
International Journal of Computer Applications (0975 – 8887)

Volume 119 – No.5, June 2015

27

A New RR Scheduling Approach for Real Time

Systems using Fuzzy Logic

Lipika Datta

Assistant Professor, CSE Dept.
CEMK ,Purba Medinipur

West Bengal, India

ABSTRACT

Round Robin scheduling algorithm is the widely used

scheduling algorithm in multitasking. It ensures fairness and

starvation free execution of processes. It performs optimally

for time sharing systems, but because of its larger waiting

time, turnaround time and greater number of context switches

it is not suitable for soft real time systems. The main objective

of this paper is to develop a way in which the Round Robin

algorithm can be modified for implementation in real time and

embedded systems by minimizing its average waiting time,

average turnaround time and context switching rate. The

paper discusses a fuzzy based CPU scheduling algorithm. A

set of fuzzy rules is defined. Each process is assigned a new

priority based on its externally defined priority, relative

remaining CPU burst time and relative waiting time.

General Terms

Algorithms, CPU scheduling

Keywords
Operating System, Fuzzy logic, CPU scheduling algorithm,

Priority, Average Turnaround time, Average Waiting time

1. INTRODUCTION
Modern operating systems support multitasking environment

in which processes run in a concurrent manner. In a single-

processor system, only one process can run in the CPU at a

time. Others processes in the ready queue must wait until the

CPU becomes free. The operating system must decide through

the scheduler the order of execution of the processes in ready

state. The objective of multiprogramming is to have some

process running at all times to maximize CPU utilization.

Scheduling is a fundamental operating-system function.

Almost all computer resources are scheduled before using.

The CPU is, of course, one of the primary computer

resources. Thus, its scheduling is central to operating-system

design. CPU scheduling determines which processes run when

there are multiple run-able processes. CPU scheduling is

important because it can have a big effect on resource

utilization and the overall performance of the system. In

general we want to optimize the behavior of the system. The

goals of scheduling may be categorized as user based

scheduling goals and system based scheduling goals [1]. User

based goals are the criteria that benefit the user. Some User-

based scheduling goals are:

 Turnaround Time: The time elapsed between the

submission of a job and its termination is called the

turnaround time.

tr = wt + x

where tr is turnaround time of a process

wt is waiting time of the process in the ready queue.

x is the execution time of the process.

The scheduling algorithm should be designed such

that turnaround time is minimized.

 Waiting Time: The time spent by the process in the

ready queue is the waiting time. The scheduling

algorithm should be designed such that waiting time

is less.

 Response Time: It is the time period between the

time of submission of a process and the first

response given by the process to the user. The

scheduling algorithm should be designed such that

the response time is within an acceptable range.

 Predictability: The algorithm should take care that a

process does not take too long in processing as

compared to the predictable behavior of the process.

 Deadlines: The scheduling algorithm should be

designed such that real-time processes will execute

within their deadlines.

Some system-based scheduling goals are:

 Throughput: Throughput is the number of processes

completed in a unit time. The scheduling algorithm

should be designed in such a way that throughput in

a system is maximized.

 CPU Utilization: It is the percentage of time that
the CPU is busy in executing a process. The
fundamental goal of scheduling is to keep the
processor busy all the time.

 Fairness: All processes in the system should be
treated in the same way unless there is some
preference or priority for a specific process. In that
case also processes with lower priority should not
be ignored to avoid starvation.

 Context Switch: Context switching is the procedure
of storing the state of an active process and
restoring the state of another process for the CPU
when it has to start executing the later process.
Context switch is total overhead to the system and
leads to wastage of CPU time. The scheduling
algorithm should be designed such that the context
switch be minimum.

International Journal of Computer Applications (0975 – 8887)

Volume *– No.*, ___________ 2015

28

So, we can conclude that a good scheduling algorithm for real

time and time sharing system must possess following

characteristics:

 Minimum context switches.

 Maximum CPU utilization.

 Maximum throughput.

 Minimum turnaround time.

 Minimum waiting time.
 Minimum response time.

Real time system applications are mission-critical. The real-

time tasks should be scheduled to be completed before their

deadlines. Most real-time systems handle unpredictable

environments. So, the real time operating system should

handle unknown and changing task populations. In this case,

not only a dynamic task scheduling is required, but both the

system hardware and software must adapt to unforeseen

configurations [2].

