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ABSTRACT 

Major technical constraints like minimum data storage at 

satellite platform in space, less bandwidth for communication 

with earth station, etc. limits the satellite sensors from 

capturing images with high spatial and high spectral 

resolutions simultaneously. To overcome this limitation, 

image fusion has proved to be a potential tool in remote 

sensing applications which integrates the information from 

combinations of panchromatic, multispectral or hyperspectral 

images; intended to result in a composite image having both 

higher spatial and higher spectral resolutions. The research in 

this area cites date back to last few decades, but the diverse 

approaches proposed so far by different researchers have been 

rarely discussed at one place. This paper is an honest attempt 

to collectively discuss all possible algorithms along with 

quality metrics following two assessment procedures i.e. at 

full and reduced scale resolutions to evaluate performance of 

these algorithms. 
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1. INTRODUCTION 
A wide variety of remotely sensed data products like 

panchromatic (PAN), multispectral (MS), hyperspectral (HS), 

synthetic aperture radar (SAR) imagery, etc. covering 

different parts of electromagnetic spectrum are made available 

by different earth observation satellites. These remote sensing 

data products are further processed and used for crop 

production forecast, forest cover and type mapping, 

mineral/oil exploration, weather prediction, watershed 

development and monitoring, urban sprawl mapping of major 

cities, disaster management, etc. [1]. Fig. 1 shows flow of 

tasks in remote sensing image processing. For many of the 

applications listed, image analysis of only one source type is 

insufficient. For detail understanding of the observed earth 

surface, it is better to get complementary information from 

more than one sensor. Thus, image fusion becomes the best 

option to integrate information collected from different 

imaging sensors at different spectral, spatial, temporal and 

radiometric resolutions [2] [3]. Image fusion is a subset of 

more diverse research area ‘data fusion’ which is defined as: 

“Data fusion is a formal framework in which are expressed 

means and tools for the alliance of data originating from 

different sources. It aims at obtaining information of greater 

quality; the exact definition of ‘greater quality’ will depend 

upon the application” [4]. Image fusion takes place at three 

different levels. 

 

 

 

 

 

 

 

 

 

 

 

Fig 1: Remote sensing image processing. 

1.1 Pixel Level Image Fusion 
Pixel-level image fusion is the lowest level of image fusion, 

where a new image is formed having pixel values obtained by 

combining the pixel values of different images through some 

algorithms under strict registration conditions [5]. The new 

image keeps more raw data to provide rich and accurate image 

information which is further used for easy analysis and 

processing by feature extraction and classification. The image 

fusion at pixel level may be single sensor, multi-sensor or 

temporal image fusion, etc. Advantage of pixel-level image 

fusion is minimum loss of information, but it has the largest 

amount of information to be processed, thus slowest 

processing speed, and a higher demand for equipment [6] [7] 

[8].  

1.2 Feature Level Image Fusion 
Feature-level fusion is intermediate level of image fusion 

where the features (edges, texture, shape, spectrum, angle or 

direction, speed, similar lighting area, similar depth of focus 

area, etc.) generally in statics are extracted from different 

images of the same geographical area by separate 

preprocessing [6]. The extracted features are combined to 

form an optimum feature set, further classified using 

statistical or other types of classifiers. Features from different 

source-images preprocessed using different schemes are 

combined to form a decision [7].  
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Fig 2: (a) Scheme of pixel level fusion, (b) Scheme of 

feature level fusion, (c) Scheme of decision level fusion. 

Here, correlative feature information is excavated, redundant 

features are eliminated and new compound features are 

established, increasing the degree of reliability of feature 

information. The requirement of sensor alignment in feature-

level fusion is less strict than pixel-level’s. So, image sensors 

can be distributed in different platforms. The advantages of 

feature-level fusion are that it achieved considerable 

compression of information, it is conducive to real-time 

processing and its fusion results can further give the feature 

information for decision analysis. Here, the extracted features 

are directly related to the decision analysis [5] [8]. 

1.3 Decision Level Image Fusion 
Decision-level fusion is a high-level fusion, and its results 

provide the basis for command and control decision making. 

In decision-level fusion, the images are processed separately 

[5]. The processed information is then refined by combining 

the information obtained from different sources and the 

differences in information are resolved based on certain 

decision rules. In literature, two types of decision level fusion 

are observed. Here, classification from different types of 

classifiers for the same image may be combined to get better 

classification accuracies or two different complimentary 

sources like optical imagery and radar data can be classified 

separately and combined to produce a refined classification 

map [8]. A variety of logical reasoning methods, statistical 

methods, information theory methods can be used for 

decision-level fusion, such as Bayesian reasoning, D-S 

(Dempster-Shafer) evidence reasoning, voting system, cluster 

analysis, fuzzy set theory, neural network , the entropy 

method and so on. Decision-level fusion has a good real-time 

and fault tolerance, but its pretreatment cost is higher. The 

data quantity of decision-level fusion is the smallest and its 

ability of anti-interference is the highest. The probability and 

reality of fused results are high and the performance of multi-

sensor system is improved [6] [7]. Accompanied Fig. 2 shows 

image fusion schemes at three different levels. 

