
International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.15, June 2015

1

 Algorithms of All Pair Shortest Path Problem

Susmita
Dept. of Computer Science

MANIT, Bhopal
M.P, India

ABSTRACT
This paper is based on survey of various algorithms for all pair

shortest path problem (APSP) on arbitrary real weighted

directed graphs.This paper has summarized existing methods

for solving shortest-path problems. In particular, we have

addressed both sequential and parallel algorithms. We begin

with a review of conventional sequential shortest-path

algorithms and later, we have discussed blocked and vectorized

implementation, thereby with the aim of reducing

computational effort.

Keywords
APSP,Repeated Squaring Method,ADD Based

Algorithm,Kleene’s Algorithm,Blocked Implementation

1. INTRODUCTION
Today’s social networks are getting larger and it needs to

analyze datasets with millions of nodes and billions of

edges.These networks require shortest path for transportation

and communication.The All-Pairs Shortest Paths (APSP)

problem seeks the shortest path distances between all pairs of

vertices, and is one of the most fundamental graph

problems.Given a weighted digraph G=(V,E) with weight

function W :E -->R,(R is the set of real numbers)determine the

length of the shortest path (i.e,distance) between all pair of

vertices in G.We wish to find for every pair of vertices u, v ∈

V, a shortest (least-weight) path from u to v, where the weight

of a path is the sum of the weights of its constituent edges.

The all-pairs shortest path problem can be considered the

fundamental of all routing problems.It has various applications

areas such as Routing Protocol, Driving direction on Web

mapping,transportation and traffic assignment problem, VLSI

design ,wireless sensor network etc.

 We can solve an all-pairs shortest-paths problem by running a

single-source shortest-paths algorithm |V| times, once for each

vertex as the source. If all edge weights are non negative, we

can use Dijkstra’s algorithm.With the use of linear-array

implementation of the min-priority queue, the running time is

O(V3 + V E) = O(V3). The binary min-heap implementation of

the min-priority queue yields a running time of O(V E log V),

which is an improvement if the graph is sparse. Alternatively,

we can implement the min-priority queue with a Fibonacci

heap, yielding a running time of O(V2 log V + V E).If negative

weight edges are allowed, Dijkstra’s algorithm can no longer

be used. Instead, we must run the slower Bellman-Ford

algorithm once from each vertex.The resulting running time is

O(V2E), which on a dense graph is O(V4).We have proposed

here various dynamic approaches for solving APSP

problems.Rest of the paper is organized as follows:Section II

gives different algorithms for finding all pair shortest paths and

section III is devoted to conclusion and results of using these

algorithms.

2. DIFFERENT ALGORITHMS FOR

APSP PROBLEM REPEATED

SQUARING METHOD
 [1]

It is a dynamic programming algorithm based on adjacency

matrix representation. Input is an n × n matrix and W

representing the edge weights of an n-vertex directed graph G

= (V, E). That is, W = (wi j), where

 0 if i=j,

 Wij= the weight of directed edge(i,j) if i≠j and

(i,j) ∈ E,

 ∞ if i≠j and

(i,j) ∈ E.

Negative weight edges are allowed but we assume that the

input graph contains no negative-weight cycles.The n*n output

matrix D= (dij), where dij contains the weight of a shortest path

from vertex i to vertex j. This algorithm works like repeated

matrix multiplications.We start by developing a (V4)time

algorithm for the all-pairs shortest-paths problem and then

improve its running time to (V3 log V).To solve the all-pairs

shortest-paths problem, we need to compute a predecessor

matrix  = (ij), where ij is NIL if either i = j or there is no

path from i to j,and otherwise ij is the predecessor of j on

some shortest path from i. For each vertex i ∈ V, we define the

predecessor subgraph of G for i as

Gπ,i =(V,i , E,i) ,where

 V,i = {j ∈ V : ij ≠ NIL}∪ {i}

and

 E,i ={(ij , j) : j ∈V,i –{i}}.

As we know that all sub paths of a shortest path are shortest

paths.Let l (m)
ij the minimum weight of any path from vertex i

to vertex j that contains at most m edges.

 l
(0)

ij = 0 if i=j,

 ∞ if i≠j.

