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ABSTRACT 
In 1856, Hamiltonian introduced the Hamiltonian Graph where 

a Graph which is covered all the vertices without repetition and 

end with starting vertex. In this Paper I would like to prove that 

If ‘G’ is a Complete and locally Complete graph, on n ≥ 3 

vertices, which does not contain an induced K1,3, then G is 

Hamiltonian. 
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1. INTRODUCTION 
Graphs, considered here, are finite, undirected and simple and 

complete Graphs being followed for terminology and 

notation. let G = (V , E) be a graph, with V the set of vertices 

and E the set of edges. Suppose that W is a nonempty subset 

of V . The sub graph of G, whose vertex set is W and whose 

edge set is the set of those edges of G that have both ends in 

W , is called the sub graph of G induced by W and is denoted 

by G[W]. For any vertex ν in V , the neighbour set of ν is the 

set of all vertices adjacent to ν. This set is denoted by N(ν). 

For a graph G = (V , E), we shall denote 

 

δ(G) = min |N(v)|  G) = max |N(v) |                    

ν V                       ν V 

 

a graph G = (V , E) is locally complete , if for each vertex ν 

the graph G[N(ν)] is complete . With every graph G, having at 

least one edge, there exists associated a graph L(G), called the 

line graph of G, whose vertices, can be put in a one-to-one 

correspondence with the edges of G, in such a way that two 

vertices of L(G) are adjacent if and only if the corresponding 

edges of G are adjacent. 

The neighborhood is often denoted NG(v) or (when the graph 

is unambiguous) N(v). The same neighborhood notation may 

also be used to refer to sets of adjacent vertices rather than the 

corresponding induced sub graphs. The neighborhood 

described above does not include v itself, and is more 

specifically the open neighborhood of v; it is also possible to 

define a neighborhood in which v itself is included, called the 

closed neighborhood and denoted by NG[v]. When stated 

without any qualification, a neighborhood is assumed to be 

open. 

1.1 Definition:  A graph – usually denoted G(V,E) or G = 

(V,E) – consists of set of vertices V together with a set of 

edges E. The number of vertices in a graph is usually denoted 

n while the number of edges is usually denoted m. 

1.2 Definition: Vertices are also known as nodes, points and 

(in social networks) as actors, agents or players.   

1.3 Definition:  Edges are also known as lines and (in social 

networks) as ties or links. An edge  

e = (u,v) is defined by the unordered pair of vertices that serve 

as its end points.  

1.4 Example: The graph depicted in Figure 1 has vertex set 

V={a,b,c,d,e.f} and edge set  

E = {(a,b),(b,c),(c,d),(c,e),(d,e),(e,f)}. 

 

Figure 1. 

1. 5 Definition: Two vertices u and v are adjacent if there 

exists an edge (u,v) that connects them.  

1.6 Definition: An edge (u,v) is said to be incident upon nodes 

u and v.  

1.7 Definition: An edge e = (u,u) that links a vertex to itself is 

known as a self-loop or reflexive tie. 

1.8 Definition: Every graph has associated with it an adjacency 

matrix, which is a binary nn matrix A in which aij = 1 and aji = 

1 if vertex vi is adjacent to vertex vj, and aij = 0 and aji = 0 

otherwise. The natural graphical representation of an adjacency 

matrix is a table, such as shown below.  

 a b c d e f 

a 0 1 0 0 0 0 

b 1 0 1 0 0 0 

c 0 1 0 1 1 0 

d 0 0 1 0 1 0 

e 0 0 1 1 0 1 

f 0 0 0 0 1 0 

                 Adjacency  matrix for graph in Figure 1. 
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1.9 Definition:  Examining either Figure 1 or given adjacency 

Matrix, we can see that not every vertex is adjacent to every 

other. A graph in which all vertices are adjacent to all others is 

said to be complete.  

1.10 Definition: While not every vertex in the graph in Figure 

1 is adjacent, one can construct a sequence of adjacent vertices 

from any vertex to any other. Graphs with this property are 

called connected.  

1.11 Note: Reachability. Similarly, any pair of vertices in 

which one vertex can reach the other via a sequence of adjacent 

vertices is called reachable. If we determine reachability for 

every pair of vertices, we can construct a reachability matrix R 

such as depicted in Figure 2. The matrix R can be thought of as 

the result of applying transitive closure to the adjacency matrix 

A.                    

 

Figure:  2 

1.12 Definition :  A walk is closed if vo = vn.degree of   the 

vertex and is denoted d(v). 

1.13 Definition : A tree is a connected graph that contains no 

cycles. In a tree, every pair of points is connected by a unique 

path. That is, there is only one way to get from A to B. 

 
 

Figure 3: A labeled tree with 6 vertices 

and 5 edges 

1.14 Definition: A spanning tree for a graph G is a sub-graph 

of G which is a tree that includes every vertex of G. 

