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ABSTRACT 
This paper is based on survey of various algorithms for all pair 

shortest path problem (APSP) on arbitrary real weighted 

directed graphs.This paper has summarized existing methods 

for solving shortest-path problems. In particular, we have 

addressed both sequential and parallel algorithms. We begin 

with a review of conventional sequential  shortest-path 

algorithms and later, we have discussed blocked and vectorized 

implementation, thereby with the aim of reducing 

computational effort. 
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1. INTRODUCTION 
Today’s social networks are getting larger and it needs to 

analyze datasets with millions of nodes and billions of 

edges.These networks require shortest path for transportation 

and communication.The All-Pairs Shortest Paths (APSP) 

problem seeks the shortest path distances between all pairs of 

vertices, and is one of the most fundamental graph 

problems.Given a weighted digraph G=(V,E) with weight 

function W :E -->R,(R is the set of real numbers)determine the 

length of the shortest path (i.e,distance) between all pair of 

vertices in G.We wish to find for every pair of vertices u, v ∈  

V, a shortest (least-weight) path from u to v, where the weight 

of a path is the sum of the weights of its constituent edges. 

The all-pairs shortest path problem can be considered the 

fundamental of all routing problems.It has various applications 

areas such as Routing Protocol, Driving direction on Web 

mapping,transportation and traffic assignment problem, VLSI 

design ,wireless sensor network etc. 

 We can solve an all-pairs shortest-paths problem by running a 

single-source shortest-paths algorithm |V| times, once for each 

vertex as the source. If all edge weights are non negative, we 

can use Dijkstra’s algorithm.With the use of  linear-array 

implementation of the min-priority queue, the running time is 

O(V3 + V E) = O(V3). The binary min-heap implementation of 

the min-priority queue yields a running time of O(V E log V), 

which is an improvement if the graph is sparse. Alternatively, 

we can implement the min-priority queue with a Fibonacci 

heap, yielding a running time of O(V2 log V + V E).If negative 

weight edges are allowed, Dijkstra’s algorithm can no longer 

be used. Instead, we must run the slower Bellman-Ford 

algorithm once from each vertex.The resulting running time is 

O(V2E), which on a dense graph is O(V4).We have proposed 

here various dynamic approaches for solving APSP 

problems.Rest of the paper is organized as follows:Section II 

gives different algorithms for finding all pair shortest paths and 

section III is devoted to conclusion and results of using these 

algorithms. 

2. DIFFERENT ALGORITHMS  FOR 

APSP PROBLEM REPEATED 

SQUARING METHOD
 [1]

 
It is a dynamic programming algorithm based on adjacency 

matrix representation. Input is an n × n matrix and W 

representing the edge weights of an n-vertex directed graph G 

= (V, E). That is, W = (wi j ), where  

  
                    0                                               if  i=j, 

 

     Wij=    the weight of directed edge(i,j)  if   i≠j and 

(i,j) ∈ E, 

                  ∞             if   i≠j and 

(i,j) ∈ E. 

Negative weight edges are allowed but we assume that the 

input graph contains no negative-weight cycles.The n*n output 

matrix D= (dij), where dij contains the weight of a shortest path 

from vertex i to vertex j. This algorithm works like repeated 

matrix multiplications.We start by developing a (V4)time 

algorithm for the all-pairs shortest-paths problem and then 

improve its running time to  (V3 log V).To solve the all-pairs 

shortest-paths problem, we need to compute a predecessor 

matrix  = (ij), where ij is NIL if either i = j or there is no 

path from i to j,and otherwise ij is the predecessor of j on 

some shortest path from i. For each vertex i ∈  V, we define the 

predecessor subgraph of G for i as  

Gπ,i =(V,i , E,i) ,where  

     V,i = {j ∈  V : ij ≠ NIL}∪  {i} 

and  

    E,i ={(ij , j) : j ∈V,i –{i}}. 

 

As we know that all sub paths of a shortest path are shortest 

paths.Let l (m)
ij the minimum weight of any path from vertex i 

to vertex j that contains at most m edges. 

 

  l
(0)

ij =        0   if      i=j, 

       ∞  if      i≠j. 

