
International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.17, June 2015

20

Optimizing k-means for Scalability

Akansha Agrawal
M.Tech CSE Scholar

Rajasthan College of Engineering for Women,
Jaipur

Shreya Sharma
M.Tech, CSE

Amity University, Noida

ABSTRACT

Proposed decades ago, k-means is still the most popular

algorithm for clustering. Despite the drawbacks of k-means,

its advantages make it most attractive. Several researches

have been conducted to alleviate the problems of k-means.

We suggest here some simple modifications to optimize k-

means for scalability without much sacrifice in the precision.

Current shift in emphasis of data mining towards Big Data

requires fast algorithms that can scale well. We propose an

idea how time-tested techniques can be adapted to changing

needs. The implementation results demonstrate the impact

simple modifications can bring

General Terms

Clstering, k-means

Keywords

Data mining, Big Data, k-means

1. INTRODUCTION
Big data refers to the techniques that are employed to

understand, analyze and utilize the knowledge hidden in

massive amount of data that resides in Cloud. Cloud

computing itself has an array of associated technologies

specifically suited to the requirements. Yet, the impact of

cloud computing is too vast to be grasped completely at

present. The amount and velocity of data that is being

generated due to Cloud computing has led to many new

challenges of data mining. A straightforward requirement

from any data mining algorithm to be designed for Big Data

could be stated as: scalable, handling mixed data, handling

missing data, handling streaming data, fast, secure, accurate.

To ensure scalability, an algorithm might become complex

itself, thus increasing runtime. We observe that in order to

design a scalable yet fast algorithm for data analysis, the

conventional algorithms should be changed slightly so as not

to increase much programming effort and yet achieve

desirable performances. Also, in context of many cloud

applications involving data analysis speed of computation

matters much more than the accuracy of results. So, we

emphasize on reducing runtime of the algorithm by not much

sacrificing the precision of clustering results.

The choice of k-means algorithm is due to its simplicity. Five

decades ago K-means was proposed in [1]; it is still very

popular [2] and one of the top 10 algorithms of clustering and

data mining [3]. The algorithm was found to be sensitive to

initial selection of cluster representatives; and research for

better initialization varies from random selection to

supervised learning based selection. Lozano et al[4] first

attempted to compare the different versions of k-means

random partition, Forgy[5], Kaufman[6] and MacQueen[1]; a

more recent is by Erisoglu et al [7]. There are some research

works like [8] which compare and combine the evolutionary

approaches with k-means. Very recent works [9,10,11,12,13]

to improve k-means emphasize the potential of this algorithm;

hence we have selected it for our work. Some improve upon

initialization methods, while other analyze using different

distance metric to calculate distances between points.

2. BACKGROUND
The k-means algorithm used for clustering as proposed in

[1,5] are all similar in the basic concept that any data point

should be assigned to a cluster based on its distance from the

centroid of the cluster. The centroid of a cluster is an artificial

data point obtained by taking mean values of all data points

belonging to the cluster. Hence, each time a data point is

added to a cluster, the centroid of that cluster gets updated.

Thus, the algorithm progresses iteratively; at each iteration a

data point is considered and its cluster is decided based on the

minimum distance from the cluster representatives and then

updating the value of cluster representatives. At each iteration

through every data point, the points may or may not change

their cluster. The algorithm stops when no data point changes

its cluster. The initial values of cluster representatives have to

be picked randomly.

Factors that affect runtime and performance of k-means are:

1) initial seeds or cluster representatives, 2) number of

instances, 3) number of clusters, 4) number of dimensions.

Moreover, the small operations like measuring distance

between a data point and cluster representative also affect the

overall runtime of the algorithm.

3. PROPOSED SCHEME
We modify k-means in three aspects:1)Limiting criteria, 2)

Selection of initial seeds and 3) Distance metric used to

measure the distance between cluster representatives and data-

points.

