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ABSTRACT 
Construction of long low autocorrelation binary sequences 

(LABS) is a complex process which involves many 

limitations. LABS have many practical applications. In pulse 

coding schemes, sequences with low autocorrelation side lobe 

energies are required to reduce the noise and to increase the 

capability of radars to detect multiple targets. In literature, 

numerous techniques were employed to solve the LABS 

problem. For short length sequences, search algorithms can be 

applied as the search space is manageable. But in our case of 

long length binary sequences, construction methods are 

suitable. The major limitations of search algorithms are time 

and computational power. DH Green [1] in their research 

utilized modified Jacobi sequences to construct merit factors 

for long binary sequences. In our case, we used the same 

construction methods and applied them to various search 

algorithms. We obtained better results with this 

implementation. We achieved a merit factor of 6.4534 

whereas Green [1] managed to 5.99. 

Keywords 
Autocorrelation, Modified Jacobi sequences, Merit Factor, 

prime step algorithm, steepest descent algorithm. 

1. INTRODUCTION 
Pulse Compression is used in radars to detect the targets. The 

transmitted signal is phase modulated and then correlated with 

received signal. If the resulting spectrum consists of low SNR, 

then the target detection becomes difficult. In order to solve 

this problem, the sequences used for phase modulation should 

have low autocorrelation side lobe energies. As the energy 

decreases, the noise in the spectrum decreases, and the targets 

become apparent. There are many other applications of LABS 

like icing spin glasses, etc. Generating LABS is a very 

laborious process which involves time complexity. If N is the 

length of the binary sequence, then the search space has 

  elements. The process is similar to searching for a needle in 

a haystack. Lack of proper technique would result in chaos. 

We can classify the methods in the literature into three types. 

The first one is for short length (N<50) binary sequences, 

which involve linear search. It looks in the entire search 

space. As the length of the sequences increases, regular search 

is not feasible. Various stochastic and optimization algorithms 

were developed to approach the problem for medium length 

sequences (N<200).For long binary sequences, Search 

algorithms takes infinite time to address the problem. To 

overcome this limitation, various construction methods are 

implemented. Legendre, Jacobi. Modified Jacobi Sequences 

can generate LABS with good merit factor range. We moved 

a step further by applying these sequences to prime step and 

steep descent algorithms, and we observed significant 

improvement in merit factor values. We modified these 

algorithms to our requirements for better results. 

2. LITERATURE 
Linder used computer search as a tool to approach the Labs 

problem. He employed a linear search algorithm for first 32 

sequences. Golay described Lindner’s research in his 

publication [4].Later, Mertens [5] used branch and bound 

technique up to a sequence length of 48.Mertens later 

employed an exhaustive search for the same element set, and 

he applied the results to construct accurate states of  

Bernasconi model. Mertens work was subsequently 

improvised by Bauke [6], and he conducted his research for 

first 60 sequences. We compared all the results of various 

linear search algorithms, their performance is miserable with 

an increase in sequence size. Computing power is limited, and 

it is one of the limitations of the exhaustive linear search. 

As the sequence length increases, the size of the search space 

grows exponentially. The search algorithms must be 

intelligent enough to guess the location of a global optimum. 

It should not look for a solution in a blunt method. Numerous 

stochastic algorithms, optimization methods, mutation 

procedures were employed for medium length binary 

sequences to obtain the solution. In the beginning, even these 

methods failed to produce proper outputs. With trial and error 

methods, better approaches were developed. Prestwich [7] 

used a CLS algorithm that utilized constraint programming to 

obtain results up to a length of N=48. After that, Dotu used a 

Tabu search algorithm to get results up to a range of N=48. 

Tabu search is a memory aided search process with some 

restrictions known as “Tabu”. Instead of searching the whole 

space, the Tabu algorithm tries to estimate the location of the 

global optimum using memory. This mechanism will reduce 

the search time enormously. But if the sequence length 

increases beyond 200, even this method will not be able to 

handle the problem. For long binary sequences, we use 

construction methods. 