Thus,we recursively define 

 

l
 (m)

ij   =  min(l
(m-1)

ij   , min 1≤k≤n {l
(m-1)

ik + wkj} ) 

          =  min1≤k≤n { l
(m-1)

ik + wkj}. 

 
If the graph contains no negative-weight cycles, then for every 

pair of vertices i and j for which δ(i, j) < ∞, there is a shortest 

path from i to j that is simple and thus contains at most n − 1 

edges. The actual shortest-path weights are therefore given by 

 
δ (i,j) = lij

(n-1)
 = lij

n 
 = lij

(n+1)
 = … . 
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Conventionally we compute the shortest-path weights by 

extending shortest paths edge by edge.This is the following 

procedure, which, given matrices  l(m-1) and W, returns the 

matrix l(m). 

 

EXTEND-SHORTEST-PATHS(L,W) 

1 n ← rows[L] 

2 let L’ = (l’
ij) be an n × n matrix 

3 for i ← 1 to n 

4     do for  j←1 to n 

5            do l’
ij  ←∞ 

6              for k← 1 to n 

7                                do  l’ij ← min(l’
ij, lik  +wkj) 

8 Return  L’. 

 
We compute a series of matrices L (1), L(2),…, L(n-1), where for  

m = 1,2,…,n-1 ,we have  

L(m)= (l (m)
ij). The final matrix L(n−1) contains the actual 

shortest-path weights. 

 
L(1)   =   L(0) .W   =   W, 

L(2)   =   L(1) .W   =   W2 , 

L(3)  =    L(2) .W   =   W3, 

 . 

 . 

 . 
L(n-1) = L(n-2) . W =  Wn-1 . 

 

The matrix L(n−1) = Wn−1 contains the shortest-path weights.This 

procedure computes the sequence in θ(n4) time.But our goal is 

not to compute all the L(m) matrices. Our interest is only in 

matrix L(n-1).  

Therefore, we can compute L(n−1) with only  upper bound of  

log(n − 1)matrix products by computing the sequence. 

 
  L(1)   =   W, 

 L(2)   =   W2   =  W.W , 

 L(4)  =    W4  =  W2. W2 , 

 L(8)  =    W8  =  W4 . W4, 

  . 

  . 

  . 
L (2 ^lg(n-1))  =  W(2 ^lg(n-1))   =  W(2 ^(lg(n-1)-1))  . W(2 ^(lg(n-1)-1))  . 

 

Since, 2lg(n-1) ≥ n-1 , the final product L (2 ^lg(n-1))  is equal to L(n-

1). 

 

The running time of this repeated squaring technique is 

θ(n3logn). since each of the lg(n − 1) matrix products takes 

θ(n3) time. 

The Floyd-Warshall algorithm[1] 

This is also a graph analysis algorithm for finding shortest 

path in a weighted graphs with positive or negative edge 

weights but with no negative cycles and also for 

finding transitive closure of a relation R.We can say this 

algorithm as the quadratic version of Dijkstra's algorithm from 

each of the n vertices.Unlike matrix-multiplication-based 

algorithms,it considers the intermediate vertices of a shortest 

path.Consider a graph G with vertices V numbered 1 

through N. Further consider a function shortestPath(i, j, k) that 

returns the shortest possible path from i to j using vertices only 

from the set {1,2,...,k} as intermediate points along the way. 

If w(i,j) is the weight of the edge between vertices i and j,we 

can define shortestPath(I,j,k+1) in terms of the following 

recursive formula: 

Base Case: shortestPath(i,j,0) =  w(i,j)  
Recursive case:    

shortestPath(i,j,k+1)=min(shortestPath(i,j,k),shortest

Path(i,k+1,k)+ shortestPath(k+1,j,k)) 

The algorithm works by computing shortestPath(i, j, k) for all 

(i, j) pairs for k = 1 to n. Pseudocode for this is as follows:[2] 

1  Let dist be a |V|*|V|array of minimum distances initialised to 

∞ . 

