
International Journal of Computer Applications (0975 – 8887)

Volume 119 – No.8, June 2015

30

Sweeper’s Algorithm and its Application on Image

Clustering

1Utkaleswar Padhan, 2Sagar Kumar Tripathy, 3Sudhakar Sahoo,
4Birendra Kumar Nayak and 5Om Prakash Jena

1, 2, 5
School of Mathematics, Statistics and Computer Science, Utkal University, Bhubaneswar, India

3
Institute of Mathematics and Applications, Bhubaneswar, India

4
P. G. Department of Mathematics, Utkal University, Bhubaneswar, India

ABSTRACT
Using Two Dimensional Hybrid Cellular Automata (2-D

HCA) rules image shifting, image copying, zooming in and

out, thickening and thinning of an image etc. were possible

and reported in [8]. A new searching algorithm called

Sweeper’s algorithm was proposed on binary images using 2-

D HCA and was the basis for solving various problems like

migration of initially distributed organisms in a space towards

a single point destination, density classification problem of

CA etc. [9]. Due to the wide scope of Sweeper’s algorithm it

was mentioned in [8] that the problem areas that can be solved

by this algorithm are text and image compression, informed

search in Artificial Intelligence, clustering problem,

Cryptography, and pattern classification etc.

Here in this paper we have taken up the challenge and tried to

solve the clustering problem using Sweeper’s algorithm.

Basically our study is based on various color images

consisting of the combinations of Red, Green, and Blue

(RGB) colors as well as selecting different destination points

in the search space. First we have taken red color and one of

the two color from blue or green as cluster points and took it

as input and by applying Sweeper’s algorithm we found two

cluster regions one with red color and other with blue or green

color. Subsequently we took all the three (RGB) color as input

and by applying the algorithm we found three clusters. We

took one color between red, blue, green and some other color

like magenta, cyan, yellow etc. as input and found different

clusters. We have also studied the intersection region of

different colors using this algorithm and found interesting

color patterns.

Keywords
Cellular Automata, Sweeper’s Algorithm, Image Clustering

1. INTRODUCTION
1.1 Cellular Automata
A cellular automaton [3] consists of a regular grid of cells and

each cell is in one of a finite number of states. The grid can be

any finite number of dimensions. For each cell a set of cells

called its neighborhood (usually including the cell itself) is

defined relative to the specified cells. An initial state (time

t=0) is selected by assigning a state to each cell. A new

generation is created (advancing t by 1) according to some

fixed rules that determines the new state of each cell in terms

of current state of the cell and state of the cells in its

neighborhood.

In 2-D Nine Neighborhood CA [1, 2, 4, 6, 8, 9] the next state

of a particular cell is affected by the current state of itself and

eight cells in its nearest neighborhood also referred as Moore

neighborhood.

The central box represents the current cell (i.e. the cell under

consideration) and all other boxes represent the eight nearest

neighbors of that cell. The number within each box represents

the rule number characterizing the dependency of the current

cell on that particular neighbor only. Rule 1 characterizes

dependency of the central cell on itself alone whereas such

dependency only on its top neighbor is characterized by rule

128, and so on. These nine rules are called fundamental rules.

In case the cell has dependency on two or more neighboring

cells, the rule number will be the arithmetic sum of the

numbers of the relevant cells.

Uniform and hybrid CA

If we apply the same rule to each entry of the problem matrix,

it is called as Uniform CA and if we apply different rules to

different entries at the same time then it is called as Hybrid

CA.

Example (Uniform CA)

In the figure, Rule 170 (2 + 8 + 32 + 128) is applied uniformly

to each cell of a problem matrix of order (3 x 4) with null

boundary condition (extreme cells are connected with logic-0

states).

















1 1 0 1

0 1 1 1

0 1 0 0

 
170 Rule

















1 0 1 1

0 1 0 0

1 1 0 1

Example (Hybrid CA)
Let us consider an example of a hybrid CA in null boundary

condition where 3 rules (Rule 2, Rule 3, and Rule 4) are

applied in 3 different rows (1st, 2nd and 3rd rows

respectively) in the above problem matrix.

