Thus,we recursively define

l
 (m)

ij = min(l
(m-1)

ij , min 1≤k≤n {l
(m-1)

ik + wkj})

 = min1≤k≤n { l
(m-1)

ik + wkj}.

If the graph contains no negative-weight cycles, then for every

pair of vertices i and j for which δ(i, j) < ∞, there is a shortest

path from i to j that is simple and thus contains at most n − 1

edges. The actual shortest-path weights are therefore given by

δ (i,j) = lij

(n-1)
 = lij

n
 = lij

(n+1)
 = … .

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.15, June 2015

2

Conventionally we compute the shortest-path weights by

extending shortest paths edge by edge.This is the following

procedure, which, given matrices l(m-1) and W, returns the

matrix l(m).

EXTEND-SHORTEST-PATHS(L,W)

1 n ← rows[L]

2 let L’ = (l’
ij) be an n × n matrix

3 for i ← 1 to n

4 do for j←1 to n

5 do l’
ij ←∞

6 for k← 1 to n

7 do l’ij ← min(l’
ij, lik +wkj)

8 Return L’.

We compute a series of matrices L (1), L(2),…, L(n-1), where for

m = 1,2,…,n-1 ,we have

L(m)= (l (m)
ij). The final matrix L(n−1) contains the actual

shortest-path weights.

L(1) = L(0) .W = W,

L(2) = L(1) .W = W2 ,

L(3) = L(2) .W = W3,

 .

 .

 .
L(n-1) = L(n-2) . W = Wn-1 .

The matrix L(n−1) = Wn−1 contains the shortest-path weights.This

procedure computes the sequence in θ(n4) time.But our goal is

not to compute all the L(m) matrices. Our interest is only in

matrix L(n-1).

Therefore, we can compute L(n−1) with only upper bound of

log(n − 1)matrix products by computing the sequence.

 L(1) = W,

 L(2) = W2 = W.W ,

 L(4) = W4 = W2. W2 ,

 L(8) = W8 = W4 . W4,

 .

 .

 .
L (2 ^lg(n-1)) = W(2 ^lg(n-1)) = W(2 ^(lg(n-1)-1)) . W(2 ^(lg(n-1)-1)) .

Since, 2lg(n-1) ≥ n-1 , the final product L (2 ^lg(n-1)) is equal to L(n-

1).

The running time of this repeated squaring technique is

θ(n3logn). since each of the lg(n − 1) matrix products takes

θ(n3) time.

The Floyd-Warshall algorithm[1]

This is also a graph analysis algorithm for finding shortest

path in a weighted graphs with positive or negative edge

weights but with no negative cycles and also for

finding transitive closure of a relation R.We can say this

algorithm as the quadratic version of Dijkstra's algorithm from

each of the n vertices.Unlike matrix-multiplication-based

algorithms,it considers the intermediate vertices of a shortest

path.Consider a graph G with vertices V numbered 1

through N. Further consider a function shortestPath(i, j, k) that

returns the shortest possible path from i to j using vertices only

from the set {1,2,...,k} as intermediate points along the way.

If w(i,j) is the weight of the edge between vertices i and j,we

can define shortestPath(I,j,k+1) in terms of the following

recursive formula:

Base Case: shortestPath(i,j,0) = w(i,j)
Recursive case:

shortestPath(i,j,k+1)=min(shortestPath(i,j,k),shortest

Path(i,k+1,k)+ shortestPath(k+1,j,k))

The algorithm works by computing shortestPath(i, j, k) for all

(i, j) pairs for k = 1 to n. Pseudocode for this is as follows:[2]

1 Let dist be a |V|*|V|array of minimum distances initialised to

∞ .

2 for each vertex v

3 dist[v][v] <- 0

4 for each edge (u,v)

5 dist[u][v] <- w(u,v) // the weight of the edge (u,v)

6 for k from 1 to |V|

7 for i from 1 to |V|

8 for j from 1 to |V|

9 if dist[i][j] > dist[i][k] + dist[k][j]

10 dist[i][j] ← dist[i][k] + dist[k][j]

11 end if

The above algorithm only outputs the shortest distances. We

can modify the solution to give the shortest paths also by

storing the predecessor information in a separate 2D matrix.To

find all n2 of shortestPath(i,j,k) (for all i and j) from those of

shortestPath(i,j,k−1) requires 2n2 operations.The total number

of operations used is n · 2n2 = 2n3.So this algorithm runs in

θ(n3) time and with O(n2) space.Floyd-Warshall algorithm can

be easily modified to detect cycles.If we fill negative infinity

value at the diagonal of the matrix and run the algorithm,then

the matrix of predecessors will contain also all cycles in the

graph(the diagonal will not contain only zeros,if there is a

cycle in the graph).