2  for each vertex v 

3  dist[v][v] <- 0 

4 for each edge (u,v) 

5     dist[u][v] <- w(u,v)  // the weight of the edge (u,v) 

6  for k from 1 to |V| 

7    for i from 1 to |V| 

8       for j from 1 to |V| 

9          if dist[i][j] > dist[i][k] + dist[k][j]  

10             dist[i][j] ← dist[i][k] + dist[k][j] 

11         end if 

The above algorithm only outputs the shortest distances. We 

can modify the solution to give the shortest paths also by 

storing the predecessor information in a separate 2D matrix.To 

find all n2 of shortestPath(i,j,k) (for all i and j) from those of 

shortestPath(i,j,k−1) requires 2n2 operations.The total number 

of operations used is n · 2n2 = 2n3.So this algorithm runs in 

θ(n3) time and with O(n2) space.Floyd-Warshall algorithm can 

be easily modified to detect cycles.If we fill negative infinity 

value at the diagonal of the matrix and run the algorithm,then 

the matrix of predecessors will contain also all cycles in the 

graph(the diagonal will not contain only zeros,if there is a 

cycle in the graph). 

Johnson’s algorithm for sparse graph[1] 

For sparse graphs, this algorithm is asymptotically better than 

either repeated squaring of matrices or the Floyd-Warshall 

algorithm. It also allows negative weight edges but not 

negative weight cycle.The algorithm outputs weights for all 

pairs of vertices or reports that the input graph contains a 

negative-weight cycle. Johnson’s algorithm uses as subroutines 

both Dijkstra’s algorithm and the Bellman-Ford algorithm.The 

idea of Johnson’s algorithm uses the technique of reweighting 

all edges and make them all positive,then apply Dijkstra’s 

algorithm for every vertex.Bellman Ford algorithm is used to 

transform the input graph for removing all negative weights. 

For transformation of graph a new vertex is added to the graph 

and connected to all existing vertices. The shortest distance 
values from new vertex to all existing vertices are h[] 

values.Following is the complete algorithm: 
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JOHNSON(G) 

1 compute G’, where V[G’] = V[G] ∪ {s},  E[G’] = 

E[G] ∪ {(s, v) : v ∈ V[G]}, and w(s, v) = 0 for all v ∈ 

V[G] 

2 if BELLMAN-FORD(G’,w, s) = FALSE 

3       then print “the input graph contains a negative-

weight cycle 

4       else for each vertex v ∈ V[G’] 

5                    do set h(v) to the value of δ(s, v) computed 

by the Bellman-Ford algorithm 

6              for each edge (u, v) ∈ E[G’] 

7                   do w’(u, v) ← w(u, v) + h(u) − h(v) 

8  for each vertex u ∈ V[G] 

9                    do run DIJKSTRA(G, w’, u) to compute 

δ’(u, v) for all v ∈ V[G] 

10                           for each vertex v ∈ V[G] 

11                                 do duv ←δ’(u, v) + h(v) − h(u) 

12              return D 

The main steps in the algorithm are Bellman Ford Algorithm 

called once and Dijkstra called V times. Time complexity of 

Bellman Ford is O(VE) and time complexity of Dijkstra is 

O(VlogV). So overall time complexity is O(V2log V + VE) by 

a Fibonacci heap. The time complexity of Johnson's algorithm 

becomes same as Floyd-Warshall when the graph is 

complete(E=O(V2)).Without assumption made by Johnson’s ,it 

is difficult to break the O(n3)boundary. The binary min-heap 

implementation yields a running time of O(V E lg V), which is 

still asymptotically faster than the Floyd-Warshall algorithm if 

the graph is sparse. 

ADD Based Algorithm[3] 

Algebric decision diagram,an symbolic algorithm is a new kind 

of BDD(Binary Decision Diagram) with a set of constant 

values different than the set {0,1}.ADD based procedures for 

weight calculation are very effective for very large graph(over 

1027 vertices and 1036 edges).This symbolic computation 

technique is based on the triangulation rule. 