Limiting criteria

The popular versions of k-means run till there are no changes

of clusters. This convergence is non-deterministic hence a

potential source of time consumption. When adapting k-

means for scalability, we need to make it faster. Here, we

suggest that algorithm should stop when number of data

points changing their cluster drops below a certain level. Let

this level be termed as “threshold”, denoted by δ. Another

limiting criterion is more straightforward, that is fixing the

number of iterations beforehand, to a number

“max_iteration”, denoted by µ. Deciding the values of these

parameters is now an issue. We suggest that these should be

decided based on the distribution of dataset so as to reflect the

nature of dataset.

We decide value of threshold as follows:

Threshold = Standard-deviation of extraneous values, where

any value which does not fall within the standard deviation

range of mean is termed as extraneous.

The algorithm to decide threshold is:

Step a) Compute mean vi and standard deviation di of all

dimensions

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.17, June 2015

21

Step b) For every data value xl in dimension l, if

 , the value is extraneous

Step c) Count the number of extraneous values in each

dimension and compute its standard deviation. Output

this value.

The value of max_iteration should be decided according to the

runtime required. The runtime of traditional k-means is

O(nkt), where t is number of iterations. Keeping t=n will give

a quadratic running time which is acceptable. To eliminate the

factor of k, we can pick t=n/k. More reduction can be obtained

by picking t=n/k*k. Thus, a tradeoff is to be established

between runtime and cluster quality.

Initializing cluster seeds

Generally initial cluster representatives are selected at random

in k-means algorithm. We observe that the time taken by the

algorithm to converge increases if the initial cluster centroids

are very far from the actual centroids. If the initial centroids

are selected as close as possible to ideal cluster centroids then

algorithm will take less time to converge. Instead of picking a

real data-point as a representative, we pick certain values and

form into a tuple to have an artificial data-point. For any

dimension, its entire range of values can be divided into k

sub-ranges, and the middle value of each sub-range is picked.

The algorithm to decide initial cluster representatives is:

Deterministic Mean Representatives

Step a) Compute width of sub-range of all m

dimensions as

Step b) Create k centroids as m-tuples of values

Step c) Output the centroids

Distance metric

The distance between centroids and data-points is crucial

operation, since it is performed many times during entire

clustering process. Conventional k-means algorithm uses

Euclidean distance which involves multiplication and

calculation of square root. This is an expensive distance

metric. We pick a less expensive distance metric, namely

Manhattan distance that involves only addition and

subtraction. Though this may impact the quality of cluster, yet

if the compromise in quality is not much more than the gain in

runtime, we can opt Manhattan distance safely. The formula

for computing Manhattan distance between any two m-tuples

is

Now, we present the variants of k-means that we use for

clustering. It is much similar to the traditional k-means,

except the three changes that we have proposed above.

4. SCALABLE k-MEANS WITH FIXED

ITERATIONS
Step 1 – Select initial centroids as per Deterministic Means

Representatives initialization technique

Step 2 – Compute Max_iterations

Step 3 – For each data-point, assign a cluster according to

minimum distance from the centroids. The distance used is

Manhattan.

Step 4 – update values of centroids as mean of the data-points

in the respective cluster.

Step 5 – Repeat steps 3 and 4 until Max_iterations is reached

5. SCALABLE k-means WITH Fast

Convergence
Step 1 – Select initial centroids as per Deterministic Means

Representatives initialization technique

Step 2 – Compute Max_iterations

, and Threshold δ

according to algorithm for deciding threshold

Step 3 – For each data-point, assign a cluster according to

minimum distance from the centroids. The distance used is

Manhattan. Simultaneously record the number of data-points

that change their cluster.

Step 4 – Update values of centroids as mean of the data-points

in the respective cluster.

Step 5 – Repeat steps 3 and 4 until Max_iterations is reached

or Number of changes fall below than δ.

6. IMPLEMENTATION RESULTS
The proposed variations in k-means have been implemented

using MATLAB® to study the impact of various parameters

involved. A comparison with original k-means, provided in

MATLAB as built-in function has been drawn. Experiments

have been performed over popular datasets and some

synthetic datasets. The results over famous Iris dataset which

has four dimensions and 150 instances belonging to 3

different classes are summarized in Tables 1 and 2. The last

two columns compare the proposed algorithms with

traditional k-means in terms of the precision-runtime trade

off.

