
International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.19, June 2015

5

Implementation of GPU using Fine-Grained

Parallel Genetic Algorithm

R.K.Nayak

School of Computer Engg.
KIIT University

B.S.P.Mishra

School of Computer Engg.
KIIT University

ABSTRACT

Many optimization problems have complex search space,

which either increase the solving problem time or finish

searching without obtaining the best solution. Genetic

Algorithm (GA) is an optimization technique used in solving

many practical problems in science, engineering, and business

domains. Parallel Genetic Algorithm (PGA) has been widely

used to increase speed of GA, especially after the spread of

parallel platforms such as GPUs, FPGA, and Multi-Core

Processors. In this paper, we introduce a type of PGA called

Fine-grained Parallel Genetic Algorithm, which has the

advantages of maintaining better population diversity, and

inhibiting premature. Fine-grained PGA is implemented on

graphics hardware.

Keywords
Parallel Genetic algorithm, FPGA, GPU, Parallel Processing

1. INTRODUCTION
The GA is one of the most important soft computing tools

used to solve many engineering optimization problems. Being

a soft computing tool, the evolution of a solution in GA is a

non-deterministic process[1]. Hence, many times, while

working on GA, one needs to deal with problem of

convergence or premature convergence. Though the single

population GA has excellent search performance but

performance can be improved by increasing the population

size or having more than one population [2]. As many GA

solutions require a significant amount of computation time, a

number of parallel genetic algorithms (PGAs) have been

proposed in past decades [3] [4]. These algorithms differ

principally from the classical sequential genetic algorithm, but

they seem to have even better optimization quality [5]. For

some kind of problems, the population needs to be very large

and the memory required to store each individual may be

considerable. In some cases this makes it impossible to run an

application efficiently using a single machine, so some

parallel form of GA is necessary. Fitness evaluation is usually

very time-consuming. In the literature computation times of

more than 1 CPU year have been reported for a single run in

complex domains. It stands to reason that the only practical

way of provide this CPU power is to the use of parallel

processing. Sequential GAs may get trapped in a sub-optimal

region of the search space thus becoming unable to find better

quality solutions. PGAs can search in parallel different

subspaces of the search space, thus making it less likely to

become trapped by low-quality subspaces [6]. To tackle all

these problems, mentioned above, one can use the GPGPU

and can exploit its functionality to solve GA effectively with

more speed up. Now a days there is a need of performance

improvement in each application so as to minimize the time

required for execution. The graphics processing unit (GPU)

based computing is a broad area under which highly

computational problems are solved. The GPU attracted many

researchers because of its low-cost, high-performance

computing and high availability. Though the GA’s

algorithmic development is at extreme level, but there is full

scope for making it parallel on GPUs and its performance can

be improved by minimizing data transfer between a CPU and

a GPU by executing its operations of evaluation, selection,

and reproduction through GPU [7].

2. BACKGROUNDS

2.1 Genetic Algorithms
Genetic Algorithms (GAs) are adaptive heuristic search

algorithm based on the evolutionary ideas of natural selection

and genetics. As such they represent an intelligent

exploitation of a random search used to solve optimization

problems. Although randomized, GAs are by no means

random, instead they exploit historical information to direct

the search into the region of better performance within the

search space. The basic techniques of the GAs are designed to

simulate processes in natural systems necessary for evolution,

especially those follow the principles first laid down by

Charles Darwin of "survival of the fittest."Since in nature,

competition among individuals for scanty resources results in

the fittest individuals dominating over the weaker ones. As

described in Golberg [1]: in general terms, a genetic algorithm

consists of four parts.

1. Generate an initial population.

2. Select pair of individuals based on the fitness function.

3. Produce next generation from the selected pairs by applying

pre-selected

genetic operators.

4. If the termination condition is satisfied stop, else go to step

2.

The termination condition can be either:

1. No improvement in the solution after a certain number of

generation.

2. The solution converges to a pre-determined threshold.

GAs simulates the survival of the fittest among individuals

over consecutive generation for solving a problem. Each

generation consists of a population of character strings that

are analogous to the chromosome. Each individual represents

a point in a search space and a possible solution. The

individuals in the population are then made to go through a

process of evolution. GAs is based on an analogy with the

genetic structure and behavior of chromosomes within a

population of individuals using the following foundations:

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.19, June 2015

6

 Individuals in a population compete for resources

and mates.

 Those individuals most successful in each

'competition' will produce more offspring than those

individuals that perform poorly.

 Genes from `good' individuals propagate throughout

the population so that two good parents will

sometimes produce offspring that are better than

either parent.

