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ABSTRACT 

Many optimization problems have complex search space, 

which either increase the solving problem time or finish 

searching without obtaining the best solution. Genetic 

Algorithm (GA) is an optimization technique used in solving 

many practical problems in science, engineering, and business 

domains. Parallel Genetic Algorithm (PGA) has been widely 

used to increase speed of GA, especially after the spread of 

parallel platforms such as GPUs, FPGA, and Multi-Core 

Processors. In this paper, we introduce a type of PGA called 

Fine-grained Parallel Genetic Algorithm, which has the 

advantages of maintaining better population diversity, and 

inhibiting premature. Fine-grained PGA is implemented on 

graphics hardware.  
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1. INTRODUCTION 
The GA is one of the most important soft computing tools 

used to solve many engineering optimization problems. Being 

a soft computing tool, the evolution of a solution in GA is a 

non-deterministic process[1]. Hence, many times, while 

working on GA, one needs to deal with problem of 

convergence or premature convergence. Though the single 

population GA has excellent search performance but 

performance can be improved by increasing the population 

size or having more than one population [2]. As many GA 

solutions require a significant amount of computation time, a 

number of parallel genetic algorithms (PGAs) have been 

proposed in past decades [3] [4]. These algorithms differ 

principally from the classical sequential genetic algorithm, but 

they seem to have even better optimization quality [5]. For 

some kind of problems, the population needs to be very large 

and the memory required to store each individual may be 

considerable. In some cases this makes it impossible to run an 

application efficiently using a single machine, so some 

parallel form of GA is necessary. Fitness evaluation is usually 

very time-consuming. In the literature computation times of 

more than 1 CPU year have been reported for a single run in 

complex domains. It stands to reason that the only practical 

way of provide this CPU power is to the use of parallel 

processing. Sequential GAs may get trapped in a sub-optimal 

region of the search space thus becoming unable to find better 

quality solutions. PGAs can search in parallel different 

subspaces of the search space, thus making it less likely to 

become trapped by low-quality subspaces [6]. To tackle all 

these problems, mentioned above, one can use the GPGPU 

and can exploit its functionality to solve GA effectively with 

more speed up. Now a days there is a need of performance 

improvement in each application so as to minimize the time 

required for execution. The graphics processing unit (GPU) 

based computing is a broad area under which highly 

computational problems are solved. The GPU attracted many 

researchers because of its low-cost, high-performance 

computing and high availability. Though  the GA’s 

algorithmic development is at extreme level, but there  is full 

scope for making it parallel on GPUs and its performance  can 

be improved by minimizing  data transfer between a CPU and 

a GPU by executing its operations of evaluation, selection, 

and reproduction through GPU [7]. 

2. BACKGROUNDS 

2.1   Genetic Algorithms 
Genetic Algorithms (GAs) are adaptive heuristic search 

algorithm based on the evolutionary ideas of natural selection 

and genetics. As such they represent an intelligent 

exploitation of a random search used to solve optimization 

problems. Although randomized, GAs are by no means 

random, instead they exploit historical information to direct 

the search into the region of better performance within the 

search space. The basic techniques of the GAs are designed to 

simulate processes in natural systems necessary for evolution, 

especially those follow the principles first laid down by 

Charles Darwin of "survival of the fittest."Since in nature, 

competition among individuals for scanty resources results in 

the fittest individuals dominating over the weaker ones. As 

described in Golberg [1]: in general terms, a genetic algorithm 

consists of four parts. 

1. Generate an initial population. 

2. Select pair of individuals based on the fitness function. 

3. Produce next generation from the selected pairs by applying 

pre-selected 

genetic operators. 

4. If the termination condition is satisfied stop, else go to step 

2. 

The termination condition can be either: 

1. No improvement in the solution after a certain number of 

generation. 