Johnson’s algorithm for sparse graph[1]

For sparse graphs, this algorithm is asymptotically better than

either repeated squaring of matrices or the Floyd-Warshall

algorithm. It also allows negative weight edges but not

negative weight cycle.The algorithm outputs weights for all

pairs of vertices or reports that the input graph contains a

negative-weight cycle. Johnson’s algorithm uses as subroutines

both Dijkstra’s algorithm and the Bellman-Ford algorithm.The

idea of Johnson’s algorithm uses the technique of reweighting

all edges and make them all positive,then apply Dijkstra’s

algorithm for every vertex.Bellman Ford algorithm is used to

transform the input graph for removing all negative weights.

For transformation of graph a new vertex is added to the graph

and connected to all existing vertices. The shortest distance
values from new vertex to all existing vertices are h[]

values.Following is the complete algorithm:

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.15, June 2015

3

JOHNSON(G)

1 compute G’, where V[G’] = V[G] ∪ {s}, E[G’] =

E[G] ∪ {(s, v) : v ∈ V[G]}, and w(s, v) = 0 for all v ∈

V[G]

2 if BELLMAN-FORD(G’,w, s) = FALSE

3 then print “the input graph contains a negative-

weight cycle

4 else for each vertex v ∈ V[G’]

5 do set h(v) to the value of δ(s, v) computed

by the Bellman-Ford algorithm

6 for each edge (u, v) ∈ E[G’]

7 do w’(u, v) ← w(u, v) + h(u) − h(v)

8 for each vertex u ∈ V[G]

9 do run DIJKSTRA(G, w’, u) to compute

δ’(u, v) for all v ∈ V[G]

10 for each vertex v ∈ V[G]

11 do duv ←δ’(u, v) + h(v) − h(u)

12 return D

The main steps in the algorithm are Bellman Ford Algorithm

called once and Dijkstra called V times. Time complexity of

Bellman Ford is O(VE) and time complexity of Dijkstra is

O(VlogV). So overall time complexity is O(V2log V + VE) by

a Fibonacci heap. The time complexity of Johnson's algorithm

becomes same as Floyd-Warshall when the graph is

complete(E=O(V2)).Without assumption made by Johnson’s ,it

is difficult to break the O(n3)boundary. The binary min-heap

implementation yields a running time of O(V E lg V), which is

still asymptotically faster than the Floyd-Warshall algorithm if

the graph is sparse.

ADD Based Algorithm[3]

Algebric decision diagram,an symbolic algorithm is a new kind

of BDD(Binary Decision Diagram) with a set of constant

values different than the set {0,1}.ADD based procedures for

weight calculation are very effective for very large graph(over

1027 vertices and 1036 edges).This symbolic computation

technique is based on the triangulation rule.

Formal Definition:

An ADD is a directed acyclic graph (V∪Φ∪T,E) representing a

set of functions fi :{0,1}n ->S, where S is the finite carrier of

the algebraic structure over which the ADD is defined. V is the

set of the internal nodes. The out-degree of v ∈ V is 2.Both arc

are labeled else and then, respectively. Every node of a set of

internal nodes has a label l(v) ∈ {0,1,….n-1}.The label

identifies a variable on which the fi depends. Φ is the set of

function nodes with out-degree 1 and in-degree 0. The function

nodes are in one-to-one correspondence with the fi’s. T is the

set of terminal nodes and it is labeled with an element of

S,s(t).Its out-degree is 0. E is the set of edges connecting the

nodes of the graph;(vi,vj) is the edge connecting node vi to vj.

The variables of the ADD are ordered; if vj is a descendant of

vi(i.e.,(vi,vj) ∈E), then l(vi) < l(vj).