The remainder of the paper is organized as follows: Section II 

presents a brief review of some of the image fusion 

approaches published earlier. Section III is devoted to image 

fusion methods belonging to different approaches, providing a 

detailed description of some algorithms. Section IV describes 

quality metrics for the evaluation of image fusion 

performance based on two assessment procedures operating at 

reduced and full resolutions. Future scope and limitations of 

the research are discussed in Section V. Finally, conclusions 

are drawn in Section VI. 

2. LITERATURE REVIEW 
To know the current state of art of image fusion in remote 

sensing, this section reviews some of the research papers 

published earlier. 

For fusion of MS image with PAN image (also called as 

pansharpening), it is observed that the effective high quality is 

achieved with the expense of large computational complexity, 

more time consumption and difficulties to process large size 

images. Along with this, Gemine Vivone et al. in [9] focused 

some important points as: the lack of universally recognized 

evaluation criteria, unavailability of image data sets for 

benchmarking and absence of standardized implementations 

of the algorithms to make a thorough evaluation and 

comparison of the different pansharpening methods. 

Pansharpening algorithms belonging to the two more 

established and addressed categories viz. component 

substitution (CS) and multiresolution analysis (MRA) are 

considered by authors to be evaluated and compared over five 
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data sets acquired by different satellites. Wenqing Wang et al. 

[10] further propose an adaptive component substitution based 

pansharpening, adopting a particle-swarm-optimization 

algorithm to solve the single objection optimization problem. 

The proposed framework is compared with popular CS based 

methods based on correlation coefficient, mutual information 

and mean-structural-similarity index. Andrea Garzelli et al. 

[11] while extending this classical component-substitution 

approach, propose to develop a fast nonlocal parameter based 

pansharpening method K-means clustering and overcoming 

window-based local estimation. In a try to solve the problem 

of color distortion, Qizhi Xu et al. [12] divides the pixels of 

PAN and MS images into several classes by k-means 

algorithm followed by multiple regression to calculate 

summation weights on each group of pixels. It is also noticed 

that due to the nonlinear spectral response of satellite sensors, 

synthesis of low-resolution PAN image required in some 

methods cannot be well approximated resulting in color 

distortion. 

Image fusion methods based on filters are also popular, where 

spatial information from the PAN image is extracted and 

injected into MS images. Hamid Reza Shahdoosti et al. in 

[13] address the designing of optimal filter that is able to 

extract relevant and non-redundant information from the PAN 

image. The performance is statistically evaluated using 

correlation coefficient (CC), relative dimensionless global 

error in synthesis (ERGAS), spectral angle mapper (SAM), 

universal image quality index (UIQI) and quality without 

reference (QNR). Using Discrete Wavelet Transform (DWT), 

there are no constraints about details that can be extracted 

from PAN and because of lack of orthogonality; Abdelaziz 

Kallel et al. [14] propose a coupled multiresolution 

decomposition model (CMD) fusion scheme. Kishor P. Upla 

et al. in [15] proposes a more advanced multiresolution fusion 

approach using contourlet transform (CT), by modeling the 

MS image as the degraded and noisy version of its high 

spatial resolution version, an ill-posed problem. Expecting 

better directionality from CT for initial estimate, authors 

demonstrate the approach using subsampled and non-

subsampled CT on data sets from Quickbird, IKONOS-2 and 

Worldview-2 satellites. Also, to find the functional relation 

between the PAN and MS images by typical modulation 

transfer function of the MS sensor which is many times 

approximated as a Gaussian filter is often inadequate for 

pansharpening. Hence, Gemine Vivone et al. in [16] tried to 

develop an efficient optimization procedure with semiblind 

deconvolution approach. The approach has been validated 

with datasets from IKONOS and QuickBird at reduced and 

full scale resolution over Q4, SAM, ERGAS, etc. Syed 

Muhammad Umer Abdullah et al. [17] proposes a class of 

schemes for the pansharpening of multispectral (MS) images 

using multivariate empirical mode decomposition (MEMD) 

algorithm, an extension of the empirical mode decomposition 

(EMD) algorithm, which tries to overcome mode-mixing, 

nonuniqueness, mode misalignment issues of the EMD and 

enabling the decomposition of multivariate data into its 

intrinsic oscillatory scales. Huihui Song et al. in [18] present a 

learning based super-resolution method to fuse Landsat 

Thematic Mapper (TM)/Enhanced Thematic Mapper Plus 

(ETM+) images with Système Pour l’Observation de la Terre 

5 (SPOT5) images, taking advantages of wide swath width of 

the former and the high spatial resolution of the latter. The 

imaging process is modeled from a SPOT to TM/ETM+ 

image by image degradation via blurring and downsampling 

operations. Simulated Landsat image thus avoids geometric 

coregistration. Further, classification experiments are 

demonstrated on fusion result and actual images. The 

application of sparse representation (SR) theory to the fusion 

of MS and PAN images is also observed in literature, where 

estimation of missing details that are to be injected in the 

available MS image to enhance its spatial features is done. 