Formal Definition:  

An ADD is a directed acyclic graph (V∪Φ∪T,E) representing a 

set of functions fi :{0,1}n ->S, where S is the finite carrier of 

the algebraic structure over which the ADD is defined. V is the 

set of the internal nodes. The out-degree of v ∈ V is 2.Both arc 

are labeled else and then, respectively. Every node of a set of 

internal nodes has a label l(v) ∈ {0,1,….n-1}.The label 

identifies a variable on which the fi depends. Φ is the set of 

function nodes with out-degree 1 and in-degree 0. The function 

nodes are in one-to-one correspondence with the fi’s. T is the 

set of terminal nodes and it is labeled with an element of 

S,s(t).Its out-degree is 0. E is the set of edges connecting the 

nodes of the graph;(vi,vj) is the edge connecting node vi to vj. 

The variables of the ADD are ordered; if vj is a descendant of 

vi(i.e.,(vi,vj) ∈E), then l(vi) < l(vj). 

An ADD represents a set of Boolean function for each node, 

which defined as follows:[4] 

1. The function of a terminal node, t, is the constant function 

s(t). The constant s(t) is interpreted as an element of a Boolean 

algebra larger than or equal in size to S. 

2. The function of an internal node v ∈  V is based on recursive 

Shannon expansion and is given by l(v). fthen + l(v)’. felse, where 

‘.’ and ‘+’ denote     Boolean conjunction and disjunction, and 

fthen and felse are the functions of the then and else children. 

3. The function of Φ ∈Φ is the function of its only child. 

ADD algorithm determines all the paths pi for a given shortest 

path weight δ(source,sink) such that w(pi) = δ(source,sink) . 

The Algorithm 

Using the triangulation rule,Bahar, Frohm,Gaona,Hachtel, 

Macii,Pardo and Somenzi wrote the symbolic backtracing 

algorithm in ADD form. The procedure takes as parameters the 

ADD representing the adjacency matrix of the graph AG, the 

ADD of the matrix of the shortest path weights, S and the 

ADD’s of the source and sink nodes. At each iteration, given 

the characteristic function of the sink nodes, the predecessors 

of the current sink are computed and added to the matrix of the 

shortest path weights S to obtain K. The ADD K is the 

characteristic function of vertices x which are connected to the 

vertices given by sink. The procedure returns an acyclic sub-

graph of the original graph, which contains all the paths from 

source to sink of smallest weight. The valid predecessors 

represented by k” become the new sinks for the next iteration. 

procedure ShortestPath-BackTsace (AG, S, source, sink) { 

   path = addConst(+∞); 

   visited = addConst(0); 

   while (sink != addConst(0)) { 

       E = AG + sink; 

       K = S + E ; 

       Kmatch = addmatch (K, S); 

       k = ∃y  Kmatch ; 

       k’= addMask(k,sink); 

      path = UpdatePath (path, k’); 

      visited = visited + k’; 

      k” = addMask(k’,source); 

      sink = k”; 

      sink = sink - visited; 

   } 

return path; 

} 

This algorithm finds the maximum possible number of these 

negative cycles.It prevents the back-tracing of negative (or 

zero) weight cycles, thus implicitly recording all the 

occurrences of these cycles. 

A Multi Source Label Correcting Algorithm[5] 

For the APSP problem on sparse graphs, Hiroki Yanagisawa 

proposed a fast algorithm that is between the two extremes. It 

first partitions(using any of the graph partitioning types like 

BFS,DFS,KNN) the vertices into sets of vertices V1,V2,…Vp 

with each set having at most B vertices such that the vertices in 
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each set are close to each other, where B is a parameter, and 

then solves the multi-source shortest paths (MSSP) problem for 

each set in parallel.This algorithm is an extension of labeling 

method[6]. This algorithm computes the shortest paths from B 

source vertices simultaneously and our algorithm uses only 

O(m + Bn) working space where m is the number of edges and 

n is the number of nodes.It’s implementation with SIMD 

instructions achieves a speed up of 2.3–3.7x compared to a 

scalar version. 

Here the priority queue is a data structure for maintaining a set 

of vertices, each with an associated value called a key (or 

priority). Given a source vertex s, the labeling method 

maintains three labels for each vertex v ∈  V : a distance label 

d(s,v), a vertex state s(v) ∈  {unreached; scanned}, and a vertex 

key k(v) that is used as the key in the priority queue Q. The 

main difference between this algorithm and labeling method is 

that MSLC algorithm maintains a vertex potential d(s, v) for 

each s ∈  S and thus each vertex v is associated with |S| distance 

labels, while each vertex v is associated with a single distance 

label in labeling method. 

