
International Journal of Computer Applications (0975 8887)
Volume 120 - No. 14, June 2015

Regression Testing based on Hamming Distance and
Code Coverage

Syed Akib Anwar Hridoy
North South University

Dhaka-1229, Bangladesh

Faysal Ahmed
North South University

Dhaka-1229, Bangladesh

Md. Shazzad Hosain
North South University

Dhaka-1229, Bangladesh

ABSTRACT
A software testing process that tries to uncover new bugs for an
existing system from the previous test suite due to expansion of the
software is known as Regression Testing. The test suite will hold
the same test cases that were tested for the system in its earlier
version. For regression testing, prioritizing the test cases is always
a complex as well as challenging task. In fact researchers have
been proposing many approaches to arrange the test cases so that
the cost of the software can be reduced in terms of human labor,
time, and money as well. Many such approaches have shown quite
good results too. In this paper, we have proposed a new approach
of prioritizing the test cases that extends hamming distance based
prioritization with code coverage based techniques. Our proposed
method helps to unfold the previous bugs as well as the newly
arrived bugs at the early cycle of the regression testing.

Keywords:
Regression Testing, Test Case Prioritization, Hamming Distance,
Code Coverage

1. INTRODUCTION
We cannot deny the fact that a software may expand or patch a
specific module in its life-cycle. Every time whether we introduce
new code or fix the existing software code several test cases are
introduced in the test suite to validate the new features or the patch.
To build confidence on software we are not only required to test
software with ‘new’ test cases but also to perform regression testing
[1]. The purpose of regression testing is to run all the previous test
cases to ensure that all the functions that were part of the software
before the update still work fine. As new test cases are added to the
existing test suite, it tends to grow larger often making it too costly
to execute entire suite. Software testers cannot ignore the ‘new’
test cases that are designed for the added features, but they want to
spend less amount of time and energy for earlier test cases to make
the software cost-effective. Thus, a natural goal is to run minimum
number of previous test suits but to maximize the test objectives. To
achieve the goal researchers studied different approaches such as
minimization, selection and prioritization to maximize the value of
the accrued test suite [2]. While minimization eliminates redundant
test cases in order to reduce the number of tests to run, selection
seeks to identify the most relevant test cases for the recent changes.
Once the number of test cases is lowered, either by minimization

or by selection, prioritization may be applied to order test cases so
that faults are detected at early stages of testing.
In the literature we found a great deal of research work on different
regression testing approaches, some focused on test selection [3, 4],
some on minimization [5] and others on prioritization [6, 1].
However, quite often two or more approaches [7, 8] were combined
for better results. The approaches also differ in emphasizing
different goals to achieve, such as code coverage maximization [9],
requirement based prioritization [10], software failure severity, cost
cognizant test prioritization [1] and many more. In our research, we
combine two approaches of prioritization and minimization, first to
prioritize the selected test cases for early fault detection and then
to minimize the number of test cases from the accrued test suits to
achieve 100% code coverage.
The goal of regression testing is to rerun previous test cases and to
check whether program behavior has changed as well as whether
previously fixed faults have re-emerged. A common technique is to
prioritize and rerun test cases that identified faults previously and
to check whether the faults have re-emerged. However, it does not
ensure 100% code coverage, which is important to check whether
the program behavior has changed or not. Thus, many researchers
suggested code coverage based prioritization techniques [9, 11]
that achieve total code coverage at the earliest. But, code coverage
based techniques do not always detect more bugs at the earliest. To
overcome this, other techniques such as hamming distance based
prioritization [6, 12] were studied, which on the contrary ignored
100% code coverage. In this paper, we thus extend hamming
distance based prioritization with code coverage technique to
achieve both the goals of regression testing. Finally, we have
compared our proposed approach with the hamming distance based
approach and showed the improvement.
The paper is organized as the following. Section 2 presents problem
formulation, section 3 describes code coverage based prioritization,
section 4 explains hamming distance based prioritization, section
5 illustrates our proposed approach and its analysis, section
6 provides literature review and finally section 7 draws the
conclusion.

2. PROBLEM FORMULATION
Let P be a program, P ′ be a modified version of P , T be a
test suite developed for P . Regression testing is concerned with
validating P ′. The main objective of Software Quality Assurance
(SQA) engineers is to complete regression testing to achieve its
goals within a short time so that software cost is lowered. To reduce

1



International Journal of Computer Applications (0975 8887)
Volume 120 - No. 14, June 2015

the cost of regression testing, firstly test cases are reduced and then
prioritized to find out bugs at early stages.
Rehman et al. [9] defines test case reduction problem as the
following:

DEFINITION 2.1 TEST CASE REDUCTION. Given a test suite
TN with N number of test cases, the reduction problem is to retain
TM ⊂ TN with M number of test cases.