An ADD represents a set of Boolean function for each node,

which defined as follows:[4]

1. The function of a terminal node, t, is the constant function

s(t). The constant s(t) is interpreted as an element of a Boolean

algebra larger than or equal in size to S.

2. The function of an internal node v ∈ V is based on recursive

Shannon expansion and is given by l(v). fthen + l(v)’. felse, where

‘.’ and ‘+’ denote Boolean conjunction and disjunction, and

fthen and felse are the functions of the then and else children.

3. The function of Φ ∈Φ is the function of its only child.

ADD algorithm determines all the paths pi for a given shortest

path weight δ(source,sink) such that w(pi) = δ(source,sink) .

The Algorithm

Using the triangulation rule,Bahar, Frohm,Gaona,Hachtel,

Macii,Pardo and Somenzi wrote the symbolic backtracing

algorithm in ADD form. The procedure takes as parameters the

ADD representing the adjacency matrix of the graph AG, the

ADD of the matrix of the shortest path weights, S and the

ADD’s of the source and sink nodes. At each iteration, given

the characteristic function of the sink nodes, the predecessors

of the current sink are computed and added to the matrix of the

shortest path weights S to obtain K. The ADD K is the

characteristic function of vertices x which are connected to the

vertices given by sink. The procedure returns an acyclic sub-

graph of the original graph, which contains all the paths from

source to sink of smallest weight. The valid predecessors

represented by k” become the new sinks for the next iteration.

procedure ShortestPath-BackTsace (AG, S, source, sink) {

 path = addConst(+∞);

 visited = addConst(0);

 while (sink != addConst(0)) {

 E = AG + sink;

 K = S + E ;

 Kmatch = addmatch (K, S);

 k = ∃y Kmatch ;

 k’= addMask(k,sink);

 path = UpdatePath (path, k’);

 visited = visited + k’;

 k” = addMask(k’,source);

 sink = k”;

 sink = sink - visited;

 }

return path;

}

This algorithm finds the maximum possible number of these

negative cycles.It prevents the back-tracing of negative (or

zero) weight cycles, thus implicitly recording all the

occurrences of these cycles.

A Multi Source Label Correcting Algorithm[5]

For the APSP problem on sparse graphs, Hiroki Yanagisawa

proposed a fast algorithm that is between the two extremes. It

first partitions(using any of the graph partitioning types like

BFS,DFS,KNN) the vertices into sets of vertices V1,V2,…Vp

with each set having at most B vertices such that the vertices in

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.15, June 2015

4

each set are close to each other, where B is a parameter, and

then solves the multi-source shortest paths (MSSP) problem for

each set in parallel.This algorithm is an extension of labeling

method[6]. This algorithm computes the shortest paths from B

source vertices simultaneously and our algorithm uses only

O(m + Bn) working space where m is the number of edges and

n is the number of nodes.It’s implementation with SIMD

instructions achieves a speed up of 2.3–3.7x compared to a

scalar version.

Here the priority queue is a data structure for maintaining a set

of vertices, each with an associated value called a key (or

priority). Given a source vertex s, the labeling method

maintains three labels for each vertex v ∈ V : a distance label

d(s,v), a vertex state s(v) ∈ {unreached; scanned}, and a vertex

key k(v) that is used as the key in the priority queue Q. The

main difference between this algorithm and labeling method is

that MSLC algorithm maintains a vertex potential d(s, v) for

each s ∈ S and thus each vertex v is associated with |S| distance

labels, while each vertex v is associated with a single distance

label in labeling method.

