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ABSTRACT 

Proposed decades ago, k-means is still the most popular 

algorithm for clustering. Despite the drawbacks of k-means, 

its advantages make it most attractive. Several researches 

have been conducted to alleviate the problems of k-means. 

We suggest here some simple modifications to optimize k-

means for scalability without much sacrifice in the precision. 

Current shift in emphasis of data mining towards Big Data 

requires fast algorithms that can scale well. We propose an 

idea how time-tested techniques can be adapted to changing 

needs. The implementation results demonstrate the impact 

simple modifications can bring 
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1. INTRODUCTION 
Big data refers to the techniques that are employed to 

understand, analyze and utilize the knowledge hidden in 

massive amount of data that resides in Cloud. Cloud 

computing itself has an array of associated technologies 

specifically suited to the requirements. Yet, the impact of 

cloud computing is too vast to be grasped completely at 

present. The amount and velocity of data that is being 

generated due to Cloud computing has led to many new 

challenges of data mining. A straightforward requirement 

from any data mining algorithm to be designed for Big Data 

could be stated as: scalable, handling mixed data, handling 

missing data, handling streaming data, fast, secure, accurate. 

To ensure scalability, an algorithm might become complex 

itself, thus increasing runtime. We observe that in order to 

design a scalable yet fast algorithm for data analysis, the 

conventional algorithms should be changed slightly so as not 

to increase much programming effort and yet achieve 

desirable performances. Also, in context of many cloud 

applications involving data analysis speed of computation 

matters much more than the accuracy of results. So, we 

emphasize on reducing runtime of the algorithm by not much 

sacrificing the precision of clustering results. 

The choice of k-means algorithm is due to its simplicity. Five 

decades ago K-means was proposed in [1]; it is still very 

popular [2] and one of the top 10 algorithms of clustering and 

data mining [3]. The algorithm was found to be sensitive to 

initial selection of cluster representatives; and research for 

better initialization varies from random selection to 

supervised learning based selection. Lozano et al[4] first 

attempted to compare the different versions of k-means 

random partition, Forgy[5], Kaufman[6] and MacQueen[1]; a 

more recent is by Erisoglu et al [7]. There are some research 

works like [8] which compare and combine the evolutionary 

approaches with k-means. Very recent works [9,10,11,12,13] 

to improve k-means emphasize the potential of this algorithm; 

hence we have selected it for our work. Some improve upon 

initialization methods, while other analyze using different 

distance metric to calculate distances between points. 

2. BACKGROUND 
The k-means algorithm used for clustering as proposed in 

[1,5] are all similar in the basic concept that any data point 

should be assigned to a cluster based on its distance from the 

centroid of the cluster. The centroid of a cluster is an artificial 

data point obtained by taking mean values of all data points 

belonging to the cluster. Hence, each time a data point is 

added to a cluster, the centroid of that cluster gets updated. 

Thus, the algorithm progresses iteratively; at each iteration a 

data point is considered and its cluster is decided based on the 

minimum distance from the cluster representatives and then 

updating the value of cluster representatives. At each iteration 

through every data point, the points may or may not change 

their cluster. The algorithm stops when no data point changes 

its cluster. The initial values of cluster representatives have to 

be picked randomly. 

Factors that affect runtime and performance of k-means are: 

1) initial seeds or cluster representatives, 2) number of 

instances, 3) number of clusters, 4) number of dimensions. 

Moreover, the small operations like measuring distance 

between a data point and cluster representative also affect the 

overall runtime of the algorithm. 

3. PROPOSED SCHEME 
We modify k-means in three aspects:1)Limiting criteria, 2) 

Selection of initial seeds and 3) Distance metric used to 

measure the distance between cluster representatives and data-

points. 

Limiting criteria 

The popular versions of k-means run till there are no changes 

of clusters. This convergence is non-deterministic hence a 

potential source of time consumption. When adapting k-

means for scalability, we need to make it faster. Here, we 

suggest that algorithm should stop when number of data 

points changing their cluster drops below a certain level. Let 

this level be termed as “threshold”, denoted by δ. Another 

limiting criterion is more straightforward, that is fixing the 

number of iterations beforehand, to a number 

“max_iteration”, denoted by µ. Deciding the values of these 

parameters is now an issue. We suggest that these should be 

decided based on the distribution of dataset so as to reflect the 

nature of dataset.  

