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ABSTRACT  
DNA sequencing of different species has resulted in the 

generation of huge amount of biological data. There is an 

increasing need to develop computational techniques to search 

for relevant information in the DNA data. Discovering motifs 

involves determining short sequence segments which have a 

high probability of repeated occurrences over many sequences in 

different species. Motifs are useful in finding transcription factor 

binding sites, transcriptional regulatory elements and so on. 

Transcription factor binding sites (TFBSs) is important for 

understanding the genetic regulatory system. Our method is 

based on the Ant Colony Optimization (ACO) and Gibbs 

sampling algorithm to discover DNA motifs (collections of 

TFBSs) in a set of DNA-sequences. We first applied an ACO 

algorithm to find a set of better candidate positions for the motif. 

The resultant positions are given as input to the Gibbs sampler 

method for calculating score for each sequence. Based on the 

score, motif for TF binding sites is identified.       
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1. INTRODUCTION 

A DNA motif is a nucleic acid sequence pattern having 

biological significance such as being DNA binding sites for a 

regulatory protein, ribosome binding, mRNA processing 

(splicing, editing, polyadenylation) and transcription 

termination. Pattern is short (5 to 20 base-pairs (bp) long) and is 

known several times within a gene [1]. Characteristics of motifs 

are: 

 They comprise of patterns of length 10 to 25 bases, 

with repeated occurrences 

 They are statistically over-represented in regulatory 

regions 

 They are small, have constant size, and are repeated 

very often. 

        Motifs are patterns found in biological sequences that are 

essential for understanding the function of genes, human 

diseases, drug design, etc. They are important for identifying 

transcriptional regulatory elements, transcription factor binding 

sites, etc. making the problem of identifying motifs an important 

one in biology [2]. Suppose a transcription factor (TF) controls 

five different genes. Each of these genes should have binding 

sites for TF in their promoter region. Now suppose we are given 

the promoter regions of the five genes g1, g2, g3, g4, g5. We 

cannot find the binding sites of TF, without knowing about them 

a priori. Binding sites are similar to each other, but not 

necessarily identical. This is the motif finding problem.               

Gene expression is regulated by Transcription Factors [15], to 

their corresponding binding sites. Transcription Factors bind to 

specific DNA sequences, namely Transcription Factor Binding 

Sites (TFBSs) [4, 5], to initialize, assist, or suppress 

transcriptional activity. TFBSs are usually small DNA sequences 

in the range of 6 to 30 bps. As of now, the most accurate and 

reliable method for detecting TFBSs remains biological 

experiments such as DNAse footprinting assay [6] and 

Electrophoretic Mobility Shift Assay (EMSA) [7]. These 

methods are labor intensive and time consuming.  

Mohan Das and Dai surveyed various approaches including the 

popular Gibbs sampling method and machine learning 

techniques for motif finding [16].  In [3], a hybrid method that 

used ACO and Gibbs Sampler method for finding motif in 

protein sequences. In this paper, we propose such a hybrid 

method which uses ACO [8] and Gibbs Sampler method [9, 16] 

to find a motif in DNA sequences. By using ACO algorithm, we 

can find better starting positions of sequences for motif finding. 

These positions of sequences provide a set of candidates for the 

Gibbs sampler method to get a better solution for motif 

identification.  

2. THE GIBBS SAMPLER METHOD FOR 

MOTIF FINDING 
Gibbs sampling [10] is a statistical technique related to Monte 

Carlo Markov Chain sampling. Gibbs sampling randomly 

choose a beginning position in each sequence and built position 

weight matrix for that sequence. From the position weight 

matrix, the score for each sequence is calculated.  Randomly one 

of the sequences is selected and removed based on which the 

matrix is updated. It is seen that the scores at most positions are 

not good enough and also requires more time for processing. 

            The Gibbs sampling algorithm uses two data structures, 

one for the probabilistic model and another for the set of 

positions. The probabilistic model consists of two components. 

One component is applied to calculate the variables of 

nucleotide   frequencies at each position i of a set of 

subsequences, 1 ≤ i ≤ w, where w is the length of motif. Second 

component   describes all other background positions. The set of 

positions Pk, 1 ≤ k ≤ n, constitutes the alignment, where Pk 

denotes the starting position of pattern xk in sequence k. The 

concept of this algorithm is as follows [9, 14]: 

 

Input: A set S of n sequences S1, S2,… , Sn, and  motif length 

w. 
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Output: A motif x1, x2, …, xn, each of length w, where each xi 

is a substring of Si. 

[1] Randomly choose a beginning position pi in each sequence 

Si, 1 ≤ i ≤ N. Let xi be a substring of Si with length w and 

starting from position pi. 

[2] Randomly select one sequence, S*, in S , whose substring is 

xs*. Let U ={x1, x2,…, xn} − {xs*}. 

[3] With U, create a 4 × w probability matrix M. In the matrix, 

each row represents nucleotides. Note the number of nucleotides 

is 4. Mr,j represents an occurrence frequency, which is the 

number of sequences that nucleotides r appears at position j. 