2. RELATED WORK DONE

RR algorithm performs optimally in timeshared systems, but

it is not suitable for soft real time systems because of its

higher context switching rate, larger waiting time and larger

turnaround time. Some researchers have already introduced

some variations of RR scheduling algorithm. But these

algorithms have some limitations. In [3] authors have

proposed an algorithm in which according to the given

priority the CPU is allocated to the processes only once in RR

fashion for a given time quantum. Then, processes are

arranged in increasing order of their remaining CPU burst

time in the ready queue. New priority is assigned to each

process following the rule that lesser the remaining burst time

higher the priority. Then, processes are allocated CPU

according to non-preemptive priority scheduling algorithm. If

this algorithm is used after first response from the system user

may have to wait long for next response. So, a fairness

criterion is not held. In [4] different time slices are calculated

for different processes based on three aspects: user defined

priority, average CPU burst, context switch avoidance time.

An assumption is made on average CPU burst. In [5] also

different time slices are calculated for different rounds of RR

scheduling algorithm based on remaining CPU burst time. In

[6] the authors have introduced a concept called intelligent

time slicing which depends on priority, next CPU burst and

original time slice. The time slice is static. This algorithm is

modified to get different time slice values in different rounds

for different processes in [7] Algorithm with Intelligent Time

Slice for Soft Real Time Systems). It calculates the initial

time slice for each process as the previous algorithm [6] and

in each round the time slices for each of the processes is

modified depending on the priority of the processes and the

original time slice. In [8] the authors have made the priority

and time slice for a process dynamic by calculating the

weighted mean values of time quantum and priorities of the
processes and considering the burst time of the processes. The

algorithm introduced in [9] calculates the time slice of each

process in each round dynamically considering the priority of

a process and the average and shortest burst time of all the

currently running processes. Fuzzy logic is applied in the

design and implementation of a rule-based scheduling

algorithm to solve the shortcoming of well-known scheduling

algorithms in [10]. This algorithm is modified for better result

in [11]. In [12] authors have introduced another parameter-

waiting time, while designing the fuzzy inference system.

2.1 My contribution

In my work, an improved RR algorithm is proposed, which

calculates dynamic time slices for different rounds of RR

scheduling algorithm considering the remaining CPU bursts

of the currently running processes. In each round priority of

each process is calculated depending on the remaining burst

time, waiting time and the static priority of the process. Then,

according to the new priority the processes are scheduled in

that round. Experimental result shows that my algorithm is

better than existing algorithms in terms of average turnaround

time, average waiting time and number of context switches.

2.2 Organization of paper

Section 3 presents the illustration of my proposed algorithm.

In section 4, Experimental results and its comparison with

existing algorithms is presented. Section 5 contains the

conclusion.

3. PROPOSED APPROACH

The proposed algorithm eliminates the drawbacks of

implementing simple round robin architecture in real time

system by introducing a concept of assigning different time

slices to in different rounds of RR scheduling algorithm. The

static priority of a process is assigned by user externally. In

the proposed architecture in each round the priority of each

process is reassigned depending on its remaining CPU burst,

waiting time until that round and the value of its static

priority. It is assumed that lesser number implies higher

priority. A small dedicated processor is used to calculate the

priority of each process at the beginning of each round using

Fuzzy inference engine and the time quantum of that round. It

arranges the processes in ascending order of their newly

assigned priorities and then creates the ready queue for the

main processor. This small dedicated processor is used to

reduce the burden of the main processor. The processes then

execute in the main processor according to round robin

scheduling algorithm. At the beginning of each round of the

RR algorithm the following matrices are calculated for each

process at the dedicated processor:

a) RR =

b) RW =

c) Priority Ratio (PR):

=

In this paper suitable linguistic variables are used as input and

output for compute a crisp value for new priority. Relative

Remaining Burst (RR) measured as Small, Medium and

Large. Relative waiting time (RW) measured as Small,

Medium and Large. Priority Ratio (PR) measured as Small,

Medium and Large. New Priority (NP) measured as Very

small, Small, Medium, Large and Very Large. The proposed

scheduling algorithm is a collection of linguistic fuzzy rules

which describe the relationship between defined input

variables (RR, RW and PR) and output (NP).

International Journal of Computer Applications (0975 – 8887)

Volume *– No.*, ___________ 2015

29

Fig 1: Block diagram of Fuzzy Inference System

Fig 2: Membership Function for Relative Remaining

Burst Time

Fig 3: Membership Function for Relative Waiting Time

Fig 4 : Membership Function for Relative Waiting Time

Fig 5 : Membership Function for Static Priority Ratio

Fig 6 : Membership Function for New Priority

Relative Remaining

Burst time

Relative

Waiting time

Priority Ratio

Fuzzy Rule

Base

Fuzzy

Inference

New

Priority

International Journal of Computer Applications (0975 – 8887)

Volume *– No.*, ___________ 2015

30

The following table contains 27 rules which are based on IF

THEN statement such as: -

If RR is Small, WR is Small and PR is Small then NP is Very

Small.