Bushra et al. [1] defines the test case prioritization problem as the
following:

DEFINITION 2.2 TEST CASE PRIORITIZATION. Given T , a
test suite; Tp, the set of permutations of T ; f , a function from Tp

to the real numbers; the problem is to find T ′ ∈ Tp such that for all
T ′′ ∈ Tp, T

′ 6= T ′′, [f(T ′) ≥ f(T ′′)].

Here, Tp represents the set of all possible prioritization (orderings)
of T and f is a function applied to any such ordering, yields an
award value for that ordering [1].
Now, let us consider a flow graph of a program shown in Fig. 1a
that has two faults F1 and F2. While testing the program path
A-B-C-D-H and A-C-D-H expose these two faults. Now, assume
that fault F3 has arisen, as shown in figure 1b, while debugging
and fixing faults of F1 and F2.

Fig. 1. Flow graph of a test program

According to hamming distance based prioritization proposed in
[6, 12], one of the two paths would be selected randomly. If path
A-C-D-H is chosen randomly then the fault F3 goes unnoticed.
If we could somehow choose the path A-B-C-D-H instead of
A-C-D-H, then all the faults F1, F2, F3 would be detected at once.
On the other hand, code coverage based prioritization [9, 11] would
choose the path A-B-C-E-F-H as it covers more nodes or path that
only uncovers F3. In this case, the path A-C-D-H that uncovers
the faults F1 and F2 go below the list. Code coverage based
prioritization makes sure that all the paths are covered. But it takes
higher number of test cases to be executed to cover 100% path.
In our research, we have combined both hamming distance and
code coverage based techniques to detect previous faults earlier as
well to achieve 100% code coverage to detect the newly cropped
up faults.

3. CODE COVERAGE BASED PRIORITIZATION
Code coverage is a way of measuring how many statements or
blocks or lines are executed when a test case has run. A program

which is thoroughly tested with 100% code coverage has a lower
chance of having bugs. Test cases are prioritized to cover most of
the path in early stage of testing [13].
For figure 1b, let us explain the code coverage based prioritization
technique according to [13].

Table 1. Test Cases and Statement Coverage
Test Statements
Case# A B C D E F G H

T1 1 0 1 1 0 0 0 1
T2 1 1 1 1 0 0 0 1
T3 1 1 1 0 1 1 0 1
T4 1 1 1 0 1 1 1 1
T5 1 0 1 0 1 1 0 1
T6 1 0 1 0 1 1 1 1

Table 1 is created from the figure 1b. Each node or path is
considered as a separate statement and test cases are created to
cover all the paths. If any particular test case covers any statement,
then a value ‘1’is assigned for that column in the table. The test
case row that has the highest sum among all of these test cases
is selected first into the test case execution set and the statements
(columns) are removed from the table to select the next test case.
This procedure continues until all the statements are removed from
the table.
In this specific example, the procedure yields a set T = {T4, T1}
to be executed for regression testing.
In the execution test set of code coverage based prioritization, T4

has higher prioritization as it covers most path although T1 detects
higher number of bugs than T4. This clearly indicates that covering
more paths does not always find out bugs early.

4. HAMMING DISTANCE BASED
PRIORITIZATION

Hamming distance [14] was originally proposed to compute the
number of different bits in two sequences. For example, “1010” and
“1001” are at a distance of 2, because two bits differ. It can also be
adapted for two strings e.g. “Karolin” and “Kerstin” of same length
that differ in three characters and have a distance of 3.
Maheswari et. al. [6] performs the hamming distance calculation to
get an ordered list of test cases which lead the system to detect all
the bugs. They start with the test case which has the most number
of 1’s. When two or more test cases have an equal number of bugs,
they randomly choose a test case among those. Then another test
case is selected to perform the OR operation with the first selected
test case. After the OR operation, another test case is selected
based on the most hamming distance to perform the OR operation
with the result again. This process continues until all the bugs are
unveiled. Let us explain the process through the following example.
Table 2 shows a sub-set of data from [15], provided by University of
California Riverside, which is also used by [16], [10]. The column
of the table is equal to the number of mutant version of the software
we are considering and the row is the number of test cases we are
considering for the experiment. The value of each cell is 1 if the
test case can identify the fault, otherwise cell is filled up with 0.
Code coverage for each test cases is calculated by C++ Coverage
Validator [17].
Table 2 shows that T2, T4, T5, T6, T7, T9, T10, T12 has the most
numbers of 1’s. T2 is chosen randomly to start the calculation. And