1.15 Definition:  The length of a walk (and therefore a path or 

trail) is defined as the number of edges it contains. For 

example, in Figure 3, the path a,b,c,d,e has length 4.  

1.16 Definition: The number of vertices adjacent to a given 

vertex is called the degree of the vertex and is denoted d(v). 

1.17 Definition : In the mathematical field of graph theory, a 

bipartite graph (or bigraph) is a graph whose vertices can be 

divided into two disjoint sets U and V such that every edge 

connects a vertex in U to one in V; that is, U and V are 

independent sets. Equivalently, a bipartite graph is a graph that 

does not contain any odd-length cycles. 

 

Figure 4:   Example of a  bipartite graph. 

1.18 Definition : An Eulerian circuit in a graph G is circuit 

which includes every vertex and every edge of G. It may pass 

through a vertex more than once, but because it is a circuit it 

traverse each edge exactly once. A graph which has an Eulerian 

circuit is called an Eulerian graph. An Eulerian path in a graph 

G is a walk which passes through  every vertex of G and which 

traverses each edge of G exactly once 

1.19 Example :  Königsberg bridge problem: The city of 

Königsberg (now Kaliningrad) had seven bridges on the Pregel 

River. People were wondering whether it would be possible to 

take a walk through the city passing exactly once on each 

bridge. Euler built the representative graph, observed that it had 

vertices of odd degree, and proved that this made such a walk 

impossible. Does there exist a walk crossing each of the seven 

bridges of Königsberg exactly once

                                                                            

                         Figure 5:   Konigsberg problem 

2. COMPLETE GRAPHS, LOCALLY 

COMPLETE GRAPHS, 

HAMILTONIAN GRAPHS, LINE 

GRAPHS  
 

In this section we have to prove that main theorem using 

definitions. 

2.1 Definition: A Hamilton circuit is a path that visits every 

vertex in the graph exactly once and return to the starting 

vertex. Determining whether such paths or circuits exist is an 

NP-complete problem. In the diagram below, an example 

Hamilton Circuit would be 
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2.2 Example : 

 

     Figure 6: Hamilton Circuit would be AEFGCDBA. 

2.3 Definition : Compete Graph: A simple graph in which 

there exists an edge between every pair of vertices is called a 

complete graph. 

2.4 Definition : Let { v1, v2……vn}be the vertex set of a 

graph G, and for each ‘α’.  

let Ni *denote the closed neighborhood of va. Let Na be any 

subset of  Nα
* containing va which generates a complete  

subgraph Ca of G. Then Ca is called a complete  sub 

neighborhood of va, and the indexed family C* = {C1, C2,…. , 

Cn } is called a complete family for G if G =  C* . A graph 

G is called locally complete iff G has at least one complete 

family. 

2.5 Examples : It is easily seen that complete graphs, trees, 

and unicyclic graphs are also locally complete.  

The complete bigraph K3,2 is the smallest (nontrivial, 

connected) graph which fails to be locally complete. 

2.6 Theorem : If ‘G’ is a Complete and locally Complete 

graph, on n ≥ 3 vertices, which does not contain an induced 

K1,3, then G is Hamiltonian. 

Proof : Suppose that the Theorem is not true 

 let ‘G’ be a complete and locally Complete graph on at least 

three vertices,  

which does not contain an induced K1,3, but which is not 

Hamiltonian.  

Clearly, ‘G’ contains a cycle.  

Let ‘C’ be a largest cycle in ‘G’.  

Then, ‘C’ does not span ‘G’ and, since ‘G’ is complete, there 

exists a vertex ν, not on ‘C’, which is adjacent to a vertex u, 

lying on ‘C’.  

Let u1 and u2 be the vertices neighbouring ‘u’, on the cycle 

‘C’.  

Since ‘G’ is locally complete, there exists a path ‘P’, in 

G[N(u)], 

From ‘ν’ to the one of u1 or u2, 

which does not include the other.  

Without loss of generality, 

 we shall suppose  that ‘P’ is a path from ‘ν’ to u1 and that u2 

 P. 

Now,  

if P ∩C = {u1}, then, by attaching ‘P’ to ‘C’ at  

u1 and ν,  

we could obtain a cycle larger than C.  

Hence, we may assume that P ∩ C contains vertices other than 

u1.  

Also, we cannot have ‘ν’ adjacent to either u1 or u2, without 

producing 

a cycle larger than ‘C’.  

Thus, since {u, u1, u2, ν} cannot induce a K1,3 in ‘G’, then it 

must be that u1u2 is an edge of ‘G’. 

For the purpose of this proof,  

we shall define a singular vertex to be a vertex 

w  P∩C−{u1}, such that neither of the vertices, neighboring 

‘w’ in C, belongsto N(u).  

We shall consider two cases: 

Case 1. Every vertex in P ∩ C − {u1} is singular.  

Then, for any vertex 

w   P ∩ C − {u1}, w is adjacent to u, but neither of the 

vertices w1 and w2, 

neighboring ‘w’ on ‘C’, belongs to N(u).  