When the sequences length increases to five hundred, it 

becomes almost impossible to use search algorithms. At this 

point, generation methods will be used. Mathematical 

functions like Legendre symbols, Jacobi symbols, etc. are 

used to construct the required sequences. The first method in 

the literature is the Legendre sequence construction. If N is 

the length of the binary sequence, we want to obtain the merit 

factors as N tends to infinity. There is an observation by 

Turyn that,  a quarter rotated periodic Legendre sequence 

tends to a merit factor value of 6.0 as N tends to infinity [2]. 

These same phenomena were proved to be true for modified 

Jacobi sequences of length (pq). Recent improvements include 

the achievement of merit factor observations up to a range of 
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3000 by two students [3]. Matthew Parker and Kristiansen [9] 

used small complexity search to obtain good results; they 

have extended the Legendre sequences. If N is the length of 

the binary sequence, we want to get the merit factors as N 

tends to infinity. We consider only those sequences which 

have good 2 valued- periodic autocorrelation which are 

Quadratic residue sequences, GMW sequences, Twin Prime 

Jacobi sequences-sequences etc. All these sequences are used 

in cryptography as they exhibit ideal aperiodic correlation 

properties and have very high linear-equivalence. D.H Green 

[1] investigated modified Jacobi sequences and implemented 

a 2-dimensional array to solve their autocorrelation values. 

We have analyzed Green's results and observed all the other 

results in the literature.  We choose modified Jacobi 

sequences and have applied them to steepest descent and 

prime step algorithms with some modifications. We have 

achieved a merit factor of 6.4534 with these algorithms. 

3. BACKGROUND 

3.1 Autocorrelation, Energy, Merit Factor 
In statistics, we use the correlation as a tool to measure the 

similarity between two sequences. Autocorrelation is the 

correlation of a sequence with itself with the presence of some 

time lag. Autocorrelation function is used to detect the 

presence of repeated patterns or periodic patterns in a 

sequence which are otherwise covered by noise 

Assume that A is a binary sequence with length N. We will 

represent the sequence by  a1a2a3….aN with ai          for 1≤ 

i ≤ N. The aperiodic autocorrelation of elements in the 

sequence A is  

      

 

   

                                                             

Autocorrelation requires only one sequence, whereas cross-

correlation requires two.If A and B are two different 

sequences, the cross-correlation between A and B is X=A*B 

      

 

   

                                                             

LABS problem for the length N is represented as LABS(N). 

For a given a given length N, LABS has    solutions. There 

are    solutions in the search space. We have to select the 

sequence that provides the least autocorrelation energy value. 

For example, assume that N=3, we have eight possible 

solutions. The solutions 

are         ,        ,         ,        .The energies of 

all these sequences are same which is one. As the sequence 

length is very small, we got the results instantly. But for long 

length sequences, the complexity increases exponentially 

It is not necessary to find all the global optimum in LABS. If 

we know one result, we can complement it to get another. 

Even if the obtained result is complemented or reversed, the 

energy value will remain the same. LABS exhibit symmetry. 

The quality of the sequence is measured by its energy value. 

As the energy value of the sequence decreases, its quality 

increases. To have a standard approach, we require a 

measuring function for LABS sequences. Golay for the first 

time introduced the concept of merit factors. The merit factor 

indicates the autocorrelation side lobe energy of a given 

sequence. 

     
  

     
   
   

                                                                         

3.2 Binary Sequence – Element Flipping 
There are three steps involved in achieving the merit factors. 

The first step is to generate the Modified Jacobi sequence. 

The last step is to apply the advanced search algorithms to 

modified Jacobi sequences to achieve the merit factors. The 

whole procedure will be carried out in sequential steps to 

reduce the execution time. An intermediate step is present 

which involves single element or multi-element flips. The 

element flips boosts the performance of search algorithms and 

reduces the execution time of search process. 