Table 1. Fuzzy Rules for proposed design

 RR WR PR NP

Small Large Small Very Small

Small Large Medium Very Small

Small Large Large Small

Small Medium small Very Small

Small Medium Medium Very Small

Small Medium Large Small

Small Small Small Very Small

Small Small Medium Small

Small Small Large Small

Medium Large Small Small

Medium Large Medium Small

Medium Large Large Medium

Medium Medium Small Small

Medium Medium Medium Medium

Medium Medium Large Medium

Medium Small Small Medium

Medium Small Medium Large

Medium Small Large Large

Large Large Small Medium

Large Large Medium Large

Large Large Large Very Large

Large Medium Small Large

Large Medium Medium Very Large

Large Medium Large Very Large

Large Small Small Very Large

Large Small Medium Very Large

Large Small Large Very Large

These rules compute the crisp value using Centroid

Defuzzification method of Mamdani inference in MATLAB

that represents the NP of each task.

Fig 7 : Proposed Architecture

4.1 Proposed Algorithm

1. Initialize n processes with their burst time and

priority.
2. Let RBTi be the remaining CPU burst of Pi

 WTi be the waiting time of Pi till that time
 TWTi be the total waiting time of all the currently
running processes till that time.

3. TQ =

4. For each process calculate the following parameters:

RR =

WR=

PR=

5. Calculate new priority of each process using Fuzzy
Rules.

6. Sort the processes in ready queue in the ascending
order of new priority.

7. Schedule processes from ready queue according to
RR algorithm with time quantum TQ.

8. For each process calculate RBTi = RBTi – TQ
9. If RBTi <=0 remove the process from the ready

queue.
10. If new process arrives wait for current time slice to

expire or completion of execution of current process
whichever is earlier and goto step 4.

11. Repeat steps 3 to 10 until ready queue is empty.
12. Calculate Average Waiting time, Average

Turnaround time, number of Context Switch.

4. EXPERIMENTAL RESULTS

4.1 Assumptions:

Experiments are performed in single processor environment
and on independent processes. All the parameters like number
of processes, and burst time of all the processes are known
before submitting the processes to the processor. All
processes are CPU bound and none I/O bound. Context
switching overhead and time taken for calculating the time
slices are ignored while calculating average turnaround time
and average waiting time.

4.2 Data set:
To compare the performance of the algorithm with the

algorithms introduced in [7] (PBDRR), [9] (DTQ), three cases

of the data set are considered: the processes with burst time in

increasing, decreasing and random order respectively.

Same data set applied to PBDRRR, DTQ and Proposed

Algorithm:

TABLE 2. Inputs for case 1

Process id Priority Burst time

P1 2 5

P2 3 12

P3 1 16

P4 4 21

P5 5 23

International Journal of Computer Applications (0975 – 8887)

Volume *– No.*, ___________ 2015

31

TABLE 3. Calculation of New Priority for proposed

algorithm for case 1

 Round 1 Round 2

Pid Priority Burst

time

NP NP

P1 2 5 0.34 -

P2 3 12 0.434 -

P3 1 16 0.449 -

P4 4 21 0.515 0.501

P5 5 23 0.533 0.554

TABLE 4. Comparison between algorithms for case 1

Algorithm

Average

Turnaround

Time

Average

Waiting

Time

No. of

Context

Switch

PBDRR 46.4 31 17

DTQ 47.2 31.8 10

Proposed Algorithm 40.4 25 6

Fig 8: Analysis of performance among algorithms (case 1)

TABLE 5. Inputs for case 2

Process id Priority Burst time

P1 2 31

P2 1 23

P3 4 16

P4 5 9

P5 3 1

TABLE 6. Calculation of New Priority for proposed

algorithm for case 2

 Round 1 Round 2

Pid Priority Burst time NP NP

P1 2 31 0.589 0.603

P2 1 23 0.472 0.463

P3 4 16 0.466 -

P4 5 9 0.398 -

P5 3 1 0.273 -

TABLE 7. Comparison between algorithms for case 2

Algorithm

Average

Turnaround

Time

Average

Waiting

Time

No. of

Context

Switch

PBDRR 50.4 34.4 12

DTQ 54.8 38.8 15

Proposed Algorithm 36.4 20.4 6

Fig 9: Analysis of performance among algorithms (case 2)

