
International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.16, June 2015

29

A Review on Cryptographic Hashing Algorithms for

Message Authentication

Nishant Sahni
Computer Engineering

Department, Mukesh Patel
School of Technology

Management & Engineering,
NMIMS University, Mumbai,

India

ABSTRACT

The main purpose of Message Authentication is to prevent

manipulation of the message which is sent. MAC stands for

Message Authentication Code which is also known as

“Integrity Check Value” or “Cryptographic Checksum”.

The basic objectives of a hash function are to:

• Prevent finding a message from a given hash value

(Inversion)

• Prevent finding two messages with the same hash value

(Collision)

On the other hand, Message Authentication Codes are mainly

to prevent forgery. Thus, using hash functions for Message

Authentication may get a bit complex as hash functions do not

have the in-built functionality of a key.

In this paper, we discuss a few popular cryptographic hashing

algorithms and compare their performance with respect to

each other.

Keywords

Hashing Algorithms, Authentication Code, MD5

1. INTRODUCTION
Let A and B be two parties transmitting information between

each other. When A sends a message to B, an “authentication

tag” is generated by the MAC algorithm and is appended to

the message. This authentication tag is a function of the

information to be transmitted and a “shared secret key”. When

B receives the message, it uses the same algorithm and key to

re-compute the authentication tag and checks if its value

matches the tag attached to the message sent by A. If it

matches, we can be sure that the information was not altered

on its way from A to B. This is a basic construct of a

cryptographic hashing algorithm. We will now discuss in

detail, the working of some popular algorithms.

2. BRIEF DESCRIPTION

2.1 Nested Message Authentication Code

(NMAC)
This works on the concept of nesting a function. Let k =

(k1,k2) where k1 and k2 are keys to the function F, i.e.,

random strings of length ‘l’ each). The MAC function

NMAC(x) works on inputs x of arbitrary length as-

NMACk(x) = Fk1(Fk2(x)) [1]

The construction is stated to be simple and efficient. The cost

of the internal function is the same as that of hashing with a

keyless hash function. The main cost is the outer function

which is involved in only a single iteration.

2.2 Hashed Message Authentication Code

(HMAC)
The HMAC scheme improvises in a few shortcomings of the

NMAC scheme. The HMAC scheme involves a single ‘l’ bit

long key k, whereas in NMAC two keys are present. This

makes key management a lot simpler. Also, the NMAC

scheme directly accessed the code for the compression

function to key the initial variable (IV).

The function of HMAC is as follows:

Let F be the hash function initialized with its usual fixed

IV. The function HMAC works on inputs x of arbitrary

length and uses a single random string k of length 'l' as its key:

 [1]

where is the completion by adding 0’s of k to a full b-bit

block-size of the iterated hash function, opad and ipad are two

fixed b-bits constants (the “i” and “o” are mnemonics for

inner and outer), and is the bitwise Exclusive Or operator

[1].

2.2.1 Advantages and Disadvantages
The authors state that it is possible that some attacks may

work against HMAC but fail against NMAC. Also, it is stated

that having a single l-bit long key instead of two randomly

chosen key does not compromise on the security. Overall,

NMAC is a faster scheme to implement. On the other hand,

HMAC requires only one l-bit long key, as opposed to two

keys as in NMAC and hence simpler computations.

Some disadvantages of using NMAC scheme are as follows:

• The underlying hash must be modified to key the Initial

Variable (IV) which is not too difficult in software [1].

Some disadvantages of using HMAC scheme are as follows:

• The HMAC function is slower than the NMAC function as it

requires two more computation of the compression function.

• If the length of key is less than l-bits, the strength of the

keyed IV is reduced.

• A periodic refreshment of keys is required.

• It is inconsistent as there are some attacks that work against

HMAC but fail against NMAC.

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.16, June 2015

30

2.3 Geometric Hashing
Geometric Hashing is a type of computer vision tool used to

detect an object model in a visual scene. A basic model is a

set of 2D points which also forms a set of 2D coordinates.

M={Pi=(xi,yi)} (i=1….n) [2]

The main objective is to find the object model in a collection

of 2D points called the measurement points.

2.3.1 Preprocessing:
1. Two points of the model are chosen P0 and P1. These are

denoted the base points.

2. A 2D transform is found that maps P0 to the origin and P1

to the coordinates (0,1).

3. All model points are transformed using the 2D trans-

formation found in Step 2.

2.3.2 Recognition:
After a set of measurement points are obtained from a visual

scene, two measurement points are chosen at random and the

normalization procedure is applied for the model points as

shown above.

 Fig 1: Preprocessing

Some issues one might face during the preprocessing and

recognition stage are as follows:

• Noise may get introduced and affect the accuracy of the

measurement points.

• In case of noisy measurement points, taking just 2 as the

basis for normalization may prove faulty and will lead to

incorrect recognition.