[4] Let Rl be a substring of S* with length w and starting at 

position l. For each Rl, calculate a score ql, which involves the 

frequency matrix M and the background distribution B as in 

equation (1). 
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[5] Randomly choose a starting position l in S* with probability 

proportional to ql. The new starting position l will construct Rl 

which is a new substring of S* with length w. Then xs* is 

replaced by Rl. 

[6] If the best solution has not been changed after some 

predefined iterations, terminate the algorithm; otherwise, go to 

step 2. 

 

3. ANT COLONY OPTIMIZATION 

ALGORITHM (ACO)            
Swarm intelligence is an approach inspired from the collective 

behavior of insects or other animals for problem solving. Few of 

the algorithms in this category are the artificial bee colony 

algorithm, Cuckoo search algorithm, termite hill algorithm and 

the ant Colony Optimization algorithm (ACO) [8] are proposed 

and applied to a wide range of problems.  

The ACO algorithm is based on the behavior of real ants which 

somehow find the shortest path to the food. In an experiment 

carried out by Goss et. Al, it became evident that ants could find 

the shortest path to the food source. This is the result of the 

interaction amongst the ants by understanding the intensity of 

the chemical component, pheromone, dropped by each ant on the 

path. More the ants moving on a particular path, more favorable 

the path is. The ACO algorithm simulates the natural behavior of 

ants, including mechanisms of cooperation and adaptation. 

ACO algorithms are based on the following concepts [11]: 

• Every path followed by an ant is associated with a feasible 

solution for a given problem. 

•Amount of pheromone deposited on path is proportional to 

the quality of the corresponding feasible solution for the 

target problem. 

• When an ant has to decide between two or more paths, it 

uses the pheromone deposition intensity to select the path. 

(figure 1). 

 

 
Figure 1: (a) Real ants travel a path between A and B. (b) 

Block hampers the movements of the ants on the path. Each 

of the ants’ select one way, left or right, with equal 

probability. (c) More ants traveling on the shorter path, 

pheromones are deposited more quickly on the shorter path. 

 

ACO meta-heuristic is applied to a wide range of problems such 

as the Travelling salesman problem, the vehicle routing problem, 

quadratic assignment problems, scheduling problems, and more. 

ACO have been successful in providing optimal solutions to 

many NP-Hard problems. However, application of ACO in the 

bioinformatics domain is limited and yet to be explored. 

4. OUR METHOD 
There are two steps in the Gibbs sampler method. First, Gibbs 
sampler method randomly chooses a beginning position Pi of 
each sequence Si in S. By using these random beginning 
positions, it makes slow progress. Second, Gibbs sampler 
method calculates the score ql at each position l in sequence. 
Scores at most positions are not good enough to be paid more 
attention. Most positions do not provide any help to find a better 
solution. 

          We apply ACO algorithm to find a set of better initial 
positions in each sequence. Then we apply the Gibbs sampler 
method with the set of better initial positions as the inputs. And 
we calculate the scores of those initial positions in sequences 
instead of all positions [figure 2].  

 

Figure 2: Flow diagram of the proposed algorithm. DNA 

sequence is given to ACO algorithm to explore better initial 

positions to be used by the Gibbs sampler to find the motif 

for TF binding sites. 
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       By using the ACO algorithm, efficiency and quality of 
Gibbs sampler method is improved. The total required 
computing time is reduced, because the beginning positions are 
randomly chosen in the Gibbs sampler method, which takes very 
long time to converge to a better solution. 

       We applied ACO algorithm to find motif in input sequences. 

Ant chooses path depends on pheromone probability. The 

probability of pheromone is given by follows equation: 
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        Qk(lu) represents the probability that ant k  chooses the 

character u at position l. C is the character set of input 

sequences. α is a parameter which is used to determine the 

influence of the pheromone trails. )(tlu  is explained as 

follows. 
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                (3) 

          The left side )1( tlu  means the consistency of 

pheromone on the character u at position l. lum  denotes the total 

number of ants which carry the character u at position l. The 

parameter α, 0 < α< 1, is the rate of the pheromone trails 

evaporation. )(tk

lu denotes the variable of pheromone on the 

character u at position l that ant k has chosen. 

         The travel of ants between nodes depends on the 

pheromone. We assume that each ant travels from the starting 

point to the terminal point and passes through w middle nodes. 

On each node, there are |C| kinds of foods, where |C| denotes the 

number of characters in set C. Each ant travels from the starting 

point A. When each ant passes through middle nodes, it chooses 

to pick up one of the |C| foods depending on the consistency of 

pheromone. After each ant arrives at the terminal point B, it 

carries w foods which are collected from middle nodes. Those w 

foods are constructed into a string to form a sample motif.  

 

 
 

Figure 3: Each ant k travels from the starting point A to the 

terminal point B. When each ant passes through middle 

nodes, it picks up one of the four foods A, C, G, and T. 

 

The concept of this Algorithm is as follows [3]: 

Input: A set S of n sequences S1, … , Sn, and motif length w. 

Output: x1, … , xn, each of length w, where xi is a substring Si. 

[1] Set parameters and initialize pheromone trails. 