1 1 1 0

0 1 1 1

0 1 0 0

 
4,3,2Rule

















0 0 0 0

0 1 0 0

0 0 1 0

Table 1: Application of 2-D CA in image processing
Translated image in

different Direction

Rules to be applied

Top 8

Bottom 128

Left 2

Right 32

International Journal of Computer Applications (0975 – 8887)

Volume 119 – No.8, June 2015

31

Top-Left 4

Top-Right 16

Bottom-Left 256

Bottom-Right 64

2. SWEEPER’S ALGORITHM: REVIEW
Using 2-D Hybrid CA rules a new searching algorithm has

been proposed called Sweeper’s algorithm [8] and found to be

applicable in many inter-disciplinary research areas. This

algorithm is called Sweeper’s algorithm because the technique

used in this algorithm is very similar to the way a sweeper

sweeps haphazardly and put it in one corner of a room.

According to this algorithm we will apply different CA rules

of Table 1 in different regions by rotating a fixed axis about a

fixed point. An important point is that at every iteration of the

algorithm, the combinations of all the nine fundamental rules

were used.

Sweeper’s algorithm has been used to show the different steps

of migration of organisms in a particular environment towards

a single destination. The organisms can be unicellular or

multi-Cellular. In case of unicellular organisms it is

considered as the phenomenon of Chemo taxis.

2.1 Simulation Result

Fig 1: “sys.bmp” shows the initial position of organisms in

a 2-D space of size (500Х400)

Fig 2: Shows the image “res1.bmp” (After 100 iterations)

3. MODIFIED SWEEPER’S

ALGORITHM
In the modified Sweeper’s algorithm we have taken the

number of iteration t and at a stretch two complementary rules

are used for t number of times along a particular axis of

rotation. In this way all the nine rules are applied to an image

one after another with respect to horizontal axis, left-diagonal

axis (\), vertical axis and right-diagonal axis (/). Here we have

shown how the result of this algorithm is different from the

original Sweeper’s algorithm.

3.1 Modified Algorithm
Step1: A Monochromatic “.bmp” file is taken as the input

where t is the number of iteration and the size of the matrix is

(X x Y), the point of destination = (x, y), the angle of rotation

= 45 (in degree), the number of rotations in one iteration, N is

[360/2*45] = 4.

Step2: Input number of time: t

for r1 to t

{

for (i = 1 to x & j = 1 to Y) // Two CA rules are applied

with respect to Horizontal Axis.

Apply Rule 128

for (i = x+1 to X & j = 1 to Y)

 Apply Rule 8

}

for r1 to t

{

For (i-j <= x-y) // Two CA rules are applied with respect

to Diagonal Axis (\)

Apply Rule 16

for (i-j > x-y)

Apply Rule 256

}

for r1 to t

{

for (i = 1 to X & j = 1 to y) // Two CA rules are applied with

respect to Vertical Axis

Apply Rule 32

for (i = 1 to X & j = y +1 to Y)

Apply Rule 2

}

for r1 to t

{

for (i+j <= x+y) // Two CA rules are applied with respect to

Diagonal Axis (/)

Apply Rule 64

for (i+j > x+y)

Apply Rule 4

 }

Step3:- Store the resultant matrix in “res.bmp” as the output.

3.2 Simulation Results

International Journal of Computer Applications (0975 – 8887)

Volume 119 – No.8, June 2015

32

Fig 3: Shows the image “res2.bmp” (After 30 iterations)

Fig 4: Shows the image “res3.bmp” (After 100 iterations)

3.3 Sweeper’s algorithm for multiple

destinations
Fig 5 and Fig 6 shows the simulation result of sweeper’s

algorithm applied to Fig 1 where two points are chosen as

destination instead of one.

Fig 5: Shows the image “res4.bmp” (After 50 iterations)

Fig 6: Shows the image “res5.bmp” (After 100 iterations)

4. SWEEPER’S ALGORITHM FOR

COLOR IMAGE
This section shows the implementation of Sweeper’s

algorithm for color images and this is used for image

clustering. Basic information for color images which will be

used for implementation purpose is discussed below.

4.1 True color RGB
A true color red-green-blue(RGB) image is represented as

three-dimensional (M Х N Х 3) matrices. Each pixel has red,

green, blue components along with the third dimension with

values in the interval [0, 1]. For example the color

components of pixel(m, n) are MyImage(m, n, 1)=red,

MyImage(m, n, 2)=green, MyImage(m, n, 3)=blue.

If each of these components has a range 0 to 255 such an

image is a “stack” of three matrices; representing the red,

green and blue values for each pixel. This means that for

every pixel there correspond to 3 values. True color image

may be of class Integer or Double.