To solve these issues, in reality, the recognition process must

be carried out repeatedly and with different measurement

points as the base points each time.

2.3.3 Geometric Hashing and Watermarking
For geometric hashing to work for watermarking, one basic

requirement is that the code embedding method must affect

the discrete image values [2]. These can be further associated

with 2D coordinates. Also, while decoding, the set of marked

values must be detectable. DCT Watermarking is one of the

watermarking techniques which fulfils these requirements.

2.3.4 Geometric Hashing and DCT Watermarking
DCT stands for Discrete Cosine Transform. Here, the image

blocks for encoding are not chosen in a random fashion. The

pattern for choosing the blocks is predefined and has

undergone a random transformation. This predefined pattern

of image blocks forms a model. It is defined by a set of 2D

coordinates which represent the position of the image blocks.

Image block coordinates are assigned to any transformed

version of the model as well.

In contrast to the original watermarking scheme which uses

Random Generator Seed (RNGS), Geometric Hashing

involves the extracting of all image blocks which maybe

possibly marked for decoding purposes [2]. These blocks,

when extracted, form the measurement set. The decoder has to

traverse each and every image block to check if the specific

model is present.

To sum it up, geometric hashing checks whether the model

was found within the measurement sets. If it is found, the

image is watermarked.

2.3.5 Advantages and Disadvantages

2.3.5.1 Advantages:
• The main advantage of using geometric hashing for

watermarking is that randomization of the watermark can be

done without having to maintain large amounts of information

such as Random Generator Seed (RNGS) for decoding

purposes [2]. If an appropriate watermarking technique is

chosen, geometric hashing can perform well against attacks.

• It helps prove and preserve the authenticity of an image file.

2.3.5.2 Disadvantages:
• Noise might seep in and the measurement set of possibly

marked blocks may consist of many noise blocks. This may

prevent smooth performance. Nullifying low frequency DCT

coefficients was found to reduce noise in the measurement set.

• Image block coordinates are discrete. Thus the rounding off

of the transformed model coordinates leads to the introduction

of digitization noise. numbers.

2.4 Message Digest 5 (MD5)

2.4.1 Prefix Approach
Here a key is simply concatenated with the message and

passed through the MD5 hash function where the key comes

first and then the message to be hashed. It can be represented

as follows-

MD5 (k . m) [3]

2.4.2 Damgard/Merkle Iterative Structure
The Damgard/Merkle structure is one where the compression

function is repeatedly applied to each of the successive

message blocks. We take a 128bit chaining value and a 512bit

message block as the input to the hash function. When the

compression function is applied, the output produces another

128bit chaining value which is used as input along with the

subsequent 512bit message block. The compression function

is iteratively applied to all the message blocks. Before we

begin this process, the message is padded to obtain a multiple

of 512bits so that the message can be broken down into equal

blocks of 512bits each. After processing the last message

block, the final chaining value which is obtained as output is

the hash of the message. This entire process can be illustrated

through the following image:

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.16, June 2015

31

 Fig 2: Damgard/Merkle Iterative Structure

2.4.3 A Few Other Approaches
The authors recommend three other methods which can be

employed for MD5, mainly for IP Security (IPSEC). They are

as follows:

1. MD5 (k1 . MD5 (k2 . m)) [3], where k1 and k2 are

independent 128bit keys.

2. MD5 (k . p . m . k) [3], where k is a 128-bit key and p is

384bits of padding.

3. MD5 (k . MD5 (k . m)) [3]$, where k is a 128-bit key.

In the first approach, two independent keys k1 and k2 of

128bit each are taken and the MD5 hash function is called

recursively to obtain the hashed value. Here k1 and k2 are

obtained as follows:

k1 = MD5 (k . α) and

k2 = MD5 (k . β) [3],

where α and β are distinct constants.

The third approach is very similar to the first one. Here a

single key k of 128bits is taken and the MD5 hash function is

called recursively to obtain the hashed value. This approach is

more vulnerable to attacks than the first one as only one key is

used.

In the second approach we pad the message with p of 384bits

and a single key k of 128bits is used. Very short messages are

more vulnerable to attacks, thus the padding is essential to

ensure the appropriate length of the message.

2.4.4 Advantages and Disadvantages

2.4.4.1 Advantages:
• MD5 is much easier to implement as compared to other hash

functions.

• MD5 is easily available.

• It provides good resistance against attacks.

2.4.4.2 Disadvantages:
• Not all approaches to obtain MAC through MD5 are attack

resistant.

2.5 Secure Hashing Algorithm 1 (SHA1)

2.5.1 Message Padding
The message can be of variable length. SHA-1 digests the

message in the form of message blocks each of 512bits. To be

able to break the message into multiple blocks of equal length,

we must pad the message. SHA-1 sequentially processes these

blocks of 512bits each. The message can be padded by putting

a “1” on the right or ‘n’ number of “0”s [4].

