond to results of their computation. Once an agent

gets data, it is the agent’s responsibility to guard that data for

the duration of its computation. Any results from computation

should also be protected from accidental or deliberate

manipulation from any other agent. If an agent is incapable of

guaranteeing the security of the data it’s acting on, then such

an agent cannot be relied upon to produce correct computation

results.

To achieve security in multi-agent systems, a multi-faceted

approach to security must be adopted. This multi-faceted

approach should start from requirements engineering phase all

the way to maintenance of the developed system This

approach makes agent execution faster by localizing security

controls. It also makes the system robust because an exception

to the top level agent is escalated up the agent hierarchy until

a definite resolution is taken.

The future scope of this idea would be integration of the

mechanism in well known mobile agent development tools

and platforms such as java.

6.1 Further Work
This research project concentrated on securing agent systems

to mitigate against security threats imposed by malicious

executing environments. The approach used mitigates against

majority of such threats. Further study can be done to improve

this work in the following.

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.21, June 2015

26

1. Include a mechanism in the approach to flag

malicious hosts when detected so as to be avoided

by successive agents. This would reduce latency.

2. A reverse mechanism for the point noted in 1 above

when the threts in malicious host are resolved.

3. The use of sophisticated cryptographic algorithms

and emerging security patches in the proposed

approach.

7. ACKNOWLEDGEMENTS
We would like to thank the anonymous reviewers for their

detailed and valuable comments.

8. REFERENCES
[1] Shzrivastava, S. & Nandi, G.C., (2014) Fragmentation

based encryption approach for self protected mobile

agent. Journal of King Saud University - Computer and

Information Sciences, 26, pp.131- 142.

[2] Jansen W. A., (1998) Mobile Agents And Security.

National Institute of Standards and Technology, USA.

[3] Razouki, H. & Hair, A., (2014). Towards A New

Security Architecture of Mobile Agents. International

Journal of Soft Computing and Engineering (IJSCE), Vol

3 Issue 6, 55-60.

[4] Ahmed, T.M. (2009) 'Using Secure-Image Mechanism to

Protect Mobile Agent against malicious Hosts ',

International Scholarly and Scientific Research &

Innovation, 3(11), pp. 364-369.

[5] Mahmoodi, M., Varnamkhasti, M. M. (2013) 'A Secure

Communication in Mobile Agent System', International

Journal of Engineering Trends and Technology

(IJETT), 6(2), pp. 186-188.

[6] Dadhich, P., Dutta, K., Govil, M. C. (2010) 'Security

Issues in Mobile Agents', International Journal of

Computer Applications, 11(4), pp. 1-7.

[7] Ahmed, T.M. (2013) 'Protect Mobile Agent Against

Malicious Host Using Partial-Mobility

Mechanism', International Journal in Foundations of

Computer Science & Technology (IJFCST), 3(6), pp. 41-

52.

[8] D'Anna, L., Matt, B., Reisse, A., Vleck, T.V., Schwab, S.

and LeBlanc, P (2003) Self-Protecting Mobile Agents

Obfuscation Report , DARPA: Network Associates

Laboratories.

[9] Gupta, S. (2013) 'A Secure Architecture for Mobile

Agent Based Communication System ', International

Journal of Latest Trends in Engineering and Technology

(IJLTET), 2(2), pp. 160-164.

[10] Ismail, L. (2008) 'A Secure Mobile Agents

Platform', Journal of Communications, 3(2), pp. 1-12.

[11] Madkour, M.A., Eassa, F.E., Ali, A.M., & Qayyum, N.U

(2014) 'Securing Mobile-Agent-Based Systems Against

Malicious Hosts',World Applied Sciences Journal, 29(2),

pp. 287-297.

[12] Dey, S & Sinha, D., (2014) A Survey on Protection

Techniques of Mobile Agents from Malicious Hosts.

International Journal of Innovative Research in

Computer and Communication Engineering, Vol 2, Issue

8.

[13] Mishra, P.K., Singh, R. (2014) 'A Survey on Reliability

Estimation Techniques for Mobile Agent based Systems

', International Journal of Advanced Computer

Research, 4(14), pp. 123-133.

[14] Pai, P., Shinde, S.K., Khachane, A.R. (2012) 'Security in

Mobile Agent Communication', International Journal of

AdvancedEngineering Research and Studies, 1(4), pp.

74-80.

[15] Singh, D., Thakur, A., Gupta, D. (2015) 'A Review of

Mobile Agent Security', International Journal of

Advanced Research in Computer Science and Software

Engineering, 5(2), pp. 188-190.

[16] Lee, H., Alves-Foss, J., and Harrison, S. (2004)'The Use

Of Encrypted Functions For Mobile Agent

Security'. Hawaii International Conference On System

Sciences. Hawaii: DARPA. 1-10.

[17] Shrivastava, R., Mehta, P. (2012) 'Securing Mobile

Agent And Reducing Overhead Using Dummy And

Monitoring Mobile Agents', International Journal of

Management, IT and Engineering, 2(4), pp. 296-303.

[18] Ebietomere, E.P. & Ekuobase, G.O., (2014) Issues on

Mobile Agent Technology Adoption. African Journal of

Computing & ICT, 7.

[19] Hock Kim T. &. Moreau L, (2001), Mobile Code For

Key Propagation, Paper, Notes in theoretical Computer

Science 63, UK,.

[20] Anand T.& Neeran K. (2000) A Security Architecture

for Mobile Agents in Ajanta, Proceedings of the

International Conference on Distributed Computing

Systems.

IJCATM : www.ijcaonline.org