2. The solution converges to a pre-determined threshold. 

GAs simulates the survival of the fittest among individuals 

over consecutive generation for solving a problem. Each 

generation consists of a population of character strings that 

are analogous to the chromosome. Each individual represents 

a point in a search space and a possible solution. The 

individuals in the population are then made to go through a 

process of evolution. GAs is based on an analogy with the 

genetic structure and behavior of chromosomes within a 

population of individuals using the following foundations: 
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 Individuals in a population compete for resources 

and mates.  

 Those individuals most successful in each 

'competition' will produce more offspring than those 

individuals that perform poorly.  

 Genes from `good' individuals propagate throughout 

the population so that two good parents will 

sometimes produce offspring that are better than 

either parent.  

 Thus each successive generation will become more 

suited to their environment.  

Search Space 
A population of individuals are maintained within search 

space for a GA, each representing a possible solution to a 

given problem. Each individual is coded as a finite length 

vector of components, or variables, in terms of some alphabet, 

usually the binary alphabet {0,1}. To continue the genetic 

analogy these individuals are likened to chromosomes and the 

variables are analogous to genes. Thus a chromosome 

(solution) is composed of several genes (variables). A fitness 

score is assigned to each solution representing the abilities of 

an individual to `compete'. The individual with the optimal (or 

generally near optimal) fitness score is sought. The GA aims 

to use selective `breeding' of the solutions to produce 

`offspring' better than the parents by combining information 

from the chromosomes. The GA maintains a population of n 

chromosomes (solutions) with associated fitness values. 

Parents are selected to mate, on the basis of their fitness, 

producing offspring via a reproductive plan. Consequently 

highly fit solutions are given more opportunities to reproduce, 

so that offspring inherit characteristics from each parent. As 

parents mate and produce offspring, room must be made for 

the new arrivals since the population is kept at a static size. 

Individuals in the population die and are replaced by the new 

solutions, eventually creating a new generation once all 

mating opportunities in the old population have been 

exhausted. In this way it is hoped that over successive 

generations better solutions will thrive while the least fit 

solutions die out. New generations of solutions are produced 

containing, on average, more good genes than a typical 

solution in a previous generation. Each successive generation 

will contain more good `partial solutions' than previous 

generations. Eventually, once the population has converged 

and is not producing offspring noticeably different from those 

in previous generations, the algorithm itself is said to have 

converged to a set of solutions to the problem at hand. 

2.2   Parallel Genetic Algorithm(PGA) 
It has long been noted that genetic algorithms are well suited 

for parallel execution. The different PGAs are optimized for 

different uses and implementations. Parallelization for the 

sake of being able to run the algorithm faster with the help of 

multiple processors. Keeping relatively isolated 

subpopulations is a parallelization method for acquiring 

greater diversity. PGAs can be divided into three general 

classes Master-Slave , Coarse-grained and Fine-Grained. In a 

master-slave model, there is a single population just as in 

sequential GA, but the evaluation of fitness is distributed 

among several processors. In a coarse-grained model, the GA 

population is divided into multiple subpopulations. Each 

subpopulation evolves independently, with only occasional 

exchanges of individuals between subpopulations. In a fine-

grained model, individuals are commonly mapped onto a 2D 

lattice, with one individual per node. Selection and crossover 

are restricted to a small and overlapping neighborhood. 

2.2.1 Master Slave Model 
Master-slave Model (MSM) is mainly a variation to increase 

speed, scale and calculation power for GA. Distribution of 

crossover and mutation operations, and in some cases fitness 

calculation, can be done to different processors. This allows 

utilization of the computing power of several processors or 

distributed computer systems to solve the problem [4]. With 

the use of the additional resources from distributed 

computing, we are not as dependent on the development of 

hardware for single systems, to be able to be  compute more 

complex problems. On single systems such problems might 

not be possible to solve within a reasonable time. MSM 

assigns a fraction of the population to the available processors 

for evolutionary operation. Then it can work in two ways. The 

first one is synchronous, which only has the benefit of faster 

computing. Once the population is assigned to the processors, 

synchronous MSM waits for all the processors to complete 

their operations and return the result, before evaluating the 

new population. The second one is asynchronous, which does 

not wait for slow processors to return their result. These work 

a bit different than standard GA. 