3.2.1 One – Element Flips  
In single element flips, we flip one element at a time. We 

repeat the process for N elements in the sequence. The 

sequence with the element flip that gives the least energy will 

be the required solution. We will take the generated modified 

Jacobi sequence and perform single element flips on that 

sequence. The energies of all the flipped sequences will be 

noted. Then we will calculate the difference between primary 

sequence energy and current flipped sequence energy. After 

that, we will compare all the differences to see which flip got 

the least energy. Let us say that with one element flip the 

difference in energy is δ1 .For all the flips, the difference 

energies will be saved in the vector Δ. 

So   Δ = [  ,  ,  ,  ….,  ]. Here, δj represents the complete 

difference in auto-correlation energy between primary and 

flipped sequence (produced by flipping element j). We 

compare all the values in Δ. While doing this lot of time 

wastage would be there. So instead of computing Δ in this 

procedure we have designed a better approach, by expressing 

Δ in its correlation and autocorrelation terms and applying 

Fast Fourier transform techniques (FFT) to it. 

The total energy of the binary sequence is given by 

      
 

   

   

                                                                                     

When single element flip is performed on the sequence, the 

change in energy of the sequence is given by 

       
 

   

   

                                                                              

Here D=[d1,d2…dN] are the auto-correlation energies of  the 

flipped sequence A. The auto-correlation side-lobe energies 

differ whenever aior ai+min (A.1) change. That is when i=j or 

i+m=j 

       

 

   

                                                     

We can further simplify equation 6 

                                               (7) 

                                                                             (8) 

                                                                               (9) 

From equation 8 and 9, the modified energies will be 

                                                               (10) 
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And the side lobe autocorrelation energy m is given by 

  
  =   

  – 4ajSj,mcm  + 4  
      

                                            (11) 

The total change in energy of autocorrelation side lobes with 

an element flip j is given by 

δj =  –                  
      

     
                                   (12) 

    =    
   (-ajSj,mcm +       

 )                                             (13) 

The above procedure will take a lot of time to compute the δj 

for all values of j. We have to simplify this process to execute 

the steps in less time. We have to remember that 

     
    =     

   +      
  + 2                                               (14) 

So from 13 we get 

δj=                              
          

     
   

   
          (15)                                                            

  =                                  
                  (16) 

Now we can rewrite the change in energy as 

δj=8aj                            
              

    (17) 

Observe the equation 17 keenly. We can relate this equation 

to correlations pair. 

  =                     
     

                            (19) 

Here r indicates the reverse of the corresponding sequence. 

Equation (19) is now in the form of cross-correlation (2) 

                                   
               (20) 

Here the alphabet C represents the autocorrelation sidelobe 

energies of A*A. The second term in (7) is also in the form of 

correlation 

     
   
       =           

   
                                (21) 

                               =            
      

                        (22) 

We already know that 1 ≤ am ≤ N, so we have to change the 

limits of the summation to make the sum congruent to cross-

correlation (2).We have to do this in such a way that it will 

not affect the aggregate value 

      
   
       =               

  
                         (23) 

=(A*Ar)N+1-2j                                                                                                          (24) 

We have to mix the two summations to get the δj value 

δj = -8aj(C*A)j + (C*Ar)N- j+1 + 8(A*Ar)N+1-2j + 8 (N-2)    (25) 

If we want to compute the above equation directly, lot of time 

is required. To simplify the process, we make use of Fourier 

transform. FFT is a perfect way to compute this sum. 

FFT (A*B) = FFT (A) FFT (Br)                                          (26) 

When we apply inverse Fourier transform to above equation 

we get   

A*B = F-1(FFT (A) FFT (Br))                                              (27)                  

Here F-1 indicates the inverse Fourier transform function. 

Equation (25) consists of multiple correlation pairs. So the 

Fourier transform implementation involves multiple FFTS. 

The minimum length of each FFT is 2N-1.If N is of smaller 

length, equation (13) is a better approach than (27).This 

change will not create any problems in our calculations 

because in our experiments we only consider very long 

sequences. 