 Thus each successive generation will become more

suited to their environment.

Search Space
A population of individuals are maintained within search

space for a GA, each representing a possible solution to a

given problem. Each individual is coded as a finite length

vector of components, or variables, in terms of some alphabet,

usually the binary alphabet {0,1}. To continue the genetic

analogy these individuals are likened to chromosomes and the

variables are analogous to genes. Thus a chromosome

(solution) is composed of several genes (variables). A fitness

score is assigned to each solution representing the abilities of

an individual to `compete'. The individual with the optimal (or

generally near optimal) fitness score is sought. The GA aims

to use selective `breeding' of the solutions to produce

`offspring' better than the parents by combining information

from the chromosomes. The GA maintains a population of n

chromosomes (solutions) with associated fitness values.

Parents are selected to mate, on the basis of their fitness,

producing offspring via a reproductive plan. Consequently

highly fit solutions are given more opportunities to reproduce,

so that offspring inherit characteristics from each parent. As

parents mate and produce offspring, room must be made for

the new arrivals since the population is kept at a static size.

Individuals in the population die and are replaced by the new

solutions, eventually creating a new generation once all

mating opportunities in the old population have been

exhausted. In this way it is hoped that over successive

generations better solutions will thrive while the least fit

solutions die out. New generations of solutions are produced

containing, on average, more good genes than a typical

solution in a previous generation. Each successive generation

will contain more good `partial solutions' than previous

generations. Eventually, once the population has converged

and is not producing offspring noticeably different from those

in previous generations, the algorithm itself is said to have

converged to a set of solutions to the problem at hand.

2.2 Parallel Genetic Algorithm(PGA)
It has long been noted that genetic algorithms are well suited

for parallel execution. The different PGAs are optimized for

different uses and implementations. Parallelization for the

sake of being able to run the algorithm faster with the help of

multiple processors. Keeping relatively isolated

subpopulations is a parallelization method for acquiring

greater diversity. PGAs can be divided into three general

classes Master-Slave , Coarse-grained and Fine-Grained. In a

master-slave model, there is a single population just as in

sequential GA, but the evaluation of fitness is distributed

among several processors. In a coarse-grained model, the GA

population is divided into multiple subpopulations. Each

subpopulation evolves independently, with only occasional

exchanges of individuals between subpopulations. In a fine-

grained model, individuals are commonly mapped onto a 2D

lattice, with one individual per node. Selection and crossover

are restricted to a small and overlapping neighborhood.

2.2.1 Master Slave Model
Master-slave Model (MSM) is mainly a variation to increase

speed, scale and calculation power for GA. Distribution of

crossover and mutation operations, and in some cases fitness

calculation, can be done to different processors. This allows

utilization of the computing power of several processors or

distributed computer systems to solve the problem [4]. With

the use of the additional resources from distributed

computing, we are not as dependent on the development of

hardware for single systems, to be able to be compute more

complex problems. On single systems such problems might

not be possible to solve within a reasonable time. MSM

assigns a fraction of the population to the available processors

for evolutionary operation. Then it can work in two ways. The

first one is synchronous, which only has the benefit of faster

computing. Once the population is assigned to the processors,

synchronous MSM waits for all the processors to complete

their operations and return the result, before evaluating the

new population. The second one is asynchronous, which does

not wait for slow processors to return their result. These work

a bit different than standard GA.

2.2.2 Fine-grained Parallel Genetic Algorithm
Fine-grained Parallel Genetic Algorithm (FGA) [2] has only a

single population. It has a special structure, which restricts the

individuals in the population to only interact directly with it's

neighbors. It has a problem that the performance of the

algorithm degrades as the size of the population increases.

2.2.3 Coarse Grained Parallel Genetic

Algorithm
Coarse-grained Parallel Genetic Algorithm (CGA) is also

known as multiple-deme PGA or "island" PGA [2]. CGA

divides the population into subpopulations which can be

computed on separate processors [15]. The sub population

then has an amount of migration between them. Benefits of

having smaller populations are that favorable traits spread

faster within the population. The drawback is that the rapid

rise of fitness stops at a lower fitness value than with a single

large population. At first sight this seems as a very simple

method to use. The problems arise when implementations of it

are analyzed more closely. When setting a low migration rate

between the populations, we get the previously mentioned

problem with a low quality of the overall solution. But if we

should increase the migration level too much, the behavior

changes back to that of a single large population [8].