Maria Rosaria Vicinanza et al. [19] presents implementation 

of the technique on datasets from WorldView-2 and IKONOS 

sensors, with comparison of classical pansharpening methods 

at reduced and full resolutions. 

Other than fusion of MS with PAN image, fusion of MS with 

HS images is also seen in literature. Due to complexity and 

cost issues, MS and HS images have different resolutions with 

significantly lower spatial resolution than that of PAN images. 

HS remote sensing images have advantage of more 

information content due to large number of bands involved, 

but the same time its application has been constrained due to 

the narrow swath width. Thus, a fusion of HS and MS images 

is proposed many times. Miguel Simões et al. [20] formulate 

this data fusion problem as the minimization of blur, additive 

noise, etc. promoting piecewise-smooth solutions. Author 

estimate a hard estimation problem in accounting different 

spatial resolutions, handling very large size of HS image 

together, etc. which is performed by following an Alternating 

Direction Method of Multipliers (ADMM) approach and 

using the Split Augmented Lagrangian Shrinkage Algorithm 

(SALSA). Here, a blind approach focusing the inherent data 

redundancy to achieve better results is followed. Xuejian Sun 

et al. in [21] proposes a spectral resolution enhancement 

method (SREM) for remotely sensed MS image, to generate 

wide swath HS images using auxiliary multi/hyper-spectral 

data. Transformation matrices are generated followed by a 

spectral angle weighted minimum distance (SAWMD) 

matching method to create HS vectors from the original MS 

image, pixel by pixel. Further Caroline M. Gevaert et al. in 

[22] performs fusion of MS and HS images acquired with 

Formosat- 2 and an unmanned aerial vehicle (UAV) 

respectively to construct Spectral–temporal response surfaces 

(STRSs) providing continuous reflectance spectra at high 

temporal intervals for precision agriculture requirements. The 

method uses Bayesian theory to impute missing spectral 

information in the MS imagery. The performance of method is 

evaluated on field measured reflectance spectra, leaf area 

index (LAI), etc. On the other hand, Qi Wei et al. in [23] 

present an approach for fusing HS and MS images based on 

sparse representation. An inverse problem of image fusion is 

formulated, assuming the target image to live in a lower 

dimensional subspace. Dictionary learning with design of a 

sparse regularization term are done and results are simulated 

for comparison to preexisting methods. To enhance spatial 

resolution of MS and HS images, Frosti Palsson et al. [24] 

proposes a method for fusion of MS or HS with PAN images 

and MS with HS images. Spectral redundancy is tried to be 

reduced by principal component analysis (PCA) and use of 

wavelets. The approach is said to have benefits of 

substantially lower computational requirements and very high 

tolerance to noise for WorldView-2 data. 

Image fusion has wide application area. Claudia Paris et al. in 

[25], based on the fusion between low-density LiDAR (Light 

detection and ranging) data and high-resolution optical images 

proposes a 3-D model-based approach to the estimate tree top 

height as one of the forest attributes. While, Wenzhi Liao et 

al. in [26] propose a generalized graph-based fusion method 

to couple dimension reduction and feature fusion of 

hyperspectral and LiDAR data. The edges of the fusion graph 

are weighted by the distance between the stacked feature 

points. Difficulties and ambiguities in object recognition of 
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urban areas are tried to be avoided by Fatemeh Tabib 

Mahmoudi et al. in [27]. The authors propose object-based 

image analysis (OBIA) to be performed in case of single view 

processes; while in multiviews’ case, all the views are to be 

fused at decision level. The approach is implemented to 

produce results for WorldView-2 and the digital modular 

camera (DMC) datasets. Network transmissions for 

surveillance in radar systems are generally narrowband. 

Gianluca Gennarelli et al. [28] propose to use single-

frequency approach for imaging targets with passive arrays 

deployed around the scattering scene. Employing a multiarray 

image fusion strategy in conjunction with a change detection 

scheme for imaging moving targets, better resolution images 

are obtained. The author carries some numerical estimation 

using this approach. Yong Xu et al. [29] develop a spatial and 

temporal data fusion model based on regularized spatial 

unmixing to generate Landsat-like synthetic data and the high 

temporal resolution of Moderate Resolution Imaging Spectro-

radiometer (MODIS) data. After considering the 

neighborhood size of the MODIS data, the number of classes 

of Landsat data for spatial unmixing and a regularization 

parameter added to the cost function to reduce unmixing error 

the approach is evaluated by calculating ERGAS. Wei Li et 

al. [30] propose a classification paradigm to exploit rich 

texture information of HS image. The framework employs 

local binary patterns (LBPs) to extract features such as edges, 

corners and spots. Feature-level fusion and decision-level 

fusion are applied to the extracted LBP features before 

classification. 

3. IMAGE FUSION METHODS 
Many methods for image fusion are reported in literature. The 

methods for pansharpening can be broadly categorized in 

three major groups as: relative spectral contribution methods, 

projection substitution (also called component substitution 

(CS)) methods and the methods belonging to ARSIS 

(Amélioration de la Résolution Spatiale par Injection de 

Structures) concept. The latter group of methods is sometimes 

also referred to as multiresolution analysis (MRA) methods. 