The algorithm

Input: A graph G = (V;E) and a set of source vertices S

1: d(s,v) = ∞ and s(v) = unreached for every vertex v ∈ V and s

∈ S

2: d(s,s) = 0, s(s) = labeled, k(s) = 0, add s to priority queue Q

for every s ∈ S

3: while Q is not empty do

4: Remove a vertex v with the minimum key k(v) from Q

5: for each edge (v,w) ∈ E outgoing from v do

6: updated = false

7: for all s ∈ S do

8: if d(s,w) > d(s,v) +l(v,w) then

9: d(s,w) = d(s,v) + l(v,w), s(w) = scanned, and

updated = true

10: end if

11: end for

12: if updated = true then

13: Compute k(w) // e.g. set k(w) = min { d(s,w) | s

∈ S }

14: Add w to Q if Q does not contain w

15: end if

16: end for

17: end while

18: Output d(s,v) for all s ∈ S and v ∈ V

SIMD Implementation

Hiroki Yanagisawa used 4-way SIMD instruction set by using

128-bit vector registers where each register contains four 32-bit

values.Assume that a vertex v ∈ V is assigned an integer id

from the interval [0, n- 1] and that a source vertex s ∈ S is

assigned an integer id from the interval [0,B- 1].The distance

labels are stored as d(s,v) for s ∈ S and v ∈ V in the form of

an array d of length Bn, where each d[v*B+s] stores d(s; v).

The array d is equivalent to an array of vector vd of length

Bn=4, where each vector element vd[i] consists of the four

values of d[i*4] to d[i*4+3].Here it is assumed that the first

element of the array vd is aligned on a 128-bit boundary.

They used the loop-unrolling technique, which achieves a

slight speedup and single-precision (32-bit) floating point

numbers to store edge lengths and path lengths.Then they used

the binary heap for the priority queue implementation and a

parameter value B = 128 and the BFS strategy for the graph

partitioning. Note that, the scan ratio is at most B for a strongly

connected graph, since the n-Dijkstra algorithm performs

exactly mn scans and our algorithm performs at least mn/B

scans.The graph partitioning is implemented as a single-thread

since the execution time required for the graph partitioning is

negligible. They used multi-thread to solve the MSSP problems

in parallel, because each MSSP computation is independent.

Drawback of this algorithm is that if this algorithm runs in a

massively parallel and distributed environment, the sequential

graph partitioning algorithm may become a bottleneck for this

algorithm.Since it uses simple heuristics for the key on the

priority queue and the graph partitioning, improving heuristics

would be a research focus.

In-place Parallel Recursive approach using kleene’s

algorithm[7]

Kleene’s algorithm is used for finding transitive closure that

computes the path existence between every possible pair of

vertices(i, j). Kleene’s algorithm divides the nodes of the graph

into n⁄√s zones. Adjacency matrix corresponding to the graph is

divided into n2⁄s sub matrices each having size √s * √s. Each

entry eij ∈ Mij refers to the shortest path from every possible

vertex from zone ‘i’ to zone ‘j’ going through no more zone

greater than zone ‘k’ and is computed using eij + = Σk=1
n eik *

ekj. It uses data locality to improve cache performance.

ALGORITHM : KLEENE’S_TANSITIVE_CLOSURE(A,

N)

1 /* Divide the graph ’A’ into n⁄√s zones */

2 for k = 1 to n⁄√s do

3 /*compute M*
k,k , the transitive closure of Mk,k*/

4 Mk,k= M*
k,k

5 for i = 1 to n⁄√s do

6 for j = 1 to n⁄√s do

7 Mi,j + =Mi,k * Mk,k *Mk,j

8 end for

9 end for

10 end for

Fig. 1 : Precedence Graph for Kleene’s Operation

Since,OpenCL does not support recursion so implementation of

recursive function is done in host program which calls OpenCL

kernel recursivelyThis Kleene’s based parallel recursive

algorithm shows a significant speedup over OpenCL parallel

Floyd Warshall’s algorithm over same GPU.

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.15, June 2015

5

A Blocked Implementation of All Pairs Shortest –Paths

Algorithm[8]

It is a blocked organization of Floyd Warshall’s all pairs

shortest paths algorithm to make better utilization of

cache.Several models for computer with different organization

of memory has been developed although L2 cache is

architecture dependent.La Marca and Ladner develop a model

for single level direct mapped cache.They used this model to

analyze the performance of binary heaps and cache aligned d-

heaps and optimized the cache performance for several sorting

methods.Authors obtained a lower bound for the L1 and L2

cache miss rate by determining the minimum number of cache

misses and making the reasonable assumption that cache

optimization will not decrease the total memory references.

i.e, execution time >= (CPI* IC +IC* memory reference per

instruction * L1 miss rate * L1 miss penalty) * clock

cycle time

They declared all variables other than n2 elements of integer

array as register variables.Since line size of cache decides the

unit of memory transfer so number of L1 and L2 cache miss

rate depend on line size of cache.