TABLE 8. Inputs for case 3

Process id Priority Burst time

P1 3 11

P2 1 53

P3 2 8

P4 4 41

P5 5 20

TABLE 9. Calculation of New Priority for proposed

algorithm for case 3

 Round1 Round2

P id Priority Burst time NP NP

P1 3 11 0.37 -

P2 1 53 0.532 0.481

P3 2 8 0.34 -

P4 4 41 0.538 0.367

P5 5 20 0.43 -

TABLE 10. Comparison between algorithms for case 3

Algorithm

Average

Turnaround

Time

Average

Waiting

Time

No. of

Context

Switch

PBDRR 76 49.4 18

DTQ 79.8 53.2 11

Proposed Algorithm 61.2 30.8 6

International Journal of Computer Applications (0975 – 8887)

Volume *– No.*, ___________ 2015

32

Fig 10: Analysis of performance among algorithms (case

3)

5. CONCLUSION
From the above comparisons, it is observed that the proposed

algorithm is performing better than the algorithm PBDRR

proposed in paper [7] and DQT proposed in paper [9] in terms

of average waiting time, average turnaround time and number

of context switches. If the CPU burst times of the processes

vary very widely the algorithm doesn’t produce good result.

In the other cases the quality of service can be improved and

overhead can be reduced. Thus, memory space which is an

important constraint for embedded system applications can be

saved. Real time systems must meet their deadlines. Deadlines

of tasks can be considered in future work as a new input

parameter. So, some new rules may be added to the fuzzy rule

set while calculating the new priority of processes in each

round.

6. REFERENCES
[1] Principles of Operating System, Naresh Chauhan, Oxford

University Press, 2014

[2] Swin, B. R., Tayli, M., and Benmaiza, M., “ Prospects

for Predictable Dynamic Scheduling in RTDOS”, Journal

King Saud University, Computer & Information Science,

Vol. 9, pp. 57-93, (1997)

[3] Ishwari Singh Rajput, Deepa Gupta, “ A Priority based

Round Robin CPU Scheduling Algorithm for Real Time

Systems”, International Journal of Innovations in

Engineering and Technology (IJIET) Vol. 1 Issue 3 Oct

2012

[4] C.Yaashuwanth, Dr.R.Ramesh “A New Scheduling

Algorithms for Real Time Tasks”, International Journal

of Computer Science and Information Security, Vol. 6,

No.2, 2009

[5] Rakesh Mohanty , H. S. Behera , Debashree Nayak “A

New Proposed Dynamic Quantum with Readjusted

Round Robin Scheduling Algorithm and its performance

Analysis”, International Journal of Computer

Applications (0975-8887),Volume 5-No.5, 2010

[6] Yaashuwanth .C, Dr.R. Ramesh, “A new scheduling

algorithm for real time tasks”, International Journal of

Computer Science and Security, Vol 6, No 2, 2009

[7] Rakesh Mohanty , H. S. Behera , Khusbu Patwari,

Monisha Dash , M. Lakshmi Prasanna “Priority Based

Dynamic Round Robin (PBDRR) Algorithm with

Intelligent Time Slice for Soft Real Time Systems”,

International Journal of Advanced Computer Science and

Applications, Vol. 2, No.2, February,2011

[8] H.S.Behera, Sabyasachi Sahu and Sourav Kumar Bhoi,

“Weighted mean priority based scheduling for interactive

systems”, Journal of global reaearch in computer

science,2011

[9] Lipika Datta, “Modified RR Algorithm with Dynamic

Time Quantum for Externally Prioritized Tasks”,

International Journal of Recent and Innovation Trends in

Computing and Communication, Volume 3, Issue

1,January 2015

[10] Shatha J. Kadhim and Kasim M. Al-Aubidy,” Design

and Evaluation of a Fuzzy-Based CPU Scheduling

Algorithm”, Information Processing and Management

(2010): 45-52.

[11] Rajani Kumari, Vivek Kumar Sharma, Sandeep Kumar,”

Design and Implementation of Modified Fuzzy based

CPU Scheduling Algorithm”, International Journal of

Computer Applications (0975 – 8887) Volume 77 –

No.17, September 2013

[12] Bashir Alam, M.N. Doja1, R. Biswas, M. Alam,” Fuzzy

Priority CPU Scheduling Algorithm”, IJCSI International

Journal of Computer Science Issues, Vol. 8, Issue 6, No

1, November 2011 ISSN (Online): 1694-0814

IJCATM : www.ijcaonline.org