3.2.2 Multi – Element Flips   
So far, we have explained the mechanism of single element 

flips calculations. Now we want to explain multiple elements 

flip calculations. In multiple element flips, more than one 

element flips will be allowed to give the solution, and the 

whole process repeats for several iterations. We want to 

describe the procedure for calculations here 

Assume that s be a set that consists of all element flips. Let f 

be another set that consists of all the distances between the 

flipped elements. Let gm be the pair wise sum of all the 

products of all flipped elements. The indices all these 

elements differ by m. The value of gm will be zero when m∉f. 

gm =                   jaj+m, if (m f)                                     (28) 

gm =  0, otherwise 

Now the changed autocorrelation side lobe energies will be 

described as 

    m – 2     nSn,m + 4gm                                                            (29) 

We can rewrite Equation (29) as 

  
                                

 
          

                        
 

                                        (30) 

The total energy of side lobes is given by 

         
          

     
                                                   (31) 

 
        

   

                                       
    

                               
                       (32) 

                                       
   
    

                         
 

                           (33) 

Some part of this equation replicates single element changes. 

We will use (13) to transform this equation. So we get 

We will arrange the triple summations according the 

requirements of correlations structures. 

                            
   
              

                              
                           (34) 

Now we have to expand the term Sn,mSp,m 

             
               

   
                (35) 
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=            
                                            (39) 

 

      
   

                   

          

           
       

                 
   

             
   

                  
 

   

                     

 

                             
             

                             

     

          

                                                        

         
   

                     

       
       

                          

   

 

   
   

          

           
       

  

   

                

                              
 

   

 

   

                        

Here NS represents the number of flipped elements. We will 

use 41 and 42 on 40 to give 

The speed of (43) depends on the number of flipped elements. 

If Δ is calculated first then   δS does not depend upon the 

length of the sequence N. The time required to implement 43 

is very high. So in order to execute the calculation faster 43 is 

approximated by the following equation 

                 
   

         

   

  
                                

If the N value increases, the accuracy of (A.44) decreases. In 

our experience, our inaccuracies have been minimum. 

3.2.3 Reduction of Delta Complexity   
Our algorithms implement an iterative method in which single 

or multi-element flips will occur. Once the flip occurs, the Δ 

will become useless. We should calculate new Δ for every 

iteration, which makes the program execution very 

complicated. We found a method to overcome this problem.  

We will flip an element k in the sequence. Indicate the 

modified sequence by a dot. The modified sequence is Ả   

In the similar notation we can write                       
 .   is 

the new vector for the changed energy. When j = k,  

                
                       
                  

                                                                                   (45) 

 

we get              .When j     , we get                  

      .When we apply this change in (A.43) we get 

                                     
                        

                                                                       (46) 

Equation 46 represents the autocorrelation A*Ar and the side 

lobe energies C. If we assume that Δ is calculated earlier 

using (25), then A and Ar need not be calculated again. It is 

done already at the time of (25).When m = N + 1 - 2k, the 

modified elements in A and Ar overlap. So A*Ar will not have 

any change. 

    =                        
 
    

                                                         (47) 

We can calculate side lobe energies without any problem. 

They are given by 

                                                                         

With the help of (46), we reduced the complexity of Δ 

calculation. Thus, it will update Δ value continuously 

3.3 Construction of Modified Jacobi 

Sequences 
In order to understand Jacobi and modified symbols, we 

should first analyze the Legendre symbol. 