The methods showing resemblance to more than one group 

may be treated as Hybrid methods. Brovey transform (BT), 

Synthetic variable ratio (SVR) and Ratio enhancement (RE) 

are some examples of relative spectral contribution methods. 

CS methods include Intensity-Hue-Saturation (IHS) 

transform, principal component analysis (PCA) and Gram-

Schmidt (GS), etc. The powerful and dynamic wavelet 

transform based methods and its extensions perform 

multiresolution analysis. Fig. 3 represents evolution of image 

fusion methods for remote sensing. Some selected methods 

from the three groups are discussed in following subsections.  

3.1 Average 
It is a well-documented fact that regions of images that are in 

focus tend to be of higher pixel intensity. Thus, this algorithm 

is a simple way of obtaining an output image with all regions 

in focus. In this method the resultant fused image is obtained 

by taking the average intensity of corresponding pixels from 

both the input image [31]. 
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Fig 3: Evolution of image fusion methods. 

3.2 Select Maximum 
The greater the pixel values the more in focus the image. Thus 

this algorithm chooses the in-focus regions from each input 

image by choosing the greatest value for each pixel, resulting 

in highly focused output. In this method, the resultant fused 

image is obtained by selecting the maximum intensity of 

corresponding pixels from both the input images [31]. 

             
 
   

 
        (2) 

3.3 Select Minimum 
In this method, the resultant fused image is obtained by 

selecting the minimum intensity of corresponding pixels from 

both the input images [31]. 
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For equations (1), (2) and (3), Aij and Bij are input images to 

be fused, while Fij is resultant fused image. 

3.4 Multiplicative Method 
This method performs pixel to pixel multiplication of low 

spatial resolution multispectral image with high spatial 

resolution panchromatic image [32]. This simple method can 

be formulated as: 

                (4) 

                   (5) 

                  (6) 

Here, LR = Low spatial resolution MS band, HR = High 

spatial resolution PAN band. 

3.5 Brovey Transform 
The Brovey transform (BT) is a numerical fusion method 

which is based on Chromaticity transform. It focuses on 

fusing the images while preserving the colors of the original 

optical image. The BT uses a mathematical combination of 

the MS bands and PAN band. Each MS band is multiplied by 

a ratio of the PAN band divided by the sum of the MS bands. 

Its purpose is to normalize the three MS bands and to add the 

intensity or brightness component to the image [33]. It is a 

simple method for combining data from different sensors, 

with the limitation that only three bands are involved [4]. 

Successful application of this technique requires an 

experienced analyst for the specific adaptation of parameters. 

It is given by: 
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3.6 Intensity-Hue-Saturation (IHS) 
The intensity-hue-saturation (IHS) method is a standard 

procedure in the area of image fusion having fast computing 

capability for fusing images. Digital images in computer are 

generally displayed by an additive color composite system 

using the three primary colors – red (R), green (G) and blue 

(B). Since, perception of colors to humans always recognize 

with three features – intensity (I), hue (H) and saturation (S), 

the IHS fusion method converts a color multispectral (MS) 

image from the RGB space into the IHS color space [34]. 

While the RGB is a rectangular coordinate system and IHS is 

a cylindrical coordinate system, the conversion is performed 

by rotation of axis from the orthogonal RGB system to a new 

orthogonal IHS system [35]. The intensity represents the 

overall brightness or luminance of the scene of any color, the 

hue component refers to dominant wavelength of the light 

contributing to the scene and saturation component describes 

its purity. Most literature recognizes IHS as a third-order 

method because it employs a 3×3 matrix in its transform 

kernel. The appearance of the panchromatic (PAN) image is 

similar to the intensity band of an IHS representation of the 

scene.  Therefore, during fusion i.e. pan-sharpening, the MS 

image is projected onto the IHS color space and the intensity 

band is replaced by the PAN image. The fusion output can 

then be obtained by the reverse IHS transform [36]. The steps 

in IHS method are given below, where the equations (10), 

(11), (12) give mathematical interpretations of forward 

transformation while equation (13) gives IHS reverse 

transformation. 

 

Fig 4: RGB to IHS color transformation. 

1. The low resolution MS imagery is co-registered to 

the same area as the high resolution PAN imagery 

and resampled to the same resolution as the PAN 

imagery. It is generally performed using bi-cubic 

interpolation. 

2. The three resampled bands of the MS imagery, 

which represent the RGB space are transformed into 

IHS components. It is mathematically represented 

as follows- 
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Where, V1 and V2 are intermediate variables. 

3. The PAN imagery is histogram matched to the ‘I’ 

component. This is done in order to compensate for 

the spectral differences between the two images, 

which occurred due to different sensors or different 

acquisition dates and angles. 

4. The intensity component of MS imagery is replaced 

by the histogram matched PAN imagery. The RGB 

of the new merged MS imagery is obtained by 

computing a reverse IHS to RGB transform. 