4.2 RGB Components of an image
MATLAB has the ability to find out exactly how much Red,

Green, and Blue content is there in an image. One can find

this by selecting only one color at a time and viewing the

image in that color. The following code allows viewing the

Red content of an image.

redimage = Myimage; % Create a new matrix equal to the

matrix of the original image.

redimage (:, :, 2) = 0;

redimage (:, :, 3) = 0;

Since the colors are mapped using RGB, or columns with

values of Red, Green and Blue, so we can selectively nullify

the green and blue columns to obtain only the red part of the

image.

imshow(redimage); % show the red image that was just

created. Similarly, we can do the same with the green and

blue components of the image. Just keep in mind the format of

the array

 Red : Green : Blue

 1 2 3

Table 2: RGB values of different colors

RGB Value Short Name Long

Name

[1 1 0] Y Yellow

[1 0 1] M Magenta

[0 1 1] C Cyan

[1 0 0] R Red

[0 1 0] G Green

[0 0 1] B Blue

[1 1 1] W White

[0 0 0] K Black

4.3 Image clustering using Sweeper’s

algorithm
A cluster is a collection of objects which are “similar”

between them and are “dissimilar” to the objects belonging to

other clusters.

Cluster analysis or clustering is the task of grouping a set of

objects in such a way that objects in the same group (called

cluster) are more similar to each other than to those in other

groups (clusters). So Clustering can be considered as the most

important unsupervised learning problem.

For us the clustering means to arrange similar categories of

items and put them into their respective places. The solution

of this type of clustering has many applications and can

simulate how a ROBOT will automatically arrange a list of

Books in a library? Or, can be a model from chaotic

International Journal of Computer Applications (0975 – 8887)

Volume 119 – No.8, June 2015

33

phenomena to a systematic arrangement or simulation for

separating iron, gold or other metals from their corresponding

metal ores etc. Here image clustering problem has been solved

by the help of Sweeper’s algorithm. The Image which is used

here is True color (RGB) image.

4.3.1 Image clustering Algorithm
Step 1: A “.png” file having two color cluster points is taken

as input. Here the input file is named as “c30.png”. The size

of the corresponding image file is (X x Y). The point of

destination is (x x y) where, t is the number of iteration. Here

the size of the input image is (500,400).

Step 2: The matrix of the file “c30.png” can be obtained by

disp() function of MATLAB.

Step 3: The matrix is divided into two matrices.

Step4: Corresponding images of the two matrixes can be

displayed using imshow() function. Let the two individual

images are “c31.png” and “c32.png”. “c31.png” contains red

color clusters and “c32.png” contains blue color clusters.

Step 5: Apply Sweeper’s algorithm to “c31.png”file

Do the following for t times

 {

 for (i = 1 to x & j = 1 to Y) //Two CA rules are applied

with respect to Horizontal Axis

Apply Rule 128

for (i = x+1 to X & j = 1 to Y)

Apply Rule 8

for (i-j <= x-y) // Two CA rules are applied with

respect to Diagonal Axis (\)

Apply Rule 16

for (i-j > x-y)

Apply Rule 256

for (i = 1 to X & j = 1 to y) // Two CA rules are applied with

respect to Vertical Axis

Apply Rule 32

for (i = 1 to X & j = y +1 to Y)

Apply Rule 2

for (i+j <= x+y) // Two CA rules are applied with respect to

Diagonal Axis (/)

Apply Rule 64

for (i+j > x+y)

Apply Rule 4

 }

Step 6: Store the resultant matrix in “res1.png”

Step 7: Apply Sweeper’s algorithm to “c32.png”file.

Do the following for t times

{

for (i = 1 to x & j = 1 to Y) // Two CA rules are applied

with respect to Horizontal

Axis

Apply Rule 128

for (i = x+1 to X & j = 1 to Y)

Apply Rule 8

for (i-j <= x-y) //Two CA rules are applied with respect

to Diagonal Axis (\)

Apply Rule 16

for (i-j > x-y)

Apply Rule 256

for (i = 1 to X & j = 1 to y) // Two CA rules are applied with

respect to Vertical Axis

Apply Rule 32

for (i = 1 to X & j = y +1 to Y)

Apply Rule 2

for (i+j <= x+y) // Two CA rules are applied with respect to

Diagonal Axis (/)

Apply Rule 64

for (i+j > x+y)

Apply Rule 4

}

Step 8: Store the resultant matrix in “res2.png” as the output.