2.5.2 Computing the Message Digest
There are two main methods which SHA-1 adopts to obtain

the message digest.

Method 1:

• First the message is padded before digesting as described

before.

• It involves two buffers, each of which have five 32bit words.

• It also involves a sequence of eighty 32bit words.

• The words of the first 5-word buffer are named A,B,C,D and

E.

• The words of the second 5-word buffer are named

H0,H1,H2,H3 and H4.

• The words of the eighty word sequence are named

W(0),W(1)…….W(79).

• To obtain the message digest, the individual message blocks

of 512bits each processed in order.

• After processing, the message digest is the 160bit string

given by the 5 words H0 H1 H2 H3 H4 [4].

• It has a much lesser execution time than Method 2 as the

address computations are comparatively simpler.

• Uses more storage than Method 2.

Method 2:

• In this method, instead of using 80 32bit words we use only

W(0),….,W(15).

• Here the 16 32bit words form a circular queue.

• The message digest is given by the 5 words H0 H1 H2 H3

H4 [4].

• Thus, using the second method saves 64 32bit words of

storage.

• But the execution time is much more than Method 1 due to

the complexity of address computations.

2.5.3 Advantages and Disadvantages

2.5.3.1 Advantages:
• SHA-1 is easy to implement as compared to a few other

hashing algorithms.

• SHA-1 is easily available.

• It provides good resistance against attacks.

• It is more secure than MD5.

• It is less likely to have collisions in case of SHA-1.

2.5.3.2 Disadvantages:
• SHA-1 is more complex to implement than MD5.

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.16, June 2015

32

3. INFERENCE
HMAC and NMAC use already existing hashing algorithms

along with a key to provide the hashed output. These pre-

existing hash functions could be MD5 or SHA-1. This is

because these algorithms can be easily obtained and are

widely implemented. The objective is to maintain the integrity

of the pre-existing hash functions and also simultaneously

providing the added security of a key. Also, the underlying

hash function can be replaced with minimum effort if a

function more secure than MD5 or SHA-1 is found.

HMAC is an improvisation of NMAC and is more secure. But

on the other hand, HMAC is much slower than NMAC. Also,

NMAC involves the use of two keys whereas HMAC involves

the use of a single key.

MD5 and SHA-1 are the most commonly used hashing

algorithms. This is due to their ease of implementation and

high availability. HMAC and NMAC use these hashing

algorithms along with a key to produce a hash value. MD5

produces a hash value of 128bits whereas SHA-1 produces a

hash value of 160bits. Since the greater the size of the hash

value, greater the security, SHA-1 is more secure than MD5.

But on the other hand, MD5 is easier to implement as

compared to SHA-1.

In all the algorithms mentioned above the workload is a text

of a certain length. But when our message is an image file, we

use geometric hashing to authenticate he image. Here 2D

coordinates are passed through the hash function. These

undergo a 2D transformation known as normalization. The

two coordinates to be transformed are chosen randomly. Here

the output image can be of a certain number of bytes to a few

kilobytes as compared to a text of l-bits.

4. CONCLUSION
In this review paper, we have reviewed the various

cryptographic hashing algorithms and their application in

message authentication. The benefits and drawbacks of each

of these algorithms were evaluated as well. Also, each of their

performance and level of security was compared. The use of

keys along with hashing algorithms was also observed and its

advantages were highlighted.

There is still scope for improvement as none of these

algorithms are perfect. They all have their drawbacks and in

the future, work can be conducted to overcome these

shortcomings.

5. REFERENCES
[1] Mihir Bellare , Ran Canetti and Hugo Krawczyk

“Keying hash functions for message authentication

(1996)” in Advances in Cryptology – Crypto 96

Proceedings, Lecture Notes in Computer Science Vol.

1109, N. Koblitz ed., Springer-Verlag, 1996. Ding, W.

and Marchionini, G. 1997 A Study on Video Browsing

Strategies. Technical Report. University of Maryland at

College Park.

[2] H.Z. Hel-Or and Y. Yitzhaki “Geometric Hashing

Techniques for Watermarking”. Tavel, P. 2007 Modeling

and Simulation Design. AK Peters Ltd.

[3] Burt Kaliski and Matt Robshaw “Message

Authentication with MD5” in CryptoBytes volume 1,

Number 1, spring 1995.

[4] D. Eastlake and P. Jones “US Secure Hash Algorithm 1

(SHA1)” September 2001. Brown, L. D., Hua, H., and

Gao, C. 2003. A widget framework for augmented

interaction in SCAPE.

[5] H. Krawczyk, M. Bellare and R. Canetti “HMAC:

Keyed-Hashing for Message Authentication” February

1997. Spector, A. Z. 1989. Achieving application

requirements. In Distributed Systems, S. Mullender

IJCATM : www.ijcaonline.org