Following equation gives IHS inverse transform. 

 
 
 
 
   

 
 
 
 
  

 

  

 

  

 
 

  

  

 
  

  

  

  
  
 
 
 
 

 
 
  
  

    (13) 

3.7 Principal Component Analysis (PCA) 
When the number of images to be fused is higher than three 

i.e. fusion of multidimensional data, principal component 

analysis (PCA) a statistical tool (which is also known as 

Karhunen-Lo´eve transform) is used for dimensionality 

reduction [37]. In the most common understanding, PCA is a 

data compression technique transforming the intercorrelated 

data into a new set of uncorrelated components (PC1, PC2, … , 

PCn, where n is the number of input multispectral bands) 

which is often more interpretable than the source data. It 

computes the basis vectors by analyzing the direction of 

maximum data variance and projects the data onto them. For 

PCA based image fusion, the principle components of the MS 

image bands are calculated. The first principle component 

which contains the most information of the image resembles 

with the panchromatic image and hence is substituted by the 

panchromatic data. Finally the inverse principal component 

transform is done to get the new RGB bands of sharpened 

multi-spectral image from the principle components [38]. 

To understand PCA, a two dimensional histogram which 

forms an ellipse is considered. Here the axes of the spectral 

space are rotated, changing the coordinates of each pixel in 

spectral space. The new axes are parallel to the axes of the 

ellipse. The widest transect, which corresponds to the major 

axis of the ellipse, is called the first principal component 

(PC1) of the data. The direction of the first principal 

component is the first eigenvector and its length is the first 

eigenvalue. The second principal component (PC2) is the 

widest transect of the ellipse corresponding to minor axis that 

is perpendicular to the first principal component. Thus, the 

PC2 describes the largest amount of variance in the data that is 

not already described by PC1. This way, for n dimensional 

data, there are n principal components (PCs). Each PC is 

orthogonal to the previous PCs and accounts for a decreasing 

amount of the variation in the data which is not previously 

accounted. Although there are n output bands in a PCA, the 

first few bands account for a high proportion of the variance 

in the data. In general, the first principal component PC1 

collects the information that is common to all the bands used 

as input data in the PCA, i.e., the spatial information, while 

the spectral information that is specific to each band is picked 

up in the other principal components.  

To compute a principal components transformation, a linear 

transformation is performed on the data meaning that the 

coordinates of each pixel in spectral space are recomputed 

using a linear equation. To perform the linear transformation, 

the eigenvectors and eigenvalues of the n principal 

components must be derived from the covariance matrix, as 

shown below: 
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   (14) 

             (15) 

Where, E = matrix of eigenvectors, Cov = covariance matrix, 

T = transposition function and D = diagonal matrix of 

eigenvalues in which all non-diagonal elements are zeros and 

non-zero elements are ordered from greatest to least. 

The PCA-based methods introduce less color distortion, but 

affect spectral responses of the multispectral data. This 

spectral distortion is caused due to the mismatch of overlap 

between the spectral responses of the multispectral image, and 

the bandwidth of the pan image.  

Both IHS and PCA mergers are based on the same principle: 

to separate most of the spatial information of multispectral 

image from its spectral information by means of linear 

transforms. The IHS transform separates the spatial 

information of the multispectral image as the intensity (I) 

component. In the same way, PCA separates the spatial 

information of the image into the first principal component 

PC1. It is well established that PCA performs better than IHS 

and in particular, that the spectral distortion in the fused bands 

is usually less noticeable, even if it cannot be completely 

avoided. 

3.8 Gram-Schmidt (GS) Method 
The GS orthogonalization procedure is the basis for defining a 

powerful pansharpening method. Since GS is a generalization 

of PCA, in which PC1 may be arbitrarily chosen and the 

remaining components are calculated to be 

orthogonal/uncorrelated to one another and to PC1. 

Like IHS and PCA method, this method also requires forward 

and backward transformation of MS image [39]. IHS 

transformation or the Brovey method work for up to three MS 

bands only. This drawback is outwitted in this method which 

is also offered by standard software packages e.g. ENVI, 

ESRI, etc. The Gram-Schmidt pan-sharpen method in a 

nutshell has following steps: 

1. Compute a simulated low resolution PAN band as a 

linear combination of the n MS bands. 

              
 
     (16) 

2. The Gram-Schmidt transformation is performed on 

the simulated lower spatial resolution PAN image 

and the pure low spatial resolution MS band images. 

To do so, the simulated lower spatial resolution 

PAN image is employed as the first band. Here, first 

of all incoming bands and the arguments of the 

scalar products are made dc free which turns the 

original Gram-Schmidt scalar products into 

covariances, then the iterative procedure of rotating 

the axes for orthogonalization is same. This Gram-

Schmidt forward transform de-correlates the bands. 

 

3. The statistics of the higher spatial resolution PAN 

image is adjusted to match the statistics of the first 

transform band resulting from the Gram-Schmidt 

transformation to produce a modified higher spatial 

resolution PAN image. The modified higher spatial 

resolution Pan image is substituted for the first 

transform band resulting from the Gram-Schmidt 

transformation to produce a new set of transformed 

bands.  