Step 9: Finally “res1.png” and “res2.png” can be combined in

one window using either cat command in MATLAB or simply

adding the two images.

Step 10: After combining “finalres.png” is the final output

image having two different color cluster regions.

4.3.2 Procedure to draw color cluster points

using MATLAB and its output image
First thing we have to generate different color cluster points

using MATLAB. Here we have generated cluster points

having two colors i.e. one red color cluster points and other is

blue color cluster points using plot function of MATLAB. We

can also use scatter function.

The MATLAB code to draw color cluster points using plot

function is given below.

n = 100;

cluster1 = randn([n,4]); % 100 2-D coordinates

cluster2 = randn([n,4]); % 100 2-D coordinates

hold on;

plot(cluster1(:,1),cluster1(:,2),'ro','MarkerSize',10,'MarkerFac

eColor','r'); %plotting cluster 1 pts

plot(cluster2(:,1),cluster2(:,2),'bo','MarkerSize',10,'MarkerFac

eColor','b'); %plotting cluster 2 pts

International Journal of Computer Applications (0975 – 8887)

Volume 119 – No.8, June 2015

34

Fig7: Output image obtained from the above code

After changing the background to black using paint the above

image is again shown in Fig 8.

Fig 8: “c30.png” an image containing red and blue color

cluster points

This image will be taken as input to implement the image

clustering algorithm. The size of the image is taken as

(500x400).

4.3.3 Result after applying Sweeper’s algorithm

to two individual images
After we get two individual images one containing red color

cluster points and another containing blue color cluster points

we can apply Sweeper’s algorithm to the two individual

images. We can vary the number of iterations from 1 to 100

and check the result after certain iterations. We have noticed

that after 100 iterations we got two different cluster regions in

two different images are shown below.

Fig 9: Shows the image containing red cluster points after

50 iterations

Fig 10: Shows the image containing blue cluster points

after 50 iterations

Fig 11: Shows the red cluster image “res1.png” after 100

iterations and the destination point at (150, 150)

Fig 12: Shows the blue cluster image “res2.png” after 100

iterations and the destination point at (300, 300)

4.3.4 MATLAB code to combine two different

images in a single window and its output result
After getting two color cluster regions i.e. red color and blue

color in two different figure or window, we can combine them

in a single window using built in MATLAB function or by

simple addition of two images. The code is given below.

a=imread('res1.png','png');

b=imread('res2.png','png');

finalimage =cat(2,a,b);

or we can write

a=imread('res1.png','png');

b=imread('res2.png','png');

imshow(a+b)

Also we can write subimage(a+b) in place of imshow(a+b).

International Journal of Computer Applications (0975 – 8887)

Volume 119 – No.8, June 2015

35

Fig 13: image “finalres.png” After combining “res1.png”

and “res2.png” in a single window.

Fig 14: image “finalrb.png” shows the overlap of red and

blue color cluster image

Here we have studied using computer program that the

combination of red and blue color gives magenta Color. For

red color cluster the destination is at (150,150) and for blue

color cluster the destination is at (200,200).

4.3.5 Input and Output Result for other types of

images
In the above algorithm we had considered only red and blue

color points and after applying Sweeper’s algorithm we got

two different color cluster regions. Now we have considered

color combinations other than red and blue and applied

Sweeper’s algorithm and different results are obtained.

A) Input image and output result to get the magenta and

green color cluster in one window

 Fig 15: Shows the original image “m10.png”

Fig 16: image “m11.png” containing magenta color cluster

points

Fig 17: image “m12.png” containing green color cluster

points

Fig 18: shows the green color cluster image “mgres1.png”

after 100 iterations and the destination is at (150,150)

Fig 19: shows the magenta color cluster image

“mgres2.png” after 100 iterations and the destination is at

(200,200).

Fig 20: image “finalgm.png” shows the overlap of green

and magenta color cluster image

The computer simulation shows that the combination of green

and magenta color gives white Color therefore it also mimics

the natural color phenomena. For green color cluster the

destination is at (150,150) and for magenta color cluster the

destination is at (200,200).

B) Input image and output result to get the combination of

red, blue and green color cluster in one window

International Journal of Computer Applications (0975 – 8887)

Volume 119 – No.8, June 2015

36

Fig 21: Shows the original input image “rgb10.png”

Fig 22: Shows image “rgb11.png” containing red color

cluster points

Fig 23: image “rgb12.png” containing green color cluster

points

Fig 24: image “rgb13.png” containing blue color cluster

points

Fig 25: shows the red color cluster image “rgbres1.png”

after 100 iterations and the destination is at (170,180).