2



International Journal of Computer Applications (0975 8887)
Volume 120 - No. 14, June 2015

Table 2. Results And Code Coverage of Mutant Codes
Test Mutant Codes CC(%)
Case# F1 F2 F3 F4 F5 F6

T1 0 0 0 0 0 0 70.23%
T2 0 0 1 1 0 0 10.53%
T3 0 0 0 0 0 1 75.00%
T4 1 0 0 0 1 0 77.37%
T5 0 0 1 1 0 0 72.37%
T6 1 0 0 0 1 0 72.37%
T7 0 0 1 1 0 0 81.58%
T8 0 0 1 0 0 0 75.00%
T9 0 1 1 0 0 0 69.28%
T10 1 0 0 0 1 0 72.37%
T11 0 0 1 0 0 0 75.00%
T12 0 1 1 0 0 0 77.63%
T13 0 0 1 0 0 0 75.00%

CC(%): Code Coverage(%)

to perform the OR operation, we need another test case which has
the most hamming distance with T2.
As we know that hamming distance between two strings can be
calculated from the number of corresponding mismatches bits,
the distance between T2 and T1 is 2 as it mismatches in F3 and
F4 columns. Accordingly we calculate other test cases hamming
distances from T2. We have found out that the hamming distance
of T4 from T2 is 4 and T6, T10 also get the distance of 4 which
is higher than any other non selected test cases. So, T6 is chosen
at random to perform the OR operation. Now, T3 has the highest
hamming distance with the output. So, OR operation will be
performed between them. Then, T9 and T12 make tie and this time
T9 is chosen at random. After the OR operation, we get output with
all 1’s. Figure 2 illustrates the whole procedure.

Fig. 2. Hamming Sequence Calculation.

So the prioritization according to [6] is,

T2 → T6 → T3 → T9

5. PROPOSED APPROACH AND ANALYSIS
Section 4 shows that the hamming sequence can uncover most
number of bugs with the least number of test cases at the
early stages of testing. Our proposed method is thus more likely
to section 4, but we are also considering the code coverage
information to prioritize the test cases and ensure that all the paths
of the program are covered.
While hamming distance based approach chooses randomly from
two or more test cases that unveils the same number of faults,

our proposed approach analyzes their past code coverage data and
select the test case that covers more code in its execution than the
others. For each of the test cases we have code coverage (CC%)
information from the last build of the software. From this binary
matrix we can find out the test cases from hamming distance
calculation which can uncover all the faults. The point to be noted
that no test case is selected at random when there is a tie between
two or more test cases with the output result. Still there will be some
paths that will not be covered as hamming distance based approach
do not consider 100% code coverage. To overcome this problem,
we will include some test cases in our prioritization list which help
us to cover 100% path. Let us explain our proposed approach by an
example.
As of Section. 4, we start the calculation with the test case which
detects the most number of bugs. From table 2, we can see that
T2, T4, T5, T6, T7, T9, T10 and T12 identify most number of bugs.
According to hamming distance based approach T2 is chosen at
random, but we select T7 as it has the highest code coverage among
those test cases. To perform the OR operation, we require another
test case which has the highest hamming distance with T7. In this
case, T4, T6 and T10 has equal number of hamming distance with
respect to T7. As T4 has higher code coverage among them, it will
be chosen. After the OR operation, T3 get the maximum distance
with the output. After performing the OR operation, T9 and T12 has
the maximum distance with the output. We take T12 instead of T9

as T12 has higher code coverage than T9. Figure 3 illustrates the
calculation of proposed sequence.

Fig. 3. Extended Hamming Sequence Calculation.

So, extending hamming distance based approach with code
coverage information gives us the following prioritized sequence:

T7 → T4 → T3 → T12

which is different from the hamming distance based prioritization
order

T2 → T6 → T3 → T9

The new test order covers more code than the previous hamming
distance based order as shown in figure 4 and figure 5. The reason
to cover more code was to detect new bugs at the earliest and
our approach also starts with higher code coverage than hamming
sequence from the very first execution. To justify our approach, we
have now introduced an extended version of table 2 with two more
faulty version of the program on table 3.
By the hamming distance based prioritization order, the newly
arisen bugs remain hidden. While the extended version could reveal
F7 though F8 is not revealed at this stage. This is because the
extended version did not achieve 100% code coverage as shown
in figure 5 and the bug F8 remains in untested path. To overcome