We decide value of threshold as follows: 

Threshold = Standard-deviation of extraneous values, where 

any value which does not fall within the standard deviation 

range of mean is termed as extraneous. 

The algorithm to decide threshold is: 

Step a) Compute mean vi and standard deviation di of all 

dimensions 
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Step b) For every data value xl in dimension l, if 

          , the value    is extraneous 

Step c) Count the number of extraneous values in each 

dimension and compute its standard deviation. Output 

this value. 

The value of max_iteration should be decided according to the 

runtime required. The runtime of traditional k-means is 

O(nkt), where t is number of iterations. Keeping t=n will give 

a quadratic running time which is acceptable. To eliminate the 

factor of k, we can pick t=n/k. More reduction can be obtained 

by picking t=n/k*k. Thus, a tradeoff is to be established 

between runtime and cluster quality. 

Initializing cluster seeds  

Generally initial cluster representatives are selected at random 

in k-means algorithm. We observe that the time taken by the 

algorithm to converge increases if the initial cluster centroids 

are very far from the actual centroids. If the initial centroids 

are selected as close as possible to ideal cluster centroids then 

algorithm will take less time to converge. Instead of picking a 

real data-point as a representative, we pick certain values and 

form into a tuple to have an artificial data-point. For any 

dimension, its entire range of values can be divided into k 

sub-ranges, and the middle value of each sub-range is picked.  

The algorithm to decide initial cluster representatives is: 

Deterministic Mean Representatives 

Step a) Compute width of sub-range of all m 

dimensions as        
           

 
       

Step b) Create k centroids as m-tuples of values 

     
        

 
             

Step c) Output the centroids 

Distance metric  

The distance between centroids and data-points is crucial 

operation, since it is performed many times during entire 

clustering process. Conventional k-means algorithm uses 

Euclidean distance which involves multiplication and 

calculation of square root. This is an expensive distance 

metric. We pick a less expensive distance metric, namely 

Manhattan distance that involves only addition and 

subtraction. Though this may impact the quality of cluster, yet 

if the compromise in quality is not much more than the gain in 

runtime, we can opt Manhattan distance safely. The formula 

for computing Manhattan distance between any two m-tuples 

is 

                                     

 

   

 

Now, we present the variants of k-means that we use for 

clustering. It is much similar to the traditional k-means, 

except the three changes that we have proposed above.  

4. SCALABLE k-MEANS WITH FIXED 

ITERATIONS 
Step 1 – Select initial centroids as per Deterministic Means 

Representatives initialization technique 

Step 2 – Compute Max_iterations   
 

   
 

Step 3 – For each data-point, assign a cluster according to 

minimum distance from the centroids. The distance used is 

Manhattan. 

Step 4 – update values of centroids as mean of the data-points 

in the respective cluster. 

Step 5 – Repeat steps 3 and 4 until Max_iterations is reached 

5. SCALABLE k-means WITH Fast 

Convergence 
Step 1 – Select initial centroids as per Deterministic Means 

Representatives initialization technique 

Step 2 – Compute Max_iterations   
 

   
, and Threshold δ 

according to algorithm for deciding threshold 

Step 3 – For each data-point, assign a cluster according to 

minimum distance from the centroids. The distance used is 

Manhattan. Simultaneously record the number of data-points 

that change their cluster. 

Step 4 – Update values of centroids as mean of the data-points 

in the respective cluster. 

Step 5 – Repeat steps 3 and 4 until Max_iterations is reached 

or Number of changes fall below than δ. 

6. IMPLEMENTATION RESULTS 
The proposed variations in k-means have been implemented 

using MATLAB® to study the impact of various parameters 

involved. A comparison with original k-means, provided in 

MATLAB as built-in function has been drawn. Experiments 

have been performed over popular datasets and some 

synthetic datasets. The results over famous Iris dataset which 

has four dimensions and 150 instances belonging to 3 

different classes are summarized in Tables 1 and 2. The last 

two columns compare the proposed algorithms with 

traditional k-means in terms of the precision-runtime trade 

off.

