
International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.10, June 2015

16

AgileUAT: A Framework for User Acceptance Testing

based on User Stories and Acceptance Criteria

Pallavi Pandit
Department of Information Technology

MITM
Indore

Swati Tahiliani
Department of Information Technology

MIST
Indore

ABSTRACT

User Acceptance Testing (UAT) has widespread implications

in the software community. It involves not only the end-user,

but the Quality Assurance (QA) team, developers, business

analysts and top level management. UAT is conducted with

the aim of developing confidence of the user in the software

product. UAT is generally performed manually and not

preferred to be automated. UAT frameworks exist for Agile

methodologies such as Scrum. We propose a UAT process

model which adapts the generic agile process model. Hence, it

is able to encompass every agile methodology. AgileUAT,

aims at generation of exhaustive acceptance test cases in

natural language, based on acceptance criteria. It indicates

whether the acceptance criteria is fulfilled or not, as a

percentage value. The tool illustrates traceability among epics,

user stories, acceptance criteria and acceptance test cases. We

explore several different templates for user stories and

acceptance criteria. In the future, we aim to provide a direct

mapping between the acceptance criteria and acceptance test

cases based on permutations and combinations using decision

tables.

General Terms

Software Engineering -> Software Creation and Management

-> Software Verification and Validation -> Process Validation

-> Acceptance Testing

Keywords
Agile, UAT, user story, epic, acceptance criteria, traceability.

1. INTRODUCTION
Defects may occur at any stage of software development. If

these defects are not fixed early, they become more and more

expensive to fix. Testing helps us to measure the quality of the

product in terms of defects found. Testing is conducted at

many levels: Component Testing, Integration Testing, System

Testing and Acceptance Testing[1].

Acceptance testing is when a user checks another’s work for

the purpose of accepting it. Acceptance Testing is establishing

confidence in the user that the software product is fit for

purpose. So, acceptance testing performs validation on the

software product. Acceptance Testing is conducted by the

user or customer, although it may involve other stakeholders.

 Acceptance Tests can be classified as User Acceptance Tests

(Internal Alpha Tests and External Beta Tests), Operational

Acceptance Tests, Regulatory Acceptance Tests and Contract

Acceptance Tests. The goal of user acceptance testing is

reassurance. The motivations for UAT are presentation,

demonstration, probing, usability and validation[2].

The V-Model illustrates the mapping between development

phases and the corresponding testing phases. In this model,

Requirements Gathering phase maps to Acceptance Testing

Phase.

There are several approaches for User Acceptance Testing,

viz., Requirements-based, Business Process based and Data

driven[3]. We are following the Requirements-based process

in which the user stories and acceptance criteria form the basis

of the UAT process.

In User Acceptance Testing, manual testing is done by the

user. Generally, UAT is not automated. Otherwise it would be

considered as an automated test case for checking application

functionality. However, if users are busy to test after every

build or we have an understaffed testing team, we may

consider automating certain tests[4].

We focus on UAT in Agile. Our approach consists of

translating acceptance criteria into natural language tests for

performing UAT. A case study exemplifies our work.

2. BACKGROUND STUDY
A user story is defined as “A user story is a tool in Agile

development to capture a description of a software feature

from an end-user perspective”[5]. The user stories have to

address functional as well as non-functional characteristics.

Every story includes acceptance criteria for these

characteristics[6].

During each iteration, developers write code to implement the

user stories, with the relevant quality characteristics, and this

code is verified and validated via acceptance testing[6].

Acceptance criteria are said to be testable if they include

functional behavior, quality characteristics, scenarios (use

cases), business rules, external interfaces, constraints and data

definitions[6].

There exists a traceability among epics and user stories, user

stories and acceptance criteria, and acceptance criteria and

acceptance test cases[7]. These traceability elements can be

shown via a traceability tree or a traceability matrix or

exported to an Excel sheet.

UAT best practices include focusing on requirements,

designing systems for testability and consideration of usability

testing[8]. Comprehensive UAT checklists [9][10] ensure that

the process is carried out in the right manner. Guidelines for

UAT are provided in [11].

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.10, June 2015

17

3. RELATED WORK

3.1 Academia
[12] have proposed a model based technique for specifying

user stories in the form of test models. These test models are

enhanced with implementation details during sprint planning

thus serving as a specification for developers. Testers further

enhance them with test data and automatically generate test

tables out of them using test generator. These tables can then

be executed by Selenium.

3.2 Industry

[13] have classified the challenges for UAT in agile

development model into four categories which include

business challenges, people & process, governance and tools

& automation. And to overcome these challenges they have

proposed a UAT Centre of excellence (CoE) framework. The

recommend unique UAT approach addresses all its challenges

in an Agile development model, where the UAT team would

work in tandem with the development and QA teams using

CoE best practices to enhance test coverage and efficiency.

eliminate many potential defects with early business

validations and improves efficiencies through optimum

automation of regression test beds.