Fig 26: Shows the green color cluster image “rgbres2.png”

after 100 iterations and the destination is at (200,180).

Fig 27: shows the blue color cluster image “rgbres3.png”

after 100 iterations and the destination is at (210,160).

Fig 28: image “finalrgb.png” shows the combination of

red, green and blue color

The intersection point of red, blue and green color is white.

For red color the destination is at (170,180).For green color

the destination is at (200,180).For blue color the destination is

at (210,160).

So by taking different color combination we got a different

color by the intersection of two particular colors. In this way

we can study set theory by assigning a set to a particular color

and study their intersection region.

5. CONCLUSION AND FUTURE

RESEARCH DIRECTIONS
We have studied broadly the Sweeper’s algorithm which was

initially designed and developed by the authors in [8]. At first

we have implemented the existing Sweeper’s algorithm for

binary images. Later on we have modified the internal

architecture of the Sweeper’s algorithm by changing the

original iterative procedure and implemented both the

algorithms (original and modified versions), choosing

multiple destination points in the search space and found

different clusters both in binary as well as in color images. If

destination points are close to each other then we found that

the intersection region of two different color clusters giving a

new color. For example intersection of red and blue is giving

magenta, similarly intersection of red and green is giving

International Journal of Computer Applications (0975 – 8887)

Volume 119 – No.8, June 2015

37

yellow, and intersection of blue and green giving cyan color.

Also we take one of the colors from RGB and another color

like yellow or cyan or magenta and observe that combination

of blue with yellow, red with cyan and green with magenta

gives white color.

Due to its wide scope we feel that the work can be extended

for any complicated images containing RGB component and

various patterns can also be generated using Sweeper’s

algorithm with little modification. Except image clustering,

this algorithm spans many other inter-disciplinary research

areas and can be studied extensively like informed search in

artificial intelligence, text and image compression [2],

cryptography, morphology [5], pattern classification [7] etc.

which is our immediate future research goal.

6. REFERENCES
[1] A. R. Khan, P.P. Choudhury, K. Dihidar, S. Mitra and P.

Sarkar, VLSI Architecture of Cellular Automata

Machine, Computers Math. Applic. Vol. 33, No. 5, 79-

94, (1997).

[2] A. R. Khan, P. P. Choudhury, K. Dihidar and R. Verma,

Text compression using two-dimensional cellular

automata, Computers and Mathematics with Applications

37 (1999), 115-127.

[3] J. von. Neumann, The Theory of Self- Reproducing

Automata, (Edited by A.W. Burks) Univ. of Illinois Press

Urbana (1996).

[4] K. Dihidar, P. P. Choudhury, Matrix Algebraic formulae

concerning some special rules of two-dimensional

Cellular Automata, International journal on Information

Sciences, Elsevier publication, Vol. 165, 91-101, (2004).

[5] Ikenaga, T. Ogura, T., Real-time morphology processing

using highly parallel 2-D cellular automata CAM/sup 2/,

IEEE Transactions on Image Processing, Vol. 9, Issue:

12, pp 2018- 2026, (2000).

[6] P. Chattopadhyay, P. P. Choudhury, Characterisation of a

Particular Hybrid Transformation of Two-Dimensional

Cellular Automata, Computers and Mathematics with

Applications, Vol. 38, 207-216, (1999).

[7] P. Maji, C. Shaw, N. Ganguli, B. K. Sikdar, and P. Pal

Chaudhuri. Theory and Application of Cellular Automata

For pattern Classification, Fundamenta Informaticae 58,

IOS Press, pp 321-354 (2003).

[8] P. Pal Choudhury, B. K. Nayak, S. Sahoo, S. P. Rath,

Theory and applications of Two-dimensional, Null-

boundary, Nine-Neighborhood, Cellular Automata

Linear rules, CoRR abs/0804.2346 (2008).

[9] S. Sahoo, P. Pal Choudhury, A. Pal, B. K. Nayak,

Solutions on 1-D and 2-D Density Classification Problem

Using Programmable Cellular Automata. J. Cellular

Automata 9(1): 59-88 (2014).

IJCATM : www.ijcaonline.org

http://dblp.uni-trier.de/db/journals/jca/jca9.html#SahooCPN14
http://dblp.uni-trier.de/db/journals/jca/jca9.html#SahooCPN14