2.2.2 Fine-grained Parallel Genetic Algorithm 
Fine-grained Parallel Genetic Algorithm (FGA) [2] has only a 

single population. It has a special structure, which restricts the 

individuals in the population to only interact directly with it's 

neighbors. It has a problem that the performance of the 

algorithm degrades as the size of the population increases. 

2.2.3 Coarse Grained Parallel Genetic 

Algorithm 
Coarse-grained Parallel Genetic Algorithm (CGA) is also 

known as multiple-deme PGA or "island" PGA [2]. CGA 

divides the population into subpopulations which can be 

computed on separate processors [15]. The sub population 

then has an amount of migration between them. Benefits of 

having smaller populations are that favorable traits spread 

faster within the population. The drawback is that the rapid 

rise of fitness stops at a lower fitness value than with a single 

large population. At first sight this seems as a very simple 

method to use. The problems arise when implementations of it 

are analyzed more closely. When setting a low migration rate 

between the populations, we get the previously mentioned 

problem with a low quality of the overall solution. But if we 

should increase the migration level too much, the behavior 

changes back to that of a single large population [8].  

2.3 Graphical Processing Unit (GPU 
In the early 1990s, ubiquitous interactive 3D graphics was still 

the stuff of science fiction. By the end of the decade, nearly 

every new computer contained a graphics processing unit 

(GPU) dedicated to providing a high-performance, visually 

rich, interactive 3D experience [13][14]. This dramatic shift 

was the inevitable consequence of consumer demand for 

videogames, advances in manufacturing technology, and the 

exploitation of the inherent parallelism in the feed-forward 

graphics pipeline. Today, the raw computational power of a 

GPU was that of the most powerful CPU, and the gap is 

steadily widening. Furthermore, GPUs have moved away 

from the traditional fixed-function 3D graphics pipeline 

toward a flexible general-purpose computational engine. 

Today, GPUs can implement many parallel algorithms 

directly using graphics hardware. Well-suited algorithms that 

leverage all the underlying computational horsepower often 
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achieve tremendous speedups. Truly, the GPU is the first 

widely deployed commodity desktop parallel computer. In the 

following diagram working of GPU is explained. 

 

Fig1:    Working of GPU 

3. A REAL CODED PGA ON GPU 

3.1 Algorithm Overview 

In this paper, we adopt the fine-grained parallel model 

suitable for SIMD implementation. In this model each 

processor is allocated only one individual. That is to say that 

each subpopulation is composed of only one individual and it 

communicates with another one, with 1 Hamming distance 

between them [10]. It has advantages of maintaining better 

population diversity, inhibiting premature, keeping the utmost 

parallelism, and therefore outperforms all other traditional 

genetic algorithms when dealing with high-dimensional 

variable spaces [11].  

for each node do in parallel  

                generate an individual randomly  

end parallel do  

                 while not stop_criterion_satisfied do  

                        for each node do in parallel  

                      evaluate the fitness of the individual  

                             get the fitness values of  individuals  

                           select the individuals by selection rate 

                         crossover with the local  

                         individual according to the crossover rate  

                        mutate the individual according to the  

                       mutation rate  

  end parallel do  

                         check the stopping criteria  

                     end while 
 

3.2 Implementation of Genetic Operators 
Selection, crossover and mutation operators described as:  

Tournament selection  
It is a method of selecting an individual from a population of 

individuals in a genetic algorithm [11,12]. Tournament 

selection involves running several "tournaments" among a few 

individuals chosen at random from the population. The winner 

of each tournament (the one with the best fitness) is selected 

for crossover. Selection pressure is easily adjusted by 

changing the tournament size. If the tournament size is larger, 

weak individuals have a smaller chance to be selected. 

Tournament selection pseudo code: 

choose k (the tournament size) individuals from the 

population at random 

choose the best individual from pool/tournament with 

probability p 

choose the second best individual with probability p*(1-p) 

choose the third best individual with probability p*((1-p)^2) 

and so on... 