3.3.1 Modified Jacobi Sequences 
Twin prime Jacobi sequences do not create good 

autocorrelation function values, which are out of phase to p 

and q. In order to overcome this limitation, we go for 

Modified Jacobi sequences. Out of phase autocorrelation 

values depend on difference k between p and q. The modified 

Jacobi sequence can be defined as 

    
 
 

 
   

 

 
                    

                                                 
                                                        

                  (49) 

We force   of the normal Jacobi sequence to 0  for all a, 

which are multiples of q and should be 1 for all a, other than 

a=0,which are the multiples of p. The values of a which are 

multiples of q(a   mod q) will be present on the first column 

of the array.The values of a which are multiples of p(a   

mod p) will be present on the first row of the array. To 

perform autocorrelation, the first column should hold all zeros 

and the first row should contain all ones. The implementation 

for this process is shown below for a length of 35 

Consider our old pq =35 length example, it is demonstrated 

below in table  

3.4 Advanced Algorithms 
We have developed two algorithms for Modified Jacobi 

sequences. We achieved satisfactory results with these 

algorithms. The two algorithms are Prime step algorithm and 

steepest descent algorithm. 
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3.4.1 Prime step algorithm 
It is a non-iterative algorithm, and the computation is very 

simple. The algorithm improves the merit factor by flipping 

all the elements in the isolated sequence. We will consider 

only those sequences that have a negative Δ. Consider a new 

sequence D produced by inverting all the elements in 

sequence A which has a negative Δ. The formula describes the 

prime step algorithm. 

The prime step algorithm first calculates Equation (25) and 

then applies (55) to it with no iterations. 

    
                  

         
                                                       (50) 

3.4.2 Steep descent algorithm (modified version 

of steepest descent algorithm) 
When there is no analytic procedure to obtain the minimum 

value of a given function, we will go for iterative technique 

for achieving approximate solution. Newton has defined a 

method to achieve the minimal value, but it is not reliable. To 

solve these kinds of problems, we go to steepest descent 

method. The first step in the algorithm is to calculate the 

gradient of the given function at a given point. In order find 

the local optimum, we should proceed stepwise towards 

negative gradient of given function. We will begin at a place 

x0 and slowly we will proceed from xi to xi+1 by taking 

minimal values along the straight line from xl towards the 

course of –ve gradient. 

 
1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 

1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 1 1 0 1 0 1 0 0 0 0 1 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 1 1 0 1 

 
Consider an example: If we apply this algorithm to a random 

function f(x), the structure of the iteration will be 

Consider an example: If we apply this algorithm to a random 

function f(x), the structure of the iteration will be 

                                                               (65) 

We applied steepest descent algorithm to LABS problem. 

Results were satisfactory, but still we tried to improve them. 

For very long sequences, the inability of steepest descent 

method to create multiple flips in a single iteration became a 

limitation. We were not able to get the merit factors in quick 

time. The algorithm flips the elements one at a time, and the 

flip that gives the highest merit factor will be the solution. 

Without multiple element flips and a better iterative 

procedure, it is almost impossible to say that this method has 

the best approach. The steepest descent algorithm is very 

simple, but it has its limitations when applied to long Jacobi 

sequences 

We modified the steepest descent algorithm and named it as 

steep descent algorithm. This algorithm allows multiple 

element flips in each iteration. So the number of iterations 

will be less, which improves the speed of the algorithm. In 

every iteration, all the elements in the sequence with negative 

Δ value will be flipped. If the merit factor value improves 

with this iteration, Δ is again calculated for the new sequence, 

and the iterations will go on. If the value of the merit factor is 

not increasing then, we will consider the  element subsets with 

– Δ (subsets range from 10%,20% ….so on).Algorithm selects 

the  subset that provides the best merit factor implements it, 

and the process of iteration will continue. When additional 

flips do not produce any improvement in merit factors, the 

iteration procedure will terminate. This termination will also 

occur when large number of iterations is over. 

We have tried several variations of steep descent method. We 

varied the number of element flips in each iteration, and we 

observed the results. For almost all the variations, the merit 

factor values were identical. The changes are not discussed 

here as they are not important. It became apparent to us that 

the steep descent algorithm is far more efficient than steepest 

descent algorithm. We named, both the prime step algorithm 

and steep descent algorithm as modified Jacobi algorithms 

because with the application of these algorithms the merit 

factors of Jacobi sequences has reached above 6.4. 