3



International Journal of Computer Applications (0975 8887)
Volume 120 - No. 14, June 2015

Fig. 4. Code Coverage of Hamming Distance Based Prioritization

Fig. 5. Code Coverage of Extended Hamming Distance Based
Prioritization

Table 3. Results and Code Coverage of Mutant Codes
Test Mutant Codes CC(%)
Case# F1 F2 F3 F4 F5 F6 F7 F8

T1 0 0 0 0 0 0 0 0 70.23%
T2 0 0 1 1 0 0 0 0 10.53%
T3 0 0 0 0 0 1 0 0 75.00%
T4 1 0 0 0 1 0 0 0 77.37%
T5 0 0 1 1 0 0 0 0 72.37%
T6 1 0 0 0 1 0 0 0 72.37%
T7 0 0 1 1 0 0 1 0 81.58%
T8 0 0 1 0 0 0 0 0 75.00%
T9 0 1 1 0 0 0 0 0 69.28%
T10 1 0 0 0 1 0 0 0 72.37%
T11 0 0 1 0 0 0 0 0 75.00%
T12 0 1 1 0 0 0 0 0 77.63%
T13 0 0 1 0 0 0 0 1 75.00%

CC(%): Code Coverage(%)

this, finally we include T13 and T10 to cover 100% code and the
new test order is the following.

T7 → T4 → T3 → T12 → T13 → T10

Figure 6 shows that the new test cases achieve 100% code
coverage. Also, considering the new bugs, our proposed ordering
achieves higher bug detection ratio ρ as shown in figure 7. The
higher bug detection ratio ρ is defined as the following:

ρ =
Nd

NT

× 100% (1)

where,
ρ = percentage of bug detection by test case Ti

Nd = number of bugs detected by test case Ti

NT = total number of bugs

Fig. 6. Code Coverage of Proposed Sequence.

Fig. 7. Bug Detection Comparison.

Figure 7 clearly shows that our proposed technique has started
with more bug detection rate for table 3 than the hamming
sequence based technique. For this specific problem, hamming
sequence based prioritization can only detect 75% bugs whereas
our approach ends up finding 100% bugs. Our proposed approach
thus ensures higher bug detection rate.

6. LITERATURE REVIEW
R. Kavitha et al. [10] suggested to order the test cases based on
the requirements. Customer assigned priority, code implementation
complexity and requirement change were considered as factors.
Scoring policy for factors ranges from 0-10 are determined by
clients and developers. Averaging the sum of these 3 scores decide
the order of the test case.
Zeng and Wang [16] proposed a generic approach. They defined
a multi-dimensional model which makes the prioritization model
more flexible. They took consideration of all the dimensions that
are more related to the project cost which are code coverage, fault
exposing prioritization (FEP), requirement properties, historical
information and execution time. They bound these dimensions into
an equation. The output from the equation decides which test cases
will be executed earlier.
Wenhong Liu et al. in [18], presented methods which modify
existing test case prioritization algorithms in order to obtain
prioritized test cases. Software requirement prioritization, software
failure severity and probability rates were the factors for
prioritization. Initially prioritized test cases were generated and
then adjusted, or re-ranked based on the adjustments. Inclusion

4



International Journal of Computer Applications (0975 8887)
Volume 120 - No. 14, June 2015

of failure probability and severity improved the performance
noticeably as seen in the experimental results.
In [19], the existing approaches have two different phases; test
case prioritization and test case execution. They build a framework
which could relate these two phases. They propose an adaptive
approach which schedules the test cases in run time. The framework
picks a test case from the test suite, run it and replace the
output of the previous version for that test case and calculate the
fault-detection capability of the not selected test cases based on
the information available from the previous version and then select
another test case with the largest fault-detection capability. This
process goes on until the whole test suite is prioritized.
Ramaraj et al. [3] proposed a new concept in Regression Testing
named ‘Agent Based Regression Testing’. A dynamic approach
for removing the Complexity of prioritizing test cases are done by
monitoring code changes and generating test cases for the changed
version only.

7. CONCLUSION AND FUTURE WORKS
In this paper we have introduced a regression testing approach
that combines both the code coverage and hamming distance based
techniques to detect previous faults and the newly arisen faults. Our
approach covered more code from the beginning of its execution
than hamming distance based prioritization and also ensures 100%
code coverage. Results and analysis showed that this approach can
unfold the previous bugs early and can look up for new bugs as
well without changing the prioritization suite. Our research also
helps software testers to find bugs in the premature stage of testing
phase with least amount of test cases. It implies that our approach
is cost efficient for both in terms of money and human resource.
The mutant code we have introduced in our research does not
represent the actual bugs for a program. The experiment field was
relatively small. This approach needs to be tested in large scale to
see if the analysis holds.
In this paper, we only considered code coverage along with
hamming distance. However, there are other parameters like
execution time, customer requirement etc. that can be added to
calculate a prioritized order. Allowing those approaches with
variable distribution score formula along with hamming distance
can make it work for all types of systems.