2.3 Graphical Processing Unit (GPU
In the early 1990s, ubiquitous interactive 3D graphics was still

the stuff of science fiction. By the end of the decade, nearly

every new computer contained a graphics processing unit

(GPU) dedicated to providing a high-performance, visually

rich, interactive 3D experience [13][14]. This dramatic shift

was the inevitable consequence of consumer demand for

videogames, advances in manufacturing technology, and the

exploitation of the inherent parallelism in the feed-forward

graphics pipeline. Today, the raw computational power of a

GPU was that of the most powerful CPU, and the gap is

steadily widening. Furthermore, GPUs have moved away

from the traditional fixed-function 3D graphics pipeline

toward a flexible general-purpose computational engine.

Today, GPUs can implement many parallel algorithms

directly using graphics hardware. Well-suited algorithms that

leverage all the underlying computational horsepower often

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.19, June 2015

7

achieve tremendous speedups. Truly, the GPU is the first

widely deployed commodity desktop parallel computer. In the

following diagram working of GPU is explained.

Fig1: Working of GPU

3. A REAL CODED PGA ON GPU

3.1 Algorithm Overview

In this paper, we adopt the fine-grained parallel model

suitable for SIMD implementation. In this model each

processor is allocated only one individual. That is to say that

each subpopulation is composed of only one individual and it

communicates with another one, with 1 Hamming distance

between them [10]. It has advantages of maintaining better

population diversity, inhibiting premature, keeping the utmost

parallelism, and therefore outperforms all other traditional

genetic algorithms when dealing with high-dimensional

variable spaces [11].

for each node do in parallel

 generate an individual randomly

end parallel do

 while not stop_criterion_satisfied do

 for each node do in parallel

 evaluate the fitness of the individual

 get the fitness values of individuals

 select the individuals by selection rate

 crossover with the local

 individual according to the crossover rate

 mutate the individual according to the

 mutation rate

 end parallel do

 check the stopping criteria

 end while

3.2 Implementation of Genetic Operators
Selection, crossover and mutation operators described as:

Tournament selection
It is a method of selecting an individual from a population of

individuals in a genetic algorithm [11,12]. Tournament

selection involves running several "tournaments" among a few

individuals chosen at random from the population. The winner

of each tournament (the one with the best fitness) is selected

for crossover. Selection pressure is easily adjusted by

changing the tournament size. If the tournament size is larger,

weak individuals have a smaller chance to be selected.

Tournament selection pseudo code:

choose k (the tournament size) individuals from the

population at random

choose the best individual from pool/tournament with

probability p

choose the second best individual with probability p*(1-p)

choose the third best individual with probability p*((1-p)^2)

and so on...

Arithmetic crossover
A crossover operator that linearly combines two parent

chromosome vectors to produce two new offspring according

to the following equations:

Offspring1 = a * Parent1 + (1- a) * Parent2

Offspring2 = (1 – a) * Parent1 + a * Parent2

where a is a random weighting factor (chosen before each

crossover operation).

Consider the following 2 parents (each consisting of 4 float

genes) which have been selected for crossover:

Parent 1: (0.3)(1.4)(0.2)(7.4)

Parent 2: (0.5)(4.5)(0.1)(5.6)

If a = 0.7, the following two offspring would be produced:

Offspring1: (0.36)(2.33)(0.17)(6.86)

Offspring2: (0.402)(2.981)(0.149)(6.842)

Gaussian Mutation
Let be a real variable. Then the Gaussian mutation

operator MG changes x to

MG:=min(max(N(x,σ),a),b),

where σ may depend on the length l :=b-a of the interval and

typically σ/l=1/10. MG is applied with probability pm to

each variable, where pm generally has a value of a few

percent. The value of σ may also depend on time, i.e., the

number of the current generation, and usually decreases with

time. The reason for a decreasing σ is that stronger mutation

during the beginning of an optimization supports the sampling

of the search space and smaller displacements towards the end

aid in fine tuning extreme values.

Another advantageous setup is to use two mutation operators:

one with a high and one with a low value of σ. This enables to

achieve a similar effect as a decreasing σ.

4. EXPERIMENTAL RESULTS
Our performance results were measured using an AMD

Athlon 2500+ Intel Core i7-4930k@3.40GHZand an NVidia

GeForce 6800GS GPU. The GPU-based implementation was

developed with matlab code. The GA parameters applied as:

crossover rate 1.0 and mutation rate 0.03, number of

generations 600, n different population size. In the table GPU-

based implementation was compared with software

implementation running on single CPU with different

population size. We see that speedup increases as we increase

the population size. We used Chichinadze global optimization

problem as benchmark. This is a multimodal minimization

problem defined as follows:

FChichinadze (X)=x2
1 – 12x1 + 8 sin(

) + 10 cos

 + 11-

0.2

Here, n represents the number of dimensions and xi
 for i=1,2.