The algorithm 

Input: A graph G = (V;E) and a set of source vertices S 

1: d(s,v) = ∞ and s(v) = unreached for every vertex v ∈  V and s 

∈  S 

2: d(s,s) = 0, s(s) = labeled, k(s) = 0, add s to priority queue Q 

for every s ∈  S 

3: while Q is not empty do 

4:    Remove a vertex v with the minimum key k(v) from Q 

5:    for each edge (v,w) ∈  E outgoing from v do 

6:       updated = false 

7:       for all s ∈  S do 

8:            if d(s,w) > d(s,v) +l(v,w) then 

9:                  d(s,w) = d(s,v) + l(v,w), s(w) = scanned, and 

updated = true 

10:         end if 

11:     end for 

12:     if updated = true then 

13:         Compute k(w)         // e.g. set k(w) = min { d(s,w)  | s 

∈  S } 

14:         Add w to Q if Q does not contain w 

15:     end if 

16:    end for 

17: end while 

18: Output d(s,v) for all s ∈  S and v ∈  V 

SIMD Implementation 

Hiroki Yanagisawa used 4-way SIMD instruction set by using 

128-bit vector registers where each register contains four 32-bit 

values.Assume that a vertex v ∈   V is assigned an integer id 

from the interval [0, n- 1] and that a source vertex s ∈   S is 

assigned an integer id from the interval [0,B- 1].The distance 

labels are stored as d(s,v) for s ∈   S and v ∈   V in the form of 

an array d of length Bn, where each d[v*B+s] stores d(s; v). 

The array d is equivalent to an array of vector vd of length 

Bn=4, where each vector element vd[i] consists of the four 

values of d[i*4] to d[i*4+3].Here it is assumed that  the first 

element of the array vd is aligned on a 128-bit boundary. 

They used the loop-unrolling technique, which achieves a 

slight speedup and single-precision (32-bit) floating point 

numbers to store edge lengths and path lengths.Then they used 

the binary heap for the priority queue implementation and a 

parameter value B = 128 and the BFS strategy for the graph 

partitioning. Note that, the scan ratio is at most B for a strongly 

connected graph, since the n-Dijkstra algorithm performs 

exactly mn scans and our algorithm performs at least mn/B 

scans.The graph partitioning is implemented as a single-thread 

since the execution time required for the graph partitioning is 

negligible. They used multi-thread to solve the MSSP problems 

in parallel, because each MSSP computation is independent.  

Drawback of this algorithm is that if this algorithm runs in a 

massively parallel and distributed environment, the sequential 

graph partitioning algorithm may become a bottleneck for this 

algorithm.Since it uses simple heuristics for the key on the 

priority queue and the graph partitioning, improving heuristics 

would be a research focus. 

In-place Parallel Recursive approach  using kleene’s 

algorithm[7] 

Kleene’s algorithm is used for finding transitive closure that 

computes the path existence between every possible pair of 

vertices(i, j). Kleene’s algorithm divides the nodes of the graph 

into n⁄√s zones. Adjacency matrix corresponding to the graph is 

divided into n2⁄s sub matrices each having size √s * √s. Each 

entry eij ∈ Mij refers to the shortest path from every possible 

vertex from zone ‘i’ to zone ‘j’ going through no more zone 

greater than zone ‘k’ and is computed using eij + = Σk=1
n  eik * 

ekj. It uses data locality to improve cache performance. 