4. RESULTS 
To get the results, we applied Modified Jacobi sequences to 

both of the enhanced algorithms. We got significant 

improvements in merit factors for various sequences. We 

conclude that, on a relative basis, steep descent algorithm 

performed well than prime step algorithm. In this part, first we 

will discuss the Prime step results and then the Steep descent 

results. Later, we will compare the results of Steep descent 

and prime Step algorithms using two statistical methods. 

Finally, we will discuss the highest merit factors obtained in 

our experiments. 

4.1 Prime Step Algorithm Results 
There was a slight improvement in merit factor values when 

we applied the prime step algorithm to Modified Jacobi 

sequences. We have selected Modified Jacobi sequences 

because even without the application of prime step algorithm, 

they are capable of producing good results by themselves. 

Once we have applied the algorithm, it further improved merit 

factor values. 

Table 1 

Sequence 

Length 

Modified 

Jacobi -

Merit 

factor 

Prime 

step -

Merit 

factor 

9797 6.3321 6.4482 

194477 6.3411 6.4466 

205193 6.345 6.4423 

390589 6.3429 6.4362 

471953 6.3421 6.4419 

557993 6.3412 6.4427 

644773 6.3419 6.4391 

741317 6.3421 6.44 

804509 6.3404 6.4383 
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974153 6.3443 6.4349 

1005973 6.3416 6.4394 

 
Table 1 shows the merit factor values for some of the 

Modified Jacobi sequences. The generated sequences tend to a 

merit factor range of 6.3(approximately).When we applied 

prime step algorithm to it the merit factor range improved 

significantly to 6.4. 

We have conducted experiments for elements up to a length of 

one million. We have observed the same phenomenon in all 

these sequences. We tried to represent all those merit factors 

in a graph, but the graph lacks clarity. So we sampled some of 

the best sequences from our results and represented them in a 

graph(Figure 1). So for a length of one million we got 

sampled sequences that would efficiently determine the 

performance of our results. 

 
Figure 1 

4.2 Steep Descent Algorithm Results 
So far in our experiments this algorithm provided the best 

results. In single step algorithm case, there was a slight 

improvement in merit factor range. But in steep descent case, 

we achieved our best merit factors. 

Table 2 

Sequence 

Length 

modified 

Jacobi -

Merit 

factor 

Steep 

descent-

Merit 

Factor 

9797 6.3321 6.4534 

194477 6.3411 6.4491 

205193 6.345 6.4446 

390589 6.3429 6.4384 

471953 6.3421 6.444 

557993 6.3412 6.446 

644773 6.3419 6.4418 

741317 6.3421 6.4434 

804509 6.3404 6.4413 

974153 6.3443 6.4373 

1005973 6.3416 6.4415 

 

 

Similar to Prime step algorithm case, we want to compare the 

results of Modified Jacobi sequences with Steep descent 

Modified Jacobi sequences .Figure 2 describes an exact 

representation of that. We can clearly observe the domination 

of steep descent merit factors over Modified Jacobi merit 

factors. In Table 2 we have represented some of our steep 

descents Modified Jacobi results. Our merit factor reached 

around 6.4534. 

 

 
Figure 2 

4.3 Steep Descent VS Prime Step Results 
The results indicate that the steep descent results dominate 

single step results for almost all the sequences. We compared 

the two results in Figure 3. 

 

Figure 3 

The graph lacks clarity, so we need an alternate method which 

exactly demonstrates the difference in results between the two 

algorithms. 

We want to represent the difference between the two 

algorithms statistically, so we used two statistical methods to 

compare the results.  