4. Reverse the forward Gram-Schmidt transform using 

the same transform coefficients, but on the high 

resolution bands. The result of this backward Gram- 

Schmidt transform is the pan-sharpened image in 

high resolution. 

If the user don’t know the spectral sensitivity of sensor, it is 

very difficult to compute MS to PAN weights for getting low 

resolution PAN image by simulation. Thus, this method lacks 

a clear and standard procedure to calculate MS to PAN 

weights. In ENVI package, the low resolution PAN image for 

processing in Gram Schmidt image fusion is produced either 

by pixel averaging of MS bands or by low pass filtering of 

original PAN image followed with its decimation. These two 

different approaches for getting low resolution PAN image 

shows differences in sharpness of fused result which is more 

noticeable for small objects appearing on a quasi-constant 

background. Secondly, pansharpening a small section of 

image which is potentially huge is a challenge without 

processing entire image. 

3.9 Pyramid based Methods 
Pyramid is a type of multi-scale signal representation, where 

an image is subject to repeated smoothing and subsampling. 

Generally, two types of pyramids are sought viz. low-pass and 

band-pass, where repeated smoothing of the image with an 

appropriate smoothing filter followed by subsampling along 

each coordinate direction is done. Every cycle, a smaller 

image with increased smoothing, but with decreased spatial 

sampling density is obtained. Graphically, the entire multi-

scale representation look like a pyramid, with the original 

image on the bottom and smaller images from every cycle 

stacked one on another. The Pyramid-based image fusion 

methods, including Laplacian pyramid transform, were all 

developed from Gaussian pyramid transform which have been 

modified and widely used [40]. 

3.10 Wavelet Transform based Methods 
A ‘wavelet’ as its name implies is a small wave that grows 

and decays essentially in a limited time period. Its use as 

wavelet transform is an extension of Fourier transform in 

many aspects and has been successfully used in image fusion. 

The signal here is projected on a set of wavelet functions to 

get best resolution without altering the spectral contents of the 

image [41]. This multiresolution approach is suited to 

different resolutions, which allows the image decomposition 

in different kinds of coefficients. The coefficients from 

different images are combined to form new coefficients, 

which after inverse transformation gives fused image [42]. It 

provides good resolution in both time and frequency domains. 

It is also found to have advantages over pyramid methods in 

terms of increased directional information, no blocking 

artifacts, better signal to noise ratios and improved perception 

[43]. 

A function can be called a wavelet if it satisfies two basic 

properties: 

Its time integral must be zero i.e. 

         
 

  
   (17) 

and square of wavelet integrated over time is unity. 

          
 

  
   (18) 

A family of wavelets can be generated by dilating and 

translating the mother wavelet which is given by 

         
 

  
  

   

 
   (19) 

Here,   is the scale parameter and   is the shift parameter. 

http://en.wikipedia.org/wiki/Scale_model
http://en.wikipedia.org/wiki/Signal_(information_theory)
http://en.wikipedia.org/wiki/Knowledge_representation
http://en.wikipedia.org/wiki/Smoothing
http://en.wikipedia.org/wiki/Downsampling
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Fig 5: Image fusion using wavelet transform. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6: Decomposition of image up to 3 stages using wavelet 

transform. 

3.11 Curvelet Transform 
Enhancing the edges of image is an effective means of 

enhancing spatial resolution. It is observed that, the results of 

most wavelet-based methods of image fusion generally have a 

spatial resolution less than that obtained via the Brovey, IHS 

and PCA methods. Thus to enhance spatial resolution, the 

curvelet transform which represents edges better than 

wavelets, is also used for image fusion. Here, curvelets are 

seen as an extension of wavelets for multidimensional data. 

The key difference between the wavelet and curvelet in other 

words is that curvelets are really directional. Curvelets satisfy 

the anisotropic scaling relation width ≈ length2 in the spatial 

domain. It would take many wavelet coefficients to accurately 

represent a curve, while curvelets can represent a smooth 

contour with much fewer coefficients for the same precision. 

Yan Sun et al. in [43] analyzed the characteristics of second 

generation curvelet transform and proposed image fusion 

method in a try comprising advantages of wavelet as well as 

curvelet transform. Myungjin Choi et al. [44] also used 

curvelet based image fusion method to merge Landsat PAN 

and MS images. 

3.12 Contourlet Transform 
Compared to Wavelet transform, Contourlet transform has the 

potential to consider precise selection of the details in the 

PAN image, due to its anisotropic character. The images 

containing contours and curves are represented specifically 

through the use of coefficients corresponding to lines [45]. 

Contourlet transform consists of two steps. The initial one is 

to decompose image into low and high-frequency 

components, followed by detection of high-frequency image 

components using lines. The latter step is carried out by first 

rotating high-frequency components and then applying 

specific filter banks. The number of degrees between each 

rotation for each step can be adjusted. In wavelets, however, 

the image is assumed to be piecewise smooth, which is not the 

case here. This means that an image is made up of local 

information, as determined by the length of the applied filter 

[46]. 