 

ALGORITHM : KLEENE’S_TANSITIVE_CLOSURE(A, 

N) 

1  /* Divide the graph ’A’ into n⁄√s zones */ 

2  for k = 1 to n⁄√s do 

3   /*compute M*
k,k , the transitive closure of  Mk,k*/ 

4  Mk,k= M*
k,k 

5      for i = 1 to n⁄√s do 

6          for j = 1 to n⁄√s do 

7               Mi,j + =Mi,k * Mk,k *Mk,j 

8         end for 

9      end for 

10 end for 

 

 
Fig. 1 : Precedence Graph for Kleene’s Operation 

Since,OpenCL does not support recursion so implementation of 

recursive function is done in host program which calls OpenCL 

kernel recursivelyThis Kleene’s based  parallel recursive 

algorithm shows a significant speedup over OpenCL parallel 

Floyd Warshall’s algorithm over same GPU. 
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A Blocked Implementation of All Pairs Shortest –Paths  

Algorithm[8] 

It is a blocked organization of Floyd Warshall’s all pairs 

shortest paths algorithm to make better utilization of 

cache.Several models for computer with different organization 

of memory has been developed although L2 cache is 

architecture dependent.La Marca and Ladner develop a model 

for single level direct mapped cache.They used this model to 

analyze the performance of binary heaps and cache aligned d-

heaps and optimized the cache performance for several sorting 

methods.Authors obtained a lower bound for the L1 and L2 

cache miss rate by determining the minimum number of cache 

misses and making the reasonable assumption that cache 

optimization will not decrease the total memory references. 

i.e, execution time >= ( CPI* IC +IC* memory reference per 

instruction * L1 miss rate * L1 miss   penalty ) * clock 

cycle time  

They declared all variables other than n2 elements of integer 

array as register variables.Since line size of cache decides the 

unit of memory transfer so number of L1 and L2 cache miss 

rate depend on line size of cache. 

Blocked version of Floyd’s algorithm 

Partition the cost adjacency matrix into sub matrices of size 

B*B,where B is a blocking factor.That means it will perform B 

iterations of the outer most loop of Floyd’s algorithm.Each set 

of B iteration are divided into three phases.In phase 1 of the 

first set of B iterations,top left block (1,1) is a self dependent 

block in the first B iterations.In phase 2 of the first B 

iterations,a modified equation is used to compute the shortest 

path. 1<= k<= B for the remaining blocks (1,*) and (*,1) that 

are on the same row or column as the self dependent block.For 

the remaining (1,*) blocks  

Dk(i,j) = min {Dk-1 (i,j) , Dk-1(i,k) +DB(k,j)} ,k>= 1 

        Where D0(i,j) = A0(i,j). 

In phase 3,Dk is computed for the remaining blocks where 

1<=k<=B.(i.e for the blocks that are not on the same row or 

column as the self dependent block) as 

Dk(i,j) = min {Dk-1 (i,j) , DB(i,k) +DB(k,j)} ,k>= 1 

.And this phase is followed by the next round of B 

iterations.When computing the D values in a block during any 

round of function,atmost three blocks are active.During the self 

dependent block computation only 1 block is active. 

L1 cache misses are minimized by choosing the largest block 

size B.And second requirement is necessary as the smallest unit 

of data transferred to L1 cache should be contiguous bytes of 

memory.Blocked version obtains speedups close to the 

maximum possible for a cache optimized version of Floyd’s 

algorithm.Experiments indicate that the blocked algorithm 

delivers a speedup (relative to the unblocked Floyd’s 

algorithm) between 1.6 and 1.9 on a Sun Ultra Enterprise 

4000/5000 for graphs that have between 480 and 3200 

vertices.The measured speedup on an SGI O2 for graph with 

between 240 and 1200 vertices is between 1.6 and 2. 

Optimizing All Pair shortest Path Algorithm Using Vector 

Instructions[9] 

Sungchul Han and Sukchan Kang presented a vectorized 

version of Floyd-Warshall’s algorithm to improve the 

performance.The vectorized implementation utilizes the SIMD 

instruction available in state-of-the-art architectures.Various 

other papers concentrated on the exploitation of data locality to 

improve the cache performance but they didn’t work on the 

parallel execution of multiple instructions. 

They analyzed the blocked version of the FW algorithms that 

include the straight-forward iterative implementation(FWI), the 

recursive version (FWR), and the tiled version (FWT). 

The conventional Floyd Warshall’s algorithm is an in-place 

algorithm that overwrites the result of each iteration to the 

input matrix i.e, If the reconstruction of the actual shortest path 

is desired, an additional output matrix V is also generated.This 

V matrix is the via matrix. 