Table 1 Parameter values and implementation results for proposed algorithms and standard k-means over Iris dataset

 Max_iteration Threshold 
Actual 

Iterations 
Runtime Precision 

% loss in 

precision 

%gain in 

runtime 

Fixed 

Iteration k-

means 

  17 0.039 sec 0.8867 0 90.66 

Fast 

convergence 

k-means 

17 13 2 0.0053 sec 0.77 13.16 98.73 
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Standard k-

means 
   0.418 sec 0.8867   

 

Another popular dataset is Ruspini[15]of two-dimensional 

points that could be grouped into two or four clusters, for 

which standard k-means gives maximum precision (value 1) is 

used to evaluate performance of proposed algorithms. The 

results for 2 cluster grouping are summarized in Table 2. 

 

Table 2 Parameter values and implementation results for proposed algorithms and standard k-means over Ruspini dataset 

 Max_iteration Threshold Actual 

Iterations 

Runtime Precision % loss in 

precision 

%gain in 

runtime 

Fixed Iteration 

k-means 

  19 0.0158 sec 1.0 0 88.63 

Fast 

convergence k-

means 

19 7 2 0.0021 sec 0.95 5 98.48 

Standard k-

means 

   0.139 sec 1.0   

 

Synthetic datasets, with random data values, of different 

dimensions and size were constructed and runtime 
performance of the algorithms for scalability was tested. The 

scale-up can be in number of instances, number of dimensions 

or number of clusters.. Table 3 lists the runtime for different 

settings 

Size of Dataset Run-time (in sec) 

n m k Fixed 

Iteration k-

means 

Fast 

convergence k-

means 

Standard k-

means 

1000 2 2 0.24 0.0023 0.052 

1000 5 2 0.27 0.0023 0.059 

1000 10 2 0.332 0.003 0.061 

1000 2 4 0.35 0.0054 0.0077 

1000 5 4 0.353 0.007 0.015 

1000 10 4 0.36 0.0072 0.029 

5000 2 2 0.87 0.039 0.074 

5000 5 2 0.96 0.058 0.105 

5000 10 2 1.09 0.105 0.174 

5000 2 4 1.26 0.034 0.019 

5000 5 4 1.91 0.0349 0.175 

5000 10 4 2.21 0.038 0.417 

10000 2 2 3.4 0.113 0.051 

10000 5 2 3.44 0.157 0.197 

10000 10 2 3.558 0.182 0.311 

10000 2 4 5.76  0.071 0.054 

10000 5 4 5.91 0.073 0.203 
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10000 10 4 6.03 0.0735 0.569 

50000 2 2 18.43 0.34 0.72 

50000 5 2 19.05 0.36 1.08 

50000 10 2 19.89 0.397 2.56 

50000 2 4 21.72 0.445 0.843 

50000 5 4 23.62 0.447 1.54 

50000 10 4 27.88 0.544 2.98 

It can be observed that the growth in runtime of the proposed 

algorithms is not much as compared to the traditional k-

means, hence they are more scalable than k-means. Also, the 

proposed fast convergence k-means is much faster. The 

growth can be clearly understood by graphical representation 

given in Figure 1 for small size datasets.  Figure 2 for medium 

size datasets. Figure 3 shows the runtime cost of propose 

algorithms vs. the Standard K-means algorithm for large size 

datasets. 

 

 

Figure 1 Growth of runtime of proposed algorithms for small dataset 

 

Figure 2 Growth of runtime of proposed algorithms for medium size dataset 
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Figure 3 Growth of runtime of proposed algorithms for large size dataset 

7. CONCLUSION 
A simple idea how can traditional clustering algorithms be 

made scalable has been proposed. Experiments have been 

conducted to test the scalability performance of proposal on 

various synthetic datasets. Results over popular datasets and 

their comparison with standard k-means show that the trade-

off of precision for speed is much in favour of the proposed 

algorithms. That is, the proposed fast convergence variant of 

k-means has a very slow growth of runtime with increasing 

number of clusters, even in large datasets.  

As further research, the proposed idea can be combined with 

distance metrics for categorical data to check its behavior on 

heterogeneous datasets. Also, the proposed idea of fixing the 

number of iterations or number of changes can be used in 

other traditional incremental clustering algorithms. The 

performance of proposed variants for very large datasets, or 

very large number of clusters is also open for exploration. 
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