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ABSTRACT 

In the paper, we present chance constrained multi-level linear 

programming problem. The right hand parameters and the 

coefficients of the constraints are considered as the random 

variables of known distribution function and the chance 

constraints are transformed into equivalent deterministic 

constraints. Membership function for each level objective 

function is constructed subject to the equivalent deterministic 

constraints. In the multi-level decision making situation, lower 

level decision makers may not be satisfied with the decision of 

higher level decision maker. To avoid this problem, each level 

decision maker provides relaxation in his/ her decision. Three 

FGP models are adopted to get the membership goals. 

Euclidean distance function is used to select the best FGP 

model offering the most satisfactory solution. Two numerical 

examples are solved to demonstrate the proposed approach. 

General Terms 

Decision Making, Linear Programming, Optimization. 

Keywords 

Multi-level programming, Fuzzy goal programming, Chance 

constrained programming.  

1. INTRODUCTION 
In multi-level programming (MLP), decision is sequential 

from upper level to successive lower levels. MLP is the 

extension of Stackleberg games [1]. Many pioneer researchers 

[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 and 13] have established 

different methodologies to solve MLP in both crisp and fuzzy 

environment. Anandalingam [1, 2] studied decentralized multi 

level programming problem in crisp environment. In fuzzy 

environment different models for MLP are studied by Lai [5], 

Shih et al. [8], Shih and Lee [9], Sakawa et el. [10], Sakawa et 

al. [11], Sinha [12, 13], Pramanik and Roy [14], Baky [6], and 

others.  Pramanik and Roy [14] have established fuzzy goal 

programming (FGP) approach to MLP problems. In their 

approach, objective functions of all levels and the control 

vectors of upper level decision makers are fuzzily described. 

Membership functions for objective functions and controlled 

vectors are formulated. They considered deterministic system 

constraints.  But in some real situations, system constraints or 

coefficients of objective function are not certain. Kumar and 

Pal [15] used FGP approach to solve chance constrained 

MLP. Chance constrained programming was studied by 

Charnes and Cooper [16]. In transportation, agriculture, 

different planning and policy schemes, economical field 

chance constraints are involved. Recently, three level 

quadratic programming with random rough coefficients in 

constraints has been described by Emam and Nasr [17]. In the 

first phase, they transfer rough nature constraints into 

equivalent crisp constraints using interval technique and in the 

second phase, they construct membership function and fuzzy 

model to obtain compromise solution. In 2015, Emam et al. 

[18] establish multi – level linear programming problem with 

random rough coefficients of objective functions. They 

convert the rough nature into equivalent crisp nature and form 

membership function to solve Tchebycheff problem till an 

optimal solution is obtained. 

Pramanik and Dey [19] studied multi-objective quadratic 

programming problem based on Taylor series approximation. 

Pramanik and Banerjee [20] investigated fuzzy goal 

programming approach to chance constrained quadratic bi-

level programming problem by extending the concept of 

Pramanik and Dey [19]. Pramanik et al. [21] also developed 

FGP models to solve chance constrained linear plus linear 

fractional bi-level programming problem. In the present 

paper, Pramanik and Banerjee's concept [20] has been 

extended to chance constrained multilevel linear programming 

problem (CCMLPP).  Here, CCMLPP is considered with 

linear objective functions. Here, three types of chance 

constraints are considered. In first case, the coefficients of 

chance constraints are considered as random variables. The 

right hand parameters are taken as random variables in the 

second case. The aforesaid two cases are combined in the 

third case. The chance constraints are transformed into 

equivalent deterministic constraints by using known mean, 

variances of random variables and known satisfying 

probability levels. Each decision maker (DM) provides lower 

and upper limits on decision variables under his / her control 

for providing relaxation in his/her decision. Each objective 

function is fuzzily defined and membership function is 

constructed for each objective function. Using FGP technique, 

CCMLLPP is modelled. 

The paper is designed as follows: 

Section 2 is the formulation of CCMLLPP. Next section 

described three types of Chance constraints and the process of 

making deterministic constraints. Membership function for 

each objective function is developed in the section 4. In the 

next section, selection of bounds on the decision variables is 

made. Three FGP models are formulated in section 6. Process 

of determination of best compromise solution is described in 

section 7. A flowchart is given in the next section. In section 

9, numerical examples are solved and compared. In the next 

section conclusion and future studies are discussed. 
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2. FORMULATION OF CHANCE 

CONSTRAINED MULTI-LEVEL 

LINEAR PROGRAMMING PROBLEM  
The CCMLLPP can be presented as follows: 
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iij qandp are random variables  following normal distribution 
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 . Here, we consider n-level 

maximization type problem with constant coefficients of 

objective functions. We also assume that, the solution set is 

non-empty and bounded. 

3. CONVERSION OF CHANCE 

CONSTRAINTS INTO EQUIVALENT 

DETERMINISTIC CONSTRAINTS 
In this section, we discuss three possible cases [22]: 

3.1 Case - 1 
In this case ijp are considered as random variables for  

i = 1, 2, ..., r1.   
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3.2 Case – 2 
In this case, iq are random variables for i = r1+1, ..., r2. 

Then the constraints reduces to  
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3.3 Case - 3 
In this case, ijp and iq both are considered as random 

variables. Let 0q-xpg
i

n
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for i = r2 +1, ..., r.  

Then the constraints reduces to  
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Thus the proposed problem reduces  
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Here, F (.) and 
1-F (.) represent the distribution function and 

inverse of the distribution function of standard normal 

variable respectively. Let us denote the system constraints (3), 

(5), (6), (7) by T. 