Apart from all the approaches of image fusion discussed so 

far, Artificial Neural Networks (ANNs) have also proven their 

powerful potential because of self-adaptive nature to 

traditional linear and simple nonlinear analyses. The image 

fusion methods suits different applications and their 

performance is generally evaluated using some parameters 

called ‘Quality Metrics’ discussed in following section. 

4. QUALITY METRICS 
For the evaluation of image fusion result, the most addressed 

problem is the absence of reference image. In order to 

circumvent this problem, two assessment procedures may be 

followed viz. reduced resolution assessment and full 

resolution validation [9]. The first procedure considers the 

images at a lower spatial resolution than the original image 

and uses the original MS image as a reference. This procedure 

with some established indexes allows for a precise evaluation 

of the results, but there might be mismatches between the 

performances obtained at reduced resolution and at the 

original scale. Actually, the performances are related to the 

way with resolution degradation is performed [39]. The 

second approach uses quality indexes that do not require a 

reference image but operate on the relationships among the 

original images and the pansharpened result. Here, operations 

directly on the data at the native scale are carried, but it is 

biased by the definitions of the indexes. Because of the 

suboptimality of evaluation procedures, evaluation of the 

results through visual inspection is still necessary. The image 

quality indexes following these assessment procedures are 

majorly belonging to the field of information theory. They are 

explained in brief as follow – 

4.1 Entropy (H) 
The image entropy is an important indicator for measuring the 

image information richness. The amount of image information 

is bound to be changed which is fused before and after. 

According to the principle of Shannon information theory, an 

image’s information entropy is shown by –  

                 
   
      (20) 

Where,      is the probability of grey level i, L is image’s 

total gray level and the dynamic range of analyzed image is 

[0,    ]. If the value of entropy becomes higher after fusing, 

it indicates that the information increases and the fusion 

performances are improved [6] [44].  
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4.2 Mutual Information (MI) 
Mutual information gives the measure of information from 

source image to the fused result. If the value of this objective 

indicator is greater, then richer is the fused image in terms of 

information. Generally, MI between two random variables is 

given by – 

                          
        

           
 (21) 

Where, X and Y are the random variables with corresponding 

marginal probability distributions        and       
respectively. While          is unite probability density [6]. 

4.3 Correlation Coefficient (CC) 
Correlation coefficient indicates degree of correlation between 

the original and fused images [34]. It is calculated by – 

    
                           

   
 
   

                 
   

 
                   

   
 
   

  (22) 

Where, X and F denotes the source MS and the fused images 

with size     respectively. When original and fused 

images are identical, the value of CC approaches to one [35] 

[44] [48]. 

4.4 Standard Deviation (σ) 
Standard deviation is more efficient in the absence of noise. It 

measures the contrast in the fused image [6] [34]. An image 

with high contrast would have a high standard deviation given 

by – 

                       
          

 
    (23) 

Where,        is the normalized histogram of the fused image 

If(x,y) and L is the number of frequency bins in histogram. 

4.5 Mean Square Error (MSE) 
The mathematical equation of MSE is given by – 

     
 

  
            

  
   

 
     (24) 

Where,   is the reference image,   is the fused image to be 

assessed,   is the pixel row index,   is the pixel column index, 

  is number of rows and   is number of columns [6]. 

4.6 Root Mean Square Error (RMSE) 
The RMSE is another standard measure of difference between 

the reference image and the fused image [34] given by –  

       
                    

  
   

 
   

   
 

 

 

  (25) 

Where,        and        are the image pixel values of the 

reference image and the fused image respectively.     is 

the image size. Greater the RMSE, higher the difference 

between reference and fused image will be. The main 

drawback of RMSE is that errors in each band are not related 

to the mean value of the band itself [6] [9] [42] [48]. 

4.7 Relative Average Spectral Error 

(RASE) 
To estimate the global spectral quality of the fused images, 

the index of the RASE is expressed as a percentage. This 

percentage characterizes the average performance of the 

method of image fusion in the spectral bands considered [35] 

[44], given by – 

      
   

 
 

 

 
          

 
     (26) 

Where,   is the mean radiance of the   spectral bands      
of the original MS bands, and      is root mean square error 

computed [34]. 

4.8 Errur Relative Globale 

Adimensionnelle de Synthèse (ERGAS) 
It means the relative global dimensional synthesis error. It is a 

more credited global index proposed for pansharpening as 

follows: 

       
   

 
  

 
  

           

     
 
 

 
     (27) 

Where RMSE is defined as (25) and µ denotes mean of the 

image. Since ERGAS is composed by a sum of RMSE values, 

smaller ERGAS indicates better fusion results and its optimal 

value is 0 [9] [34] [35] [39] [44] [48]. 