Table 1 Parameter values and implementation results for proposed algorithms and standard k-means over Iris dataset

 Max_iteration Threshold
Actual

Iterations
Runtime Precision

% loss in

precision

%gain in

runtime

Fixed

Iteration k-

means

 17 0.039 sec 0.8867 0 90.66

Fast

convergence

k-means

17 13 2 0.0053 sec 0.77 13.16 98.73

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.17, June 2015

22

Standard k-

means
 0.418 sec 0.8867

Another popular dataset is Ruspini[15]of two-dimensional

points that could be grouped into two or four clusters, for

which standard k-means gives maximum precision (value 1) is

used to evaluate performance of proposed algorithms. The

results for 2 cluster grouping are summarized in Table 2.

Table 2 Parameter values and implementation results for proposed algorithms and standard k-means over Ruspini dataset

 Max_iteration Threshold Actual

Iterations

Runtime Precision % loss in

precision

%gain in

runtime

Fixed Iteration

k-means

 19 0.0158 sec 1.0 0 88.63

Fast

convergence k-

means

19 7 2 0.0021 sec 0.95 5 98.48

Standard k-

means

 0.139 sec 1.0

Synthetic datasets, with random data values, of different

dimensions and size were constructed and runtime
performance of the algorithms for scalability was tested. The

scale-up can be in number of instances, number of dimensions

or number of clusters.. Table 3 lists the runtime for different

settings

Size of Dataset Run-time (in sec)

n m k Fixed

Iteration k-

means

Fast

convergence k-

means

Standard k-

means

1000 2 2 0.24 0.0023 0.052

1000 5 2 0.27 0.0023 0.059

1000 10 2 0.332 0.003 0.061

1000 2 4 0.35 0.0054 0.0077

1000 5 4 0.353 0.007 0.015

1000 10 4 0.36 0.0072 0.029

5000 2 2 0.87 0.039 0.074

5000 5 2 0.96 0.058 0.105

5000 10 2 1.09 0.105 0.174

5000 2 4 1.26 0.034 0.019

5000 5 4 1.91 0.0349 0.175

5000 10 4 2.21 0.038 0.417

10000 2 2 3.4 0.113 0.051

10000 5 2 3.44 0.157 0.197

10000 10 2 3.558 0.182 0.311

10000 2 4 5.76 0.071 0.054

10000 5 4 5.91 0.073 0.203

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.17, June 2015

23

10000 10 4 6.03 0.0735 0.569

50000 2 2 18.43 0.34 0.72

50000 5 2 19.05 0.36 1.08

50000 10 2 19.89 0.397 2.56

50000 2 4 21.72 0.445 0.843

50000 5 4 23.62 0.447 1.54

50000 10 4 27.88 0.544 2.98

It can be observed that the growth in runtime of the proposed

algorithms is not much as compared to the traditional k-

means, hence they are more scalable than k-means. Also, the

proposed fast convergence k-means is much faster. The

growth can be clearly understood by graphical representation

given in Figure 1 for small size datasets. Figure 2 for medium

size datasets. Figure 3 shows the runtime cost of propose

algorithms vs. the Standard K-means algorithm for large size

datasets.

Figure 1 Growth of runtime of proposed algorithms for small dataset

Figure 2 Growth of runtime of proposed algorithms for medium size dataset

0

0.5

1

1.5

2

2.5

n=5000,

m=2, k=2

n=5000,

m=5, k=2

n=5000,

m=10, k=2

n=5000,

m=2, k=4

n=5000,

m=5, k=4

n=5000,

m=10, k=4

Fixed Iteration

Fast Convergence

Standard k-means

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

n=1000,
m=2, k=2

n=1000,
m=5, k=2

n=1000,
m=10, k=2

n=1000,
m=2, k=4

n=1000,
m=5, k=4

n=1000,
m=10, k=4

Fixed Iteration
Fast Convergence
Standard k-means

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.17, June 2015

24

Figure 3 Growth of runtime of proposed algorithms for large size dataset

7. CONCLUSION
A simple idea how can traditional clustering algorithms be

made scalable has been proposed. Experiments have been

conducted to test the scalability performance of proposal on

various synthetic datasets. Results over popular datasets and

their comparison with standard k-means show that the trade-

off of precision for speed is much in favour of the proposed

algorithms. That is, the proposed fast convergence variant of

k-means has a very slow growth of runtime with increasing

number of clusters, even in large datasets.