4. DEVELOPMENT OF MEMBERSHIP 

FUNCTION 
Each decision maker maximizes his/her objective function 

subject to the system constraints individually and considers 

the maximum value of the objective function as aspiration 

level. 
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Then the fuzzy goal appears as: 
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5. SELECTION OF BOUNDS ON THE 

DECISION VARIABLES  
It is obvious that each DM intends to maximize his/her 

objective function. But in MLPP, the decision is made 

sequentially from upper level to subsequent levels. To get 

overall satisfaction, cooperation between DMs is necessary. It 

is preferable to provide some bounds on decision variables. 

The lower and the upper bound of the decision variables are 

provided as follows: 
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6. FGP MODEL FORMULATION  

Following Pramanik and Banerjee [20] model, the present 

problem can be written as: 
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6.3 FGP Model - 3 
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7. DETERMINATION OF THE BEST 

COMPROMISE SOLUTION 
Here three FGP models are considered. Generally, it is 

expected that three models offer three different solutions. 

Euclidean distance function [20, 23 and 24] is used to identify 

which model provides better solution than other two models. 

Since in FGP models, the maximum value of membership 

function is assumed to be one and the deviation of optimal 

value of membership function from one is minimum. Using 

Euclidean distance function we try to find out the model 

which gives minimum deviation or distance. The Euclidean 

distance function is defined as follows: 

)17(]∑ ))}x(z(μ-1{[=D 2/1
2n

1=j
jj2

      

The solution having minimum value of D reflects the best 

compromise solution. 

8. SUMMARIZATION OF PROPOSED 

METHOD 
By the following steps, we describe our proposed method. 

Step –1 First chance constraints are converted into equivalent 

deterministic constraints. 

Step - 2 Calculate individual best and worst solution for each 

objective function subject to the deterministic constraints and 

membership function is formed for each objective function. 

Step – 3 Each level DM provides his/her choice on the bounds 

of the decision variables. 

Step – 4 Three FGP models are formulated and solved. 

Step – 5 Determine Euclidean distance functions for each 

model to select the best solution. The solution with minimum 

distance is considered as the best compromise solution. 

9. NUMERICAL EXAMPLES 

9.1 Example - 1 
Consider the following multi-level (tri-level) linear 

programming problem with chance constraints. 
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The individual maximum and minimum value of each 

objective function subject to the equivalent deterministic 

constraints are obtained as follows: 

Table 1. Max and Min values of objective functions
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The obtained solutions based on   proposed three FGP models 

(14), (15) and (16) are presented in the table 2. 
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Table 2. Result obtained from three FGP models

 

Model-1 Model-2 Model-3 

x1 = 0 .3737 x1 = 0 .4538 x1 = 0 .4934 

x2 = 0.2120 x2 = 0.2 x2 = 0.2 

x3 = 0.3929 x3 = 0.2944 x3 = 0.2196 

z1 = 3.2903 z1 = 3.3578 z1 = 3.5062 

z2 = 4.3933 z2 = 4.8284 z2 = 5.1408 

z3 = 3.548 z3 = 2.9146 z3 = 2.4306 

1zμ = 0.6184 
1zμ = 0.7494 

1zμ = 0.7873 

2zμ = 0.6185 
2zμ = 0.6706 

2zμ = 0.7081 

3zμ = 0.6185

 

3zμ = 0.48997

 

3zμ = 0.3918

 

D = 0.6608 D = 0.6568 D = 0.7074 

 

 

Figure 1. Distances obtained from three FGP models 

Figure1 reflects that model 2 offers the best compromise 

solution for the  problem 9.1. 

 

9.2 Example – 2 
Consider the following problem studied in [15] 
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In the table 3 the solution obtained from Kumar and Pal’s  

method [15] and solution obtained from proposed method are  

compared using Euclidean distances (See Figure 2). 

Table 3. Comparison between two methods 

Kumar and Pal’s Method 

[15] 

Proposed Method (Model – 

1, 2, 3) 

x1 = 0.5075 x1 = 1.567 

x2 = 0.5929 x2 = 0.05 

x3 = 0 x3 = 0.056 

F1 = 5.1308 F1 = 9.67 

F2 = 5.899 F2 = 7.703 

F3 = 2.7937 F3 = 3.732 

1F
 = 0.9968 

1F
 = 0.998 

2F
 = 0.7371 

2F
 = 0.447 

3F
 = 0.2717 

3F
 = 0.641 

D = 0.7743 D = 0.6593 

 

 

Figure 2. Comparison of Euclidean distance 

Figure 2. reflects that proposed method provides the best 

compromise solution. 
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11. CONCLUSION 
Chance constrained multi - level linear programming problem 

is presented in this paper. Three types of chance constraints 

and its equivalent deterministic constraints are discussed. 

Each level decision maker provides his/her choice on bounds 

of the decision variable controlled by him/her. Three simple 

and comprehensive FGP models are used to solve the 

problem. Only under deviational variables are used in FGP 

models and no over deviational variables are needed to solve 

the problem. In other words, the problem is solved using 

fewer variables than the model used in [15]. It is also clear 

that the proposed FGP model offers better solution than the 

FGP model established in [15].   In the real world hierarchical 

0.6608 0.6568 

0.7073 

0.63 

0.64 

0.65 

0.66 

0.67 

0.68 

0.69 

0.7 

0.71 

0.72 

FGP Model - 1 FGP Model -2 FGP Model - 3 0.7743 

0.6593 
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0.74 

0.76 

0.78 

0.8 

Kumar and 
Pal's method 

[15] 

Proposed 
method 
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decision making system, proposed approach is useful to make 

overall satisfactory decision in the decision making context. 

The future scope of the mentioned idea is that this approach 

can be extended to multi objective multi - level linear 

programming with chance constraints, multi objective multi - 

level linear decentralized programming with chance 

constraints. Further the proposed approach can be also 

extended to non -linear   multi objective multi - level linear 

programming with chance constraints.  
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