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.19, June 2015

8

Popula

tion

Size

Genetic Operators Fitness Evaluation

GPU(s) CPU(s) Speedup GPU(s) CPU(s) Speedu

p

342
682

1362

0.211
0.262

0.444

0.296
1.201

5.230

1.4x
5.8x

11.8x

0.044
0.046

0.074

0.013
0.062

0.587

0.3x
1.4x

7.9x

Table 1. Time cost and speed up for different GA module

(600 generations)

5. CONCLUSION
In this work, we have presented a novel implementation of

parallel genetic algorithms on commodity graphics hardware.

Our approach gives a representation of population suitable for

GPU processing. All genetic operators have been

implemented on GPU. Tests on a function optimization

problem show that the larger the population size is, the better

speedup over the software implementation can be achieved.

Our work has provided a promising platform for

implementation of PGAs. Looking toward future,

programmable GPUs are on a much faster performance

growth than CPUs. They also have many other advantages:

inexpensive, readily available, easily upgradeable, and

compatible with various operating systems and hardware

architectures. There are still several constrains in our

approach. For problems whose fitness function is not suitable

for GPU implementation, the performance of our method will

be seriously limited because of the bottleneck of transferring

data between system memory and video memory in each GA

loop. Another limitation is that commonly used binary

encoding scheme of GAs seems hard to be implemented on

the GPU because there is no bit-operator supported in current

GPUs. In the future, we will apply the presented approach in

real-world problems such as GA-based image processing.

Another future work is further implementations of other

variants of genetic algorithms.

6. REFERENCES
[1] Goldberg, D.E. 1989 .Genetic Algorithms in Search,

Optimization and Machine Learning. Addison-Wesley

Professional, First Edition.

[2] Umbarkar1, A.J. and Joshi2, M.S. and Rothe3, N.M.

and Tomassini, M. 1995. A survey of parallel genetic

algorithms. World Scientific III.

[3] Konfrst, Z. 2004. Parallel genetic algorithms: advances,

computing rends, applications and perspectives. In

Parallel and Distributed Processing Symposium.

[4] Wang, Chen,K. and Ong, Y.S. (Eds.).2005.Parallel

Genetic Algorithms on Programmable Graphics

Hardware. Springer-Verlag Berlin Heidelberg.

[5] M. Nowostawski, M. and Poli,R .1999. Parallel Genetic

Algorithm Taxonomy. Vol. 13, MAY, 1999.

[6] Umbarkar, A.J. and Joshi, M.S. Joshi and Rothe, N.M.

2013. Genetic algorithm on general purpose graphics

processing unit: parallelism review ictact journal on soft

computing, january 2013, volume: 03, issue: 02

[7] Hassani,A. and Treijs,J.2009. An Overview of Standard

and Parallel Genetic Algorithms.

[8] Al-marakeby, A.2013. FPGA on FPGA: Implementation

of Fine-grained Parallel Genetic Algorithm on Field

Programmable Gate Array,IJCA, vol-80, No 6, 2013.

[9] XUE Shengjun and GUO Shaoyong and BAI

Dongling,2008. The Analysis and Research of Parallel

Genetic Algorithm. Wireless Communications,

Networking and Mobile Computing.

[10] Jian-Ming Li and Xiao-Jing Wang and Rong-Sheng He

and Zhong-Xian Chi.2007. An Efficient Fine-grained

Parallel Genetic Algorithm Based on GPU-Accelerated.

International Conference on Network and Parallel

Computing.

[11] Raghuwanshi, M., Kakde, O.: Survey on multiobjective

evolutionary and real coded genetic algorithms. In: The

8th Asia Pacific Symposium on Intelligent and

Evolutionary Systems, Cairns, Australia (2004)

[12] Michalewicz, Z.1996.Genetic Algorithms + Data

Structures = Evolution Programs.

[13] Press, W.H.and Teukolsky, S.A.and Vetterling,

W.T.2002. Flannery, B.P.: Numerical Recipes in C++.

The Art of Scientific Computing. Cambridge University.

[14] Lukac, R.. and Plataniotis, K.N. and Smolka, B.2004.

Venetsanopoulos, A.N.Color image filtering and

enhancement based on genetic algorithms. IEEE

International Symposium on Circuits and Systems.

[15] Houston, M.and Fatahalian, K. and Sugerman, J.and

Buck, I. and Hanrahan, P.2004. Parallel computation on

a cluster of gpus. ACM Workshop on General-Purpose

Computing on Graphics Processors, Los

Angeles,California.

IJCATM : www.ijcaonline.org