As further research, the proposed idea can be combined with

distance metrics for categorical data to check its behavior on

heterogeneous datasets. Also, the proposed idea of fixing the

number of iterations or number of changes can be used in

other traditional incremental clustering algorithms. The

performance of proposed variants for very large datasets, or

very large number of clusters is also open for exploration.

8. REFERENCES
[1] J. MacQueen. Some methods for classification and

analysis of multivariate observations. In Proc. 5th

Berkeley Symposium on Mathematical Statistics and

Probability, 1967.

[2] A. K. Jain. Data clustering: 50 years beyond k-means.

Pattern Recognition Letters, 31:651-666, 2010.

[3] X. Wu et al. Top 10 algorithms in data mining.

Knowledge and Information Systems, 14(1):1-37, 2008.

[4] Lozano, J.A., Pena, J.M., Larranaga, P., 1999. An

empirical comparison of four initialization methods for

the k-means algorithm. Pattern Recognition Letters 20,

1027–1040.

[5] E.W. Forgy (1965). "Cluster analysis of multivariate

data: efficiency versus interpretability of classifications".

Biometrics 21: 768–769.

[6] Kaufman, L., Rousseeuw, P. J., 1990. Finding Groups in

Data. An Introduction to Cluster Analysis. Wiley,

Canada.

[7] Erisoglu, M., Calis, N., Sakallioglu, S., 2011. A new

algorithm for initial cluster centers in k-means algorithm.

Pattern Recognition Letters 32, 1701–1705.

[8] C Liu, T Hu, Y Ge and H Xiong, “Which Distance

Metric is Right: An Evolutionary K-Means View”,

Proceedings of the Twelfth SIAM International

Conference on Data Mining, Anaheim, California, USA,

April 26-28, 2012.

[9] Igor Melnykov, Volodymyr Melnykov. “On K-means

algorithm with the use of Mahalanobis distances”,

Statistics and Probability Letters 84 (2014) 88–95.

http://dx.doi.org/10.1016/j.spl.2013.09.026

[10] GrigoriosTzortzis, AristidisLikas. “The MinMax k-

Means clustering algorithm”, Pattern Recognition

47(2014)2505–2516.

http://dx.doi.org/10.1016/j.patcog.2014.01.015

[11] Sadhana Tiwari and Tanu Solanki, “An Optimized

Approach for k-means Clustering”, International Journal

of Computer Applications (0975 – 8887) 9th

International ICST Conference on Heterogeneous

Networking for Quality, Reliability, Security and

Robustness (QShine-2013)

[12] A Singh, A Yadav and A Rana, “K-means with Three

different Distance Metrics”, International Journal of

Computer Applications (0975 – 8887) Volume 67–

No.10, April 2013.

[13] M Ramakrishnan and DT Jayaraj, “Modified K-Means

Algorithm for Effective Clustering of Categorical Data

Sets”, International Journal of Computer Applications

(0975 – 8887) Volume 89 – No.7, March 2014.

[14] E. H. Ruspini (1970) Numerical methods for fuzzy

clustering. Inform. Sci. 2, 319–350.

0

5

10

15

20

25

30

n=
10

00
0,

 m
=2

, k
=2

n=
10

00
0,

 m
=5

, k
=2

n=
10

00
0,

 m
=1

0,
 k
=2

n=
10

00
0,

 m
=2

, k
=4

n=
10

00
0,

 m
=5

, k
=4

n=
10

00
0,

 m
=1

0,
 k
=4

n=
50

00
0,

 m
=2

, k
=2

n=
50

00
0,

 m
=5

, k
=2

n=
50

00
0,

 m
=1

0,
 k
=2

n=
50

00
0,

 m
=2

, k
=4

n=
50

00
0,

 m
=5

, k
=4

n=
50

00
0,

 m
=1

0,
 k
=4

Fixed Iteration

Fast Convergence

Standard k-means

IJCATM : www.ijcaonline.org