The UAT team gets involved early in SDLC and is engaged in

the entire iterative process. The UAT team works with a story
card acceptance criteria for each iteration. This helps

3.3 Tools for performing UAT
Several tools exist for performing UAT, which are outlined in

[14]. Specifically, Cucumber, Jira, Fitnesse, Explorer, RSpec

make use of acceptance criteria for designing acceptance test

cases.

4. METHODOLOGY
We propose a logical framework for translating user stories

and acceptance criteria into natural language user acceptance

tests. We have studied the process model for agile and

adapted it as per our requirements.

During Pre-Iteration Planning, first, we elicit epics/user

stories in the form of a template: As a <user>, I want

<feature> so that <benefit>. Afterwards, we input the

acceptance criteria in one of the templates selected by the

user. During Iteration Planning, we prioritize the user

stories using the MoSCoW (Must, Should, Could and Would)

acronym. During Iteration Execution, we extract the role

(user) and feature of the epic/user story and the business value

(benefit). We generate a test use case diagram with the user

and functionality (feature). The test use case diagram acts like

a basis to user acceptance testing (UAT). There is the same

notation for both developers and end-users and testers. Hence,

We stereotype use case diagram into test use case diagram.

During Iteration Wrap-Up, the acceptance criteria are

translated to acceptance tests (positive, negative and non-

functional). During Post-iteration consideration(Reports),

we can view retrieve user stories can be done By user/ By

role/ By date/ By theme/ By epic/By iteration/By priority.

During Post-iteration consideration(Traceability), we

associate business requirements with user with feature(epics)

with sub-feature(user stories) with acceptance criteria with

user acceptance tests. Further, we generate an Excel sheet to

show traceability.

During Post-iteration consideration(Defect Log), we will

see how many acceptance tests have passed and whether the

acceptance criteria is fulfilled or not.

Fig 1: AgileUAT: our adaptation of the Generic process model of Agile

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.10, June 2015

18

5. CASE STUDY

Element Template[15][16] Example[7] Extracted Information

Epic 1 As a <role>

I want <feature>

so that <benefit>

As an internet banking

customer, I want to avail the

online banking facilities so I

can work from home

Role1: internet banking

customer

Feature1: avail the online

banking facilities

Benefit1: I can work from

home

User Story 1 As a <role>

I want <sub-feature>

so that <benefit>

As an internet banking

customer I want to list my

account balances so that I can

understand my financial

position.

Role1: internet banking

customer

Sub-Feature1: list my account

balances

Benefit2: I can understand my

financial position

Acceptance Criteria 1 Given [inputs | preconditions]

When [actions | triggers]

Then [outputs | consequences]

Acceptance Criteria1

Given the customer has one

credit account and one savings

account

When they have logged in

successfully

Then the two accounts will be

listed in account number order

(Account no, Name, Balance,

Available Funds)

Inputs/Preconditions: The

customer has one credit

account and one savings

account

Actions/Triggers: When they

have logged in successfully

Outputs/Consequences: Then

the two accounts will be listed

in account number order

(Account no, Name, Balance,

Available Funds)

User Acceptance Test 1

(Positive)

Verify that preconditions occur,

verify that action occurs,

verify that outputs are

generated

Steps:

1. Verify that customer has one

credit account and one savings

account

2. Verify that they have logged

in successfully

3. Verify that the two accounts

will be listed in account

number order (Account no,

Name, Balance, Available

Funds)

10% acceptance criteria

fulfilled

User Acceptance Test 2

(Negative)

Verify that invalid inputs occur,

Verify that trigger does not

occur, Verify that when outputs

are not generated, an error

message is displayed to the user

1. Verify that customer does

not have one credit or one

savings account

2. Verify that client cannot

login successfully

20% acceptance criteria

fulfilled

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.10, June 2015

19

3. Verify that message is

displayed to the user

User Acceptance Test 3

(Negative)

Verify that preconditions occur,

actions or triggers do not occur,

then error message is displayed

to the user

1. Verify that customer has one

credit account and one savings

account

2. Verify that client could not

login successfully

3. Display the error message to

the user

30% acceptance criteria

fulfilled

User Acceptance Test 4 (NFR) Select attribute: performance Verify that response time < 5

seconds

40% acceptance criteria

fulfilled

User Acceptance Test 5 (NFR) Select attribute: security Verify that login is secure 50% acceptance criteria

fulfilled

User Acceptance Test 6 (NFR) Select attribute: availability Verify that the service is

available 24*7

60% acceptance criteria

fulfilled

User Acceptance Test 7 Verify that service is working

for the specified user(s)

For each user, run User

Acceptance Test 1 through 6

100% acceptance criteria

fulfilled

6. IMPLEMENTATION AND RESULTS
We have represented our solution structure as a DOM tree

which can be written to XML format as shown below. We are

associating the elements using a traceability links which will

be shown as a traceability tree. The test cases are derived from

the acceptance criteria and written to an Excel sheet.

Fig 2: AgileUAT: DOM tree structure

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.10, June 2015

20

6.1 Traceability Links

Here, we establish traceability links from user stories to test

cases.