1. Mann-Whitney Rank Sum test 

2. Kruskal-Wallis one-way Analysis of Variance on 

Ranks 
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4.3.1 Mann-Whitney Rank Sum test 
We compared the results of Prime step Modified Jacobi and 

Steep descent Modified Jacobi algorithms using this tool. This 

statistical test ranks the merit factors for each and every 

condition between two groups (in our case Prime step and 

Steep descent) and then it will analyze how different the two 

rank sums are. If there exists a systematic change between the 

two selected groups, then most of the high ranks will 

represent one group(Steep descent).Then most of the low 

ranks will represent another group(Prime step).Due to this, the 

rank totals will change for each cluster. The statistic “U” 

represents the difference between the two ranks. We can 

clearly observe the difference in median value, and the 25% 

and the 75% values. 

Mann-Whitney U Statistic = 13243.000 

Table 3 

GROUP Number of 

samples 

Median 25% 75% 

Prime step 

modified 

Jacobi 

167 6.290 6.190 6.428 

Steep 

Descent 

modified 

Jacobi 

167 6.296 6.203 6.430 

 

With test results in Table 3, we can conclude that that the 

steep descent algorithm performs well than Prime step 

algorithms in almost all the instances. 

4.3.2 Kruskal-Wallis one-way Analysis of 

Variance on Ranks 
We compared the results of Prime step Modified Jacobi, Steep 

descent Modified Jacobi algorithms with original modified 

Jacobi sequence using this tool. It is an extension of Mann-

Whitney Rank Sum test for three different groups. We can 

conclude from the results that prime step and steepest descent 

algorithms performed well over modified Jacobi sequences. 

Table 4 

GROUP 

 

Number of 

samples 

Median 25% 75% 

Modified 

Jacobi 

167 6.270 6.175 6.340 

Prime step 

modified 

Jacobi 

167 6.290 6.190 6.428 

Steep 

Descent 

modified 

Jacobi 

167 6.296 6.203 6.430 

Table 5 
Comparison 

between 

Difference of 

ranks 

q P<0.05 

Jacobi vs. steep 

descent 

modified Jacobi 

9477.000 5.066 yes 

Prime step  vs 

steep descent 

modified Jacobi 

1759.500 0.940 no 

Modified Jacobi 

vs. Prime step 

Jacobi 

7717.500 4.125 yes 

 

In Table 5,”Difference of ranks is very important. High-rank 

differences indicate that the compared second group has 

performed exceedingly well over the first group 

4.4 Best Merit Factors 
In table 6, we include our top ten merit factors with their 

corresponding sequence lengths. In figure 4 we compared the 

top ten merit factors of Modified Jacobi, steep descent and 

prime step algorithms. Some of the bubbles overlap, so we 

cannot see all the ten results. 

Table 6 
Sequence 

length 

Modified 

Jacobi 

merit 

factors 

Prime 

step merit 

factors 

Steep 

descent 

merit 

factors 

9797 6.3321 6.4482 6.4534 

194477 6.3411 6.4466 6.4491 

6557 6.3322 6.4434 6.4467 

557993 6.3412 6.4427 6.446 

164009 6.3414 6.4423 6.4451 

205193 6.345 6.4423 6.4446 

576077 6.3424 6.4423 6.4443 

471953 6.3421 6.4419 6.444 

741317 6.3421 6.44 6.4434 

239117 6.3406 6.4404 6.4433 

 

 

Figure 4 

5. CONCLUSION 
D.H. Green [1] constructed Modified Jacobi sequences to 

obtain a merit factor value of 5.99.To improve the results; 

these sequences were applied to Prime step and steep descent 

algorithms. There is a significant improvement in merit factor 

range. A highest merit factor value of 6.4534 was achieved. 

The merit factors of Modified Jacobi sequences were 

calculated up to a length of one million to determine the 

asymptotic behavior of merit factors for long length binary 

sequences, generated using modified Jacobi symbol. 
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The two major limitations for LABS research are long 

execution times and low computational power. .Efforts was 

made to simplify these limitations. As the computation power 

increases, the generation of LABS becomes easier. If the 

computational power permits the work, experiments will be 

conducted for more sequences. In future, we want to increase 

the sequence length to a value of ten millions to observe the 

behavior of these sequences under the influence of our 

enhanced algorithms. 
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