Arithmetic crossover  
A crossover operator that linearly combines two parent 

chromosome vectors to produce two new offspring according 

to the following equations: 

Offspring1 = a * Parent1 + (1- a) * Parent2 

Offspring2 = (1 – a) * Parent1 + a * Parent2 

where a is a random weighting factor (chosen before each 

crossover operation). 

Consider the following 2 parents (each consisting of 4 float 

genes) which have been selected for crossover: 

 

Parent 1: (0.3)(1.4)(0.2)(7.4) 

Parent 2: (0.5)(4.5)(0.1)(5.6) 

 

If a = 0.7, the following two offspring would be produced: 

 

Offspring1: (0.36)(2.33)(0.17)(6.86) 

Offspring2: (0.402)(2.981)(0.149)(6.842) 

Gaussian Mutation 
Let          be a real variable. Then the Gaussian mutation 

operator MG changes x to  

MG:=min(max(N(x,σ),a),b), 

where σ may depend on the length l :=b-a of the interval and 

typically  σ/l=1/10.  MG is applied with probability pm  to 

each variable, where pm generally has a value of a few 

percent. The value of σ may also depend on time, i.e., the 

number of the current generation, and usually decreases with 

time. The reason for a decreasing σ is that stronger mutation 

during the beginning of an optimization supports the sampling 

of the search space and smaller displacements towards the end 

aid in fine tuning extreme values.  

Another advantageous setup is to use two mutation operators: 

one with a high and one with a low value of σ. This enables to 

achieve a similar effect as a decreasing σ.  

4. EXPERIMENTAL RESULTS 
Our performance results were measured using an AMD 

Athlon 2500+ Intel Core i7-4930k@3.40GHZand an NVidia 

GeForce 6800GS GPU. The GPU-based implementation was 

developed with matlab code. The GA parameters applied as: 

crossover rate 1.0 and mutation rate 0.03, number of 

generations 600, n different population size. In the table GPU-

based implementation was compared with software 

implementation running on single CPU with different 

population size. We see that speedup increases as we increase 

the population size. We used Chichinadze global optimization 

problem as benchmark. This is a multimodal minimization 

problem defined as follows: 

FChichinadze (X)=x2
1 – 12x1 + 8 sin( 

 
   ) + 10 cos   

 
    + 11-

0.2 
  

 
 
            

 

 
Here, n represents the number of dimensions and   xi  
          for i=1,2. 
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Popula

tion 

Size 

 

Genetic Operators Fitness Evaluation 

GPU(s) CPU(s) Speedup GPU(s) CPU(s) Speedu

p 

342 
682 

1362 

 

0.211 
0.262 

0.444 

 

0.296 
1.201 

5.230 

 

1.4x 
5.8x 

11.8x 

 

0.044 
0.046 

0.074 

 

0.013 
0.062 

0.587 

 

0.3x 
1.4x 

7.9x 

 

 

Table 1. Time cost and speed up for different GA module 

(600 generations) 
 

5. CONCLUSION 
In this work, we have presented a novel implementation of 

parallel genetic algorithms on commodity graphics hardware. 

Our approach gives a representation of population suitable for 

GPU processing. All genetic operators have been 

implemented on GPU. Tests on a function optimization 

problem show that the larger the population size is, the better 

speedup over the software implementation can be achieved. 

Our work has provided a promising platform for 

implementation of PGAs. Looking toward future, 

programmable GPUs are on a much faster performance 

growth than CPUs. They also have many other advantages: 

inexpensive, readily available, easily upgradeable, and 

compatible with various operating systems and hardware 

architectures. There are still several constrains in our 

approach. For problems whose fitness function is not suitable 

for GPU implementation, the performance of our method will 

be seriously limited because of the bottleneck of transferring 

data between system memory and video memory in each GA 

loop. Another limitation is that commonly used binary 

encoding scheme of GAs seems hard to be implemented on 

the GPU because there is no bit-operator supported in current 

GPUs. In the future, we will apply the presented approach in 

real-world problems such as GA-based image processing. 

Another future work is further implementations of other 

variants of genetic algorithms.  
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