Blocked Floyd Warshall’s algorithm is a generalized iterative 

approach without using via matrix.Iterative method is very 

similar to matrix matrix multiplication.It can be performed in a 

blocked manner with P* P matrices are invoked (N=P )2 times, 

where P is the subblock size after blocking. Therefore, it is 

possible to perform iterative method  recursively.A tiled 

version of  FW, which is simply a recursion by only one level. 

When the via matrix is not included, the operations counts for 

all variants of the blocked versions are the same as that of the 

original FW, which is 2N3 integer additions, counting a 

comparison and a minimum operation as two operations.via 

matrix involves atleast one comparison. Furthermore, They 

used three logical operators (i.e., four integer operations in 

total) for the via matrix in efforts to reduce the branch 

instructions. For fair comparison between conventional 

algorithms and the vectorized algorithms to follow,they 

assumed an operation count of 6N3 integer operations for any 

FW algorithm with the via matrix. They modified blocked 

recursive algorithm to use vector instructions,specifically Intel 

single instruction multiple data extensions2 (SSE2), which 

provides eight parallel arithmetic or logical operations on 16-

bit integer data. 

The optimum parameters for optimizing the FW blocked 

algorithm are as follows: 

 For recursive FW, blocking factor of 2 and base size 

of 256. 

 For tiled version of FW, tile size of 256. 

The data type of the distance matrix and the via matrix is 

defined as 16-bit integers. This makes it possible to vectorize 

eight integer additions with the SSE2 128-bit registers. 

Performance of the Blocked Algorithms With the via matrix 

or without via matrix, the recursion-all-the-way strategy yields 

the poorest performance due to the excessive recursion 

overhead. With 32-bit integers,the blocked algorithms are 

about 20% better than iterative approach. 

Effect of Unrolling The performance of any unrolled FW 

algorithm was only about 60% of their non-unrolled 

counterparts. 

For higher cache performance, they divided the input matrix 

into small tiles of appropriate size and performed each tile with 

vectorized FW routines. Then, unrolling was applied again to 

reduce the loop overhead. The Intel SSE2 instruction set allows 

the packing of eight 16-bit integers into one 128-bit register. 

They designed three unrolled versions with the unrolling factor 

of 2, 4, and 8. 

It is observed that between 95% and 130% of speed-up against 

tiled based FW has been obtained with the non-unrolled 

version  and between 133%and 170% of increase with the 

unrolled version. Higher unrolling factor improves the 
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performance except that the horizontally unrolled version was 

only as good as the one unrolled by a factor of 2. Without the 

via matrix, for the unrolled version ,the increase was between 

231% and 359%.with the via matrix, the best performance is 

observed from the most unrolled version which gave an 

increase between 369% and 417%. 

By the unrolled versions,improvement can be achieved by the 

parallel execution by vectorization and the elimination of 

branch instructions. Vectorized FW implementation  improved 

the performance by a factor of between 2.3 and 5.2 over the 

conventional blocked algorithms. Unrolling works effectively 

for vectorized versions.Vector instruction based algorithm 

improve the performance over the convensional blocked 

algorithms. 

3. CONCLUSION 
Repeated squaring method is used in ADD based data structure 

to store graph.The Floyd-Warshall algorithm is a simple and 

widely used algorithm to compute shortest paths between all 

pairs of vertices in an edge weighted directed graph. It can also 

be used to detect the presence of negative cycles.Johnson 

algorithm is better for sparse graph but without the assumption 

made in this algorithm, it is not possible to break the boundary 

of O(n3).ADD reduces the space required to store graph by 

eliminating the redundant node.MSLC algorithm can run on 

small working space. Implementation of MSLC algorithm with 

SIMD instructions achieves an order of magnitude speedup for 

real-world geometric graphs compared to an implementation 

based on Dijkstra’s algorithm.Kleene’s based  parallel 

recursive algorithm gains significant speedup over OpenCL 

parallel Floyd Warshall’s algorithm over same GPU.The 

blocked algorithm delivers a speedup (relative to the unblocked 

Floyd’s algorithm) between 1.6 and 2 on a graph of large size. 
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