Blocked version of Floyd’s algorithm

Partition the cost adjacency matrix into sub matrices of size

B*B,where B is a blocking factor.That means it will perform B

iterations of the outer most loop of Floyd’s algorithm.Each set

of B iteration are divided into three phases.In phase 1 of the

first set of B iterations,top left block (1,1) is a self dependent

block in the first B iterations.In phase 2 of the first B

iterations,a modified equation is used to compute the shortest

path. 1<= k<= B for the remaining blocks (1,*) and (*,1) that

are on the same row or column as the self dependent block.For

the remaining (1,*) blocks

Dk(i,j) = min {Dk-1 (i,j) , Dk-1(i,k) +DB(k,j)} ,k>= 1

 Where D0(i,j) = A0(i,j).

In phase 3,Dk is computed for the remaining blocks where

1<=k<=B.(i.e for the blocks that are not on the same row or

column as the self dependent block) as

Dk(i,j) = min {Dk-1 (i,j) , DB(i,k) +DB(k,j)} ,k>= 1

.And this phase is followed by the next round of B

iterations.When computing the D values in a block during any

round of function,atmost three blocks are active.During the self

dependent block computation only 1 block is active.

L1 cache misses are minimized by choosing the largest block

size B.And second requirement is necessary as the smallest unit

of data transferred to L1 cache should be contiguous bytes of

memory.Blocked version obtains speedups close to the

maximum possible for a cache optimized version of Floyd’s

algorithm.Experiments indicate that the blocked algorithm

delivers a speedup (relative to the unblocked Floyd’s

algorithm) between 1.6 and 1.9 on a Sun Ultra Enterprise

4000/5000 for graphs that have between 480 and 3200

vertices.The measured speedup on an SGI O2 for graph with

between 240 and 1200 vertices is between 1.6 and 2.

Optimizing All Pair shortest Path Algorithm Using Vector

Instructions[9]

Sungchul Han and Sukchan Kang presented a vectorized

version of Floyd-Warshall’s algorithm to improve the

performance.The vectorized implementation utilizes the SIMD

instruction available in state-of-the-art architectures.Various

other papers concentrated on the exploitation of data locality to

improve the cache performance but they didn’t work on the

parallel execution of multiple instructions.

They analyzed the blocked version of the FW algorithms that

include the straight-forward iterative implementation(FWI), the

recursive version (FWR), and the tiled version (FWT).

The conventional Floyd Warshall’s algorithm is an in-place

algorithm that overwrites the result of each iteration to the

input matrix i.e, If the reconstruction of the actual shortest path

is desired, an additional output matrix V is also generated.This

V matrix is the via matrix.

Blocked Floyd Warshall’s algorithm is a generalized iterative

approach without using via matrix.Iterative method is very

similar to matrix matrix multiplication.It can be performed in a

blocked manner with P* P matrices are invoked (N=P)2 times,

where P is the subblock size after blocking. Therefore, it is

possible to perform iterative method recursively.A tiled

version of FW, which is simply a recursion by only one level.

When the via matrix is not included, the operations counts for

all variants of the blocked versions are the same as that of the

original FW, which is 2N3 integer additions, counting a

comparison and a minimum operation as two operations.via

matrix involves atleast one comparison. Furthermore, They

used three logical operators (i.e., four integer operations in

total) for the via matrix in efforts to reduce the branch

instructions. For fair comparison between conventional

algorithms and the vectorized algorithms to follow,they

assumed an operation count of 6N3 integer operations for any

FW algorithm with the via matrix. They modified blocked

recursive algorithm to use vector instructions,specifically Intel

single instruction multiple data extensions2 (SSE2), which

provides eight parallel arithmetic or logical operations on 16-

bit integer data.

The optimum parameters for optimizing the FW blocked

algorithm are as follows:

 For recursive FW, blocking factor of 2 and base size

of 256.

 For tiled version of FW, tile size of 256.

The data type of the distance matrix and the via matrix is

defined as 16-bit integers. This makes it possible to vectorize

eight integer additions with the SSE2 128-bit registers.