[2] Each ant k randomly constructs a sample 
kx  with length w. 

The probability of choosing the character is calculated by 

Formula 2. 

[3] Each ant k compares sample 
kx  with each sequence Si to 

find the best matched substring 
k

ix  in Si. Then each ant k gets a 

set 
kV = },...,,{ 21

k

n

kk xxx . 

[4] Apply the score function, Formula 1, to calculate the score 
kq  of each substring set

kV . 

[5] Update the pheromone with Formula 3. 

[6] Find the best score 
bq  among all 

kq s. And update the best 

sample 
bx  accordingly. If the best sample 

bx   is not changed 

for some predefined iterations, go to Step 7; otherwise, go to 

Step 2. 

[7] Compare 
bx  with each sequences Si to find a set Ai. And let 

xi be the best position in Ai. 

[8] Randomly select one sequence, S*, in S, whose best position 

is xs*. Let U = {x1, x2, · · · , xn} − { xs* }. 

[9] With U, create a |C|×w probability matrix M, where each row 

represents a character in the set C. Mr,j represents an occurrence 

frequency, which is the number of sequences that nucleotides r 

appears at position j. 

[10] For each candidate position Rl of S*, calculate the score of 

ql by using formula 1. 

[11] Randomly choose a starting position l in S* with probability 

proportional to ql. Update the best substring set 
bV  if the best 

score 
bq  is changed, where 

bV  denotes the substring set of the 

best motif. 

[12] If the best substring set 
bV  is not changed after some 

predefined iterations, terminate our algorithm; otherwise, go to 

Step 8. 

5. RESULTS 

          For testing the hybrid method, the H3N2 virus data set is 

chosen [17] which consist of 685bytes. We apply ACO 

algorithm to find a set of better initial positions for the Gibbs 

sampler method. The uncertainty arising while randomly 

choosing a set of beginning positions is reduced which results in 

convergence to a better solution. Table-1 shows scores of each 

motif at a particular position in the sequence. It is interesting to 

observe that the motif “CAGAAC” at position 2 in the H3N2 

DNA sequence has a score of 8.55 which is the highest. It is 

biologically understood that CAGAAC has important 

functionality. 

 

Table 1. The first column is obtained after applying ACO to 

DNA sequences. The second and third columns are obtained 

by applying Gibbs sampler on the sequences in column 1. 

Sequence Position Score 

TCAGAA 1 1.2476851851851853 

CAGAAC 2 8.555555555555555 

AGAACC 3 1.8148148148148149 

GAACCA 4 4.76388888888889 

AACCAG 5 5.703703703703703 

ACCAGT 6 0.48611111111111116 

CCAGTT 7 0.9074074074074074 

CAGTTA 8 7.0 

AGTTAT 9 5.703703703703703 

GTTATA 10 2.3333333333333335 

TTATAA 11 3.2083333333333335 

TATAAA 12 5.703703703703703 

ATAAAT 13 2.138888888888889 

TAAATT 14 2.3333333333333335 
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AAATTT 15 3.5 

AATTTA 16 4.666666666666667 

ATTTAT 17 4.277777777777778 

TTTATC 18 1.5555555555555556 

TTATCA 19 2.041666666666667 

TATCAT 20 6.654320987654321 

ATCATT 21 1.1666666666666667 

TCATTT 22 0.875 

CATTTC 23 6.222222222222222 

ATTTCC 24 2.7222222222222228 

TTTCCT 25 2.117283950617284 

TTCCTT 26 1.3611111111111114 

TCCTTC 27 0.875 

CCTTCT 28 1.8148148148148149 

CTTCTC 29 2.419753086419753 

TTCTCC 30 2.041666666666667 

TCTCCA 31 1.058641975308642 

CTCCAC 32 3.3271604938271606 

TCCACT 33 0.6805555555555557 

CCACTC 34 0.9074074074074074 

CACTCC 35 5.4444444444444455 

ACTCCT 36 1.058641975308642 

 

6. CONCLUSIONS 
A single nucleotide difference can alter protein function in such 

a way that it fails to function normally. Single nucleotide 

changes have been linked to hereditary differences in height, 

facial structure, pigmentation, brain development, and many 

other striking morphological differences; due to single 

nucleotide changes, hands can develop structures that look like 

toes instead of fingers. Therefore motif finding is important in 

biology.        

First, we apply ant colony optimization algorithm which give set 

of better initial position for Gibbs sampling. Gibbs sampling 

takes that initial position and calculate score for each sequence. 

In our algorithm Gibbs sampling doesn’t take randomly selected 

sequence for calculation so, time required for finding motifs 

using our algorithm is reduced drastically. Given the rate at 

which the DNA and Protein databases are growing, it is 

important to develop efficient algorithms and computational 

tools for finding motifs. Finding motifs remain a problem of 

interest to computational biologist and other researchers given 

its importance in drug design and early detection of diseases. In 

this paper, the method can be tested and applied to various data 

sets and the efficiency in terms of time could be measured. 

Future work involves finding the efficiency of proposed 

algorithm on various data sets. 
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