8. REFERENCES

[1] Bushra Hoq, Samia Jafrin, and Shazzad Hosain. Dependency
cognizant test case prioritization. In International Conference
on Computational Intelligence and Software Engineering
(CiSE 2011), Wuhan, China, December 2011.

[2] S. Yoo and M. Harman. Regression testing minimization,
selection and prioritization: A survey. Software Testing,
Verification and Reliability, 22(2):67–120, 2012.

[3] T.M.S.Ummu Salima, A. Askarunisha, and N. Ramaraj.
Enhancing the efficiency of regression testing through
intelligent agents. In International Conference on Conference
on Computational Intelligence and Multimedia Applications,
volume 1, pages 103–108, Dec 2007.

[4] Swarnendu Biswas, Rajib Mall, Manoranjan Satpathy, and
Srihari Sukumaran. Regression test selection techniques: A
survey. Informatica, 35(3):289–321, 2011.

[5] Sriraman Tallam and Neelam Gupta. A concept analysis
inspired greedy algorithm for test suite minimization.
SIGSOFT Software Engineering Notes, 31(1):35–42, 2005.

[6] R.U. Maheswari and D. JeyaMala. A novel approach for
test case prioritization. In IEEE International Conference
on Computational Intelligence and Computing Research
(ICCIC), pages 1–5, December 2013.

[7] Ruchika Malhotra, Arvinder Kaur, and Yogesh Singh. A
regression test selection and prioritization technique. Journal
of Information Processing Systems, 6(2):235–252, 2010.

[8] Chaoqiang Zhang, Alex Groce, and Mohammad Amin
Alipour. Using test case reduction and prioritization
to improve symbolic execution. In Proceedings of the
International Symposium on Software Testing and Analysis,
ISSTA 2014, pages 160–170, New York, NY, USA, 2014.

[9] S.U. Rehman Khan, Sai Peck Lee, R.M. Parizi, and M. Elahi.
A code coverage-based test suite reduction and prioritization
framework. In 4th World Congress on Information and
Communication Technologies (WICT), pages 229–234, Dec
2014.

[10] R. Kavitha, V.R. Kavitha, and N.S. Kumar. Requirement
based test case prioritization. In IEEE International
Conference on Communication Control and Computing
Technologies (ICCCCT), pages 826–829, October 2010.

[11] A. Beszedes, T. Gergely, L. Schrettner, J. Jasz, L. Lango, and
T. Gyimothy. Code coverage-based regression test selection
and prioritization in WebKit. In 28th IEEE International
Conference on Software Maintenance (ICSM), pages 46–55,
Sept 2012.

[12] Yves Ledru, Alexandre Petrenko, Sergiy Boroday, and
Nadine Mandran. Prioritizing test cases with string distances.
Automated Software Engineering, 19(1):65–95, 2012.

[13] R. Beena and S. Sarala. Code coverage based test case
selection and prioritization. CoRR, 2013.

[14] Rw Hamming. Error detecting and error correcting codes.
Bell System Technical Journal, 26(2):147–160, 1950.

[15] University of California Riverside. Effectiveness of different
test case prioritization methods based on coverage criteria.

[16] Xiaolin Wang and Hongwei Zeng. Dynamic test case
prioritization based on multi-objective. In 15th IEEE/ACIS
International Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing
(SNPD), pages 1–6, June 2014.

[17] Software Verification Limited. C++ coverage validator 64/32
bit evaluation.

[18] Wenhong Liu, Xin Wu, WeiXiang Zhang, and Yang Xu. The
research of the test case prioritization algorithm for black box
testing. In 5th IEEE International Conference on Software
Engineering and Service Science (ICSESS), pages 37–40,
June 2014.

[19] Dan Hao, Xu Zhao, and Lu Zhang. Adaptive test-case
prioritization guided by output inspection. In Computer
Software and Applications Conference (COMPSAC), 2013
IEEE 37th Annual, pages 169–179, July 2013.

5


	Introduction
	Problem Formulation
	Code Coverage Based Prioritization
	Hamming Distance Based Prioritization
	Proposed Approach and Analysis
	Literature Review
	Conclusion and Future Works
	References