6.1.1 By Epic
Benefit 1->Role 1-> Epic 1->Feature 1-> Acceptance Criteria

1-> User Acceptance Test 1

6.1.1.1 By User Story
Benefit 1->Role 1-> Epic 1-> User Story 1-> Sub-Feature 1->

Acceptance Criteria 1-> User Acceptance Test 1

6.2 XML Representation
We are writing the generated test use case diagram in XML as

per [17].

<Epic>

<Role>internet banking customer</Role>

<Feature>avail the online banking facilities</Role>

<Benefit>I can work from home</Benefit>

<User Story>

<Role>internet banking customer</Role>

<Feature>list my account balances</Feature>

<Benefit>I can understand my financial position</Benefit>

<Acceptance Criteria>

<Given>

<input></input>

<precondition>The customer has one credit account and one

savings account</precondition>

</Given>

<When>

<action>When they have logged in successfully</action>

<trigger></trigger>

</When

Table 1: Acceptance Test

Cases from Acceptance Criteria1

<Then>

<output>Then the two accounts will be listed in account

number order (Account no, Name, Balance, Available

Funds)</output>

<consequence></consequence>

</Then>

</Acceptance Criteria>

<Benefit></Benefit>

</User Story>

</Epic>

6.3 Acceptance Test Cases for
Acceptance Criteria 1

Test case generation for acceptance criteria is

exemplified in [18]

Suggested Test Cases based on the case study are

generated below. More test cases can be generated by the end-

user or QA team.

Given the customer has one credit account and one savings

account Step1

When they have logged in successfully Step2

Then the two accounts will be listed in account number order

(Account no, Name, Balance, Available Funds) Step3

S. No. AC Step Prerequisites Positive

Scenario/Negative

Scenario/NFR

Scenario

Acceptance

Test Scenario

description

Acceptance

Test Scenario

Steps

Input

Values

Expected

Result(s)

AT

S1

Step

1

None Positive Verify that

the customer has

one credit

account and one

savings account

AT

S2

Step

2

Step1 Positive Verify that

the customer has

logged in

successfully

AT

S3

Step

3

Step2 Positive Verify that

the two accounts

will be listed in

account number

order(Account

no, Name,

Balance,

Available

Funds)

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.10, June 2015

21

7. CONCLUSION AND FUTURE WORK
We have used the simplest acceptance criteria

template(Given, When, Then). This template can be extended

to use multiple ANDs for different conditions. Our work can

be extended to incorporate these multiple ANDs and generate

test cases accordingly. One of these examples is shown

below[7]:

Given the customer has twenty five accounts step1

And they have logged in successfully step2

And they are on the first page of the list step3

When they activate the Next Page button step4

Then the list will be cleared step5

And the list will be populated with the last five accounts

 step6

And the Previous Page button will be enabled step7

And the Next Page button will be enabled step8

Our work can be extended to group related stories into themes

using Natural Language Processing.

 We will generate a test use case diagram from epics/user

stories. This diagram is an extension of the use case diagram

for testing purpose. It provides same notation which can be

used by both developers and testers. It is used for visualizing

roles, functionality listed in a user story.

8. REFERENCES
[1] Graham D., Veenendaal E., Evans I., Black R.

Foundations of Software Testing. 2008 Cengage

Learning EMEA

[2] Michael Bolton. DevelopSense. User Acceptance Testing

– A Context-Driven Perspective.

[3] USER ACCEPTANCE TESTING (UAT)

PROCESS.Version 1.0.March3, 2008. British Columbia.

Information and Technology Management Branch.IM/IT

Standards and Guidelines.

[4]

 http://www.searchsoftwarequality.techtarget.com/an

swer/Automating-user-acceptance-test-cases

[5]

 http://www.searchsoftwarequality.techtarget.com/de

finition/user-story

[6] ISTQB Agile Tester Syllabus

[7] http://www.batimes.com/articles/user-stories-and-use-

cases-dont-use-both.html

[8] https://www.develop.com/useracceptancetests

[9] www.testingpro.net/2013/07/user-acceptance-testing-uat-

checklist.html

[10] www.iste.uni-

stuttgart.de/fileadmin/user_upload/iste/se/links/links-

se/checklists/download/Accpetance.html

[11]

 docs.oracle.com/cd/E14004_01/books/DevDep/Test

ing_Guidelines3.html

[12] Löffler R., Güldali B., Geisen S. Towards Model-based

Acceptance Testing for Scrum.

[13]

http://searchsoftwarequality.techtarget.com/tip/Streamlin

ing-user-acceptance-testing-UAT-with-Agile

[14]

 www.testdriven.com/tag/acceptance_testing_tools_

post_tag/

[15] https://www.mountaingoatsoftware.com/agile/user-

stories

[16] http://guide.agilealliance.org/guide/gwt.html

[17] Dranidis D., Tigka K. Writing Use Cases in XML

[18] http://testerstories.com/2011/08/be-acceptable-write-

tests-from-stories/

IJCATM : www.ijcaonline.org