Performance of the Blocked Algorithms With the via matrix

or without via matrix, the recursion-all-the-way strategy yields

the poorest performance due to the excessive recursion

overhead. With 32-bit integers,the blocked algorithms are

about 20% better than iterative approach.

Effect of Unrolling The performance of any unrolled FW

algorithm was only about 60% of their non-unrolled

counterparts.

For higher cache performance, they divided the input matrix

into small tiles of appropriate size and performed each tile with

vectorized FW routines. Then, unrolling was applied again to

reduce the loop overhead. The Intel SSE2 instruction set allows

the packing of eight 16-bit integers into one 128-bit register.

They designed three unrolled versions with the unrolling factor

of 2, 4, and 8.

It is observed that between 95% and 130% of speed-up against

tiled based FW has been obtained with the non-unrolled

version and between 133%and 170% of increase with the

unrolled version. Higher unrolling factor improves the

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.15, June 2015

6

performance except that the horizontally unrolled version was

only as good as the one unrolled by a factor of 2. Without the

via matrix, for the unrolled version ,the increase was between

231% and 359%.with the via matrix, the best performance is

observed from the most unrolled version which gave an

increase between 369% and 417%.

By the unrolled versions,improvement can be achieved by the

parallel execution by vectorization and the elimination of

branch instructions. Vectorized FW implementation improved

the performance by a factor of between 2.3 and 5.2 over the

conventional blocked algorithms. Unrolling works effectively

for vectorized versions.Vector instruction based algorithm

improve the performance over the convensional blocked

algorithms.

3. CONCLUSION
Repeated squaring method is used in ADD based data structure

to store graph.The Floyd-Warshall algorithm is a simple and

widely used algorithm to compute shortest paths between all

pairs of vertices in an edge weighted directed graph. It can also

be used to detect the presence of negative cycles.Johnson

algorithm is better for sparse graph but without the assumption

made in this algorithm, it is not possible to break the boundary

of O(n3).ADD reduces the space required to store graph by

eliminating the redundant node.MSLC algorithm can run on

small working space. Implementation of MSLC algorithm with

SIMD instructions achieves an order of magnitude speedup for

real-world geometric graphs compared to an implementation

based on Dijkstra’s algorithm.Kleene’s based parallel

recursive algorithm gains significant speedup over OpenCL

parallel Floyd Warshall’s algorithm over same GPU.The

blocked algorithm delivers a speedup (relative to the unblocked

Floyd’s algorithm) between 1.6 and 2 on a graph of large size.

4. REFERENCES:
[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,

Introduction to Algorithms, Second Edition. The MIT

Press, Sep. 2001.

[2] http://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_

algorithm

[3] R.Iris Bahar,Gary D.Hachtel,Enrico Macii,Abelardo

Pardo,Massimo Poncino,Fabio Somenzi, ”An ADD Based

Algorithm for Shortest Path Back-Tracing of Large

Graphs”,1066-1395/94, 1994,pages-248-251,IEEE

[4] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel,E.

Macii, A. Pardo, F. Somenzi, “Algebraic Decision

Diagrams and their Applications”, ICCAD-93:

ACM/IEEE 1993 International Conference on Computer

Aided Design, Santa Clara, CA, November 1993.

[5] Hiroki Yanagisawa,” A Multi-Source Label-Correcting

Algorithm for the All-Pairs Shortest Paths Problem”,

RT0882,sept 2009.

[6] B. V. Cherkassky, A. V. Goldberg, and T. Radzik,

“Shortest paths algorithms: theory and experimental

evaluation”, Mathematical Programming, Vol. 73, Issue 2,

pp. 129–174, 1996.

[7] Paolo D’Alberto, A. Nicolau, “R-Kleene: a high-

performance divide-and-conquer algorithm for the all-pair

shortest path for densely connected networks”,

Algorithmica 47 (2) (2007) pp. 203-213.

[8] Gayathri Venkataraman,Sartaj Sahni,and srabani

Mukhopadhyaya,”A Blocked All Pairs Shortest-Paths

Algorithm”

[9] Sungchul Han and Sukchan Kang,”Optimizing All-Pairs

Shortest-Path Algorithm Using Vector Instructions”

IJCATM : www.ijcaonline.org