4.9 Peak to Peak Signal to Noise Ratio 

(PSNR) 
PSNR is the ratio between the maximum possible power of a 

signal and the power of corrupting noise that affects the 

fidelity of its representation. The PSNR measure is given by – 

               
       

                     
   

 
   

 (28) 

Where,   is the reference image,    is the fused image to be 

assessed,   is the pixel row index,   is the pixel column index, 

  is number of rows and   is the number of columns [6] 

[42]. 

4.10 Universal Image Quality Index (UIQI) 

or Q - index  
It is a scalar index which overcomes some limitations of 

RMSE. It is given by –  

        
   

    
 

   

            
 

     

   
     

  
  (29) 

Where,     is sample covariance of   and  , while   is sample 

mean of  . It varies in the range      , with 1 denoting the 

best fidelity to reference. The vector expansion of Q-index to 

vector data up to four bands accounting for spectral distortion 

is Q4 vector index. The Q4 index takes values in [0,1] with 

one being the best value [4] [9]. 

4.11 Spatial Frequency (SF) 
Spatial frequency is used to measure the overall activity level 

of an image [9], which is defined as – 

                   (30) 

Where    and    are row frequency and column frequency 

respectively. 

     
 

  
                     

   
 
       (31) 
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4.12 Spectral Angle Mapper (SAM) 
The Spectral Angle Mapper (SAM) reflects the global 

measurement of spectral distortion by averaging whole image 

[39] [48]. It consists of calculating the angle between the 
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corresponding pixels of the fused and reference images in the 

space defined by considering each spectral band as a 

coordinate axis. Let,                        be a pixel vector 

of the MS image I with N bands, the SAM between      and 

    is defined as follows: 

                      
           

            
   (33) 

Where,             denotes the scalar product and        denotes 

vector l-2 norm. The optimum value of SAM equal to zero 

denotes absence of spectral distortion, but radiometric 

distortion is possible (i.e. the two pixel vectors are parallel but 

have different lengths) [9]. 

SAM is further improved to Expanded Spectral Angle Mapper 

(ESAM) which is more sensitive to difference between two 

images, because the value of the ESAM will be equal to 0 

only for two identical images whereas the values of the SAM 

can be equal to 0 for two similar images. The ESAM 

measures information from isolated pixels only, and does not 

consider the neighboring pixel relationships, which are more 

important for structures and textures [47]. 

4.13 Quality w/no reference (QNR) 
It is defined as – 

            
        

   (34) 

It is thus composed by the product, weighted by the 

coefficients α and β, of two separate values    and   , which 

quantify the spectral and the spatial distortion, respectively. 

The higher the QNR index, the better the quality of the fused 

product. The maximum theoretical value of this index is 1, 

when both    and    are equal to 0.  

The spectral distortion is estimated by 

     
 

      
                

  
       

 
   

 
 (35) 

Where,                                      

The Q-index is used to calculate the dissimilarities between 

couples of bands, and the parameter p is typically set to one.  

The spatial distortion is calculated by 

     
 

 
                       

  
   

 

 (36) 

The     is a low-resolution PAN image at the same scale of 

MS image and   is usually set to one. From a practical point 

of view, the perfect alignment between the interpolated 

version of the MS and the PAN images should be assured, to 

avoid the loss of meaning for this quality index [9] [48]. 

5. FUTURE SCOPE & LIMITATIONS 
Many research papers have reported the limitations of existing 

fusion techniques. The most significant problems are color 

distortion, operator’s fusion experience, the data set being 

fused, capacity of satellite sensor to store image data, etc. No 

automatic solution has been achieved to consistently produce 

high quality fusion for different data sets. To reduce the color 

distortion and improve the fusion quality, a wide variety of 

strategies have been developed, each specific to a particular 

fusion technique or image set.  

The satellites used from past decades are allocated the 

frequency band of visible spectrum region. Today, with 

increase in number of satellites launched by different nations, 

newer satellites are being assigned frequency bands of near 

infra-red region. This makes quality difference in imagery 

captured by older satellites and newer satellites. Hence, image 

fusion techniques give different results for imagery of newer 

satellites and old satellites. It is observed that, when 

traditional fusion and adjustment techniques are used with this 

imagery, captured by newer satellites, color distortion 

becomes a significant problem.  

Therefore, all the limitations of existing image fusion methods 

including color distortion for the above said reason gives 

motivation for development of new improved image fusion 

method which will compensate these limitations. 

6. CONCLUSION 
In this paper, we discussed different image fusion levels, 

current state of art of image fusion in remote sensing, 

different image fusion methods and image fusion evaluation 

parameters. Concluding remarks for all these sections are 

organized as follow: 

 Image fusion methods obtain more accurate and reliable 

image information by eliminating redundancy.  

 Analysis of some researchers shows that different image 

fusion methods suits different applications. 

 The pixel level fusion has been extensively researched 

for different approaches, since it gives comparatively 

better quality of fused results; but at the expense of more 

time consumption.  

 For evaluation of image fusion algorithms, there is no 

standardized reference hence common practice followed 

is to test the algorithms on more number of datasets and 

to use optimum fusion strategy depending on application.  

 Along with the objective evaluation, many times it is 

reported that the fused result should be subjectively 

evaluated based on visual characteristics. 
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