Thus, since {w,w1,w2, u} cannot induce a K1,3 in ‘G’, then it 

must be that w1w2 is an edge of ‘G’. 

Now, traverse C, starting at u2 and moving away from u and 

for each vertex 

w   P ∩ C − {u1}, by-pass w, by taking the edge w1w2.  

Continue, until the vertex u1 is reached. Then, follow P from 

u1 to ν then to u and finish at u2. 

Then, we have passed through each vertex of C P, exactly 

once, and have 

thus constructed a cycle larger than C. 

Case 2: P ∩ C − {u1} contains non singular vertices.  

Then, follow P from ν toward u1, until the  first nonsingular 

vertex w is reached. Let w1 and w2 be the vertices 

neighbouring w along C.  

Then, at least one of w1 and w2 is adjacent to u.  

Without loss of generality, suppose that w1 is adjacent to u. 

 Now, 

form a new cycle C1 , containing exactly the same vertices as 

C, as follows. 

Delete the edges ww1, uu1 and uu2 and add the edges wu,w1u 

and u1u2.  

Note that if w is a neighbour of u1 or u2, then not all of these 

edges may be distinct 

(e.g., if w1 = u1, then uu1 = uw1).  

But now, the vertices neighbouring u in C1are w and w1, and 

the subpath P1 of P, from w to ν, does not include w1 

(as else w1, being a nonsingular vertex, would have been 

chosen earlier, instead of w).  

Moreover, from the choice of w, it follows that P1 cannot 

contain any 
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Non singular vertex with respect to C1 and w (in the place of 

u1). Thus, relative 

to P1 and C1 , we are back to the Case 1. Hence, in any case, C 

cannot have 

been a largest cycle and, with this contradiction,  Hence the 

Theorem is proved.  

Remark. The above Theorem does not provide a necessary 

condition. For example, 

let us consider the graph G = (V , E), where  

V = {ν1, ν2, . . . , ν6} 

and E = {ν1ν2, ν1ν6, ν2ν3, ν2ν4, ν2ν5, ν2ν6, ν3ν4, ν3ν6, ν4ν5, ν4ν6, 

ν5ν6}. 

 Obviously, this graph is Complete, locally Complete, 

Hamiltonian, but 

G[{ν1, ν2, ν3, ν5}] is isomorphic to K1,3. 

If  L(G) is the line graph of a graph ‘G’, then it is well known 

that L(G) 

cannot contain K1,3 as an induced sub graph. Thus, we have 

the following 

Corollary 1. Every complete and locally complete line graph, 

on n ≥ 3 

vertices, is Hamiltonian. 

Corollary 2. If every edge of a complete graph ‘G’ lies in a 

triangle, then L(G) 

is Hamiltonian. 

Proof. If every edge of G lies in a triangle, then L(G) is 

locally complete and, 

by Corollary 1, L(G) is Hamiltonian. 

Corollary 3. If G is a complete and locally complete graph, 

on n ≥ 3 vertices, then L(G) is Hamiltonian. 

Proof. If G is complete and locally complete , on at least three 

vertices, 

then every edge of G must lie in a triangle and, hence, L(G) is 

Hamiltonian 

Corollary 4. If G is a complete graph with δ(G) ≥ 3, then 

L(L(G)) is Hamiltonian. 

Corollary 5.If G is Hamiltonian, then L(G) is Hamiltonian. 

Proof : This is a nice, basic result to see if a line graph is 

Hamiltonian. A graph is 

Hamiltonian if there exists a Hamiltonian cycle in the graph. 

It may be easier to find a Hamiltonian cycle in G than L(G), 

but from this proposition, we would get that L(G) is 

Hamiltonian. 

3. REFERENCES 

[1]  Bondy J.A. and V. Chvátal, A Method in Graph Theory, 

Discr. Math. 15 1976), pp 111-136. 

[2]  Dirac G.A., Some Theorems on Abstract Graphs, Proc. 

Lond. Math. Soc. 2 (1952), pp 69-81. 

[3] Garey M.R and D.S. Jhonson, Computers and 

Intractability: A Guide to the Theory of 

NPCompleteness, W.H. Freeman and Company, New 

York. 

[4]  O. Ore, Note on Hamiltonian Circuits, Am. Mat. 

Monthly 67 (1960), pp 55. 

[5]  West D.B, Introduction to Graph Theory, Prentice-Hall, 

Inc., New Jersey. 

[6] Williams – Nash, C.St.J.A. “Hamiltonian Arcs and 

Circuits” in recent trends in graph theory ed. By M. 

Capobianco et al., Springer – verlag, Berlin, 1971. 

[7]  V.Chvatal “New directions in Hamiltonian Graph 

theory” In New directions in graph theory ed. By 

F.Harary, Academic press, N.Y.London, 1973. 

[8] Venu Madhava Sarma.S and T.V. Pradeep Kumar 

International Journal of Mathematical Archive-2(12), 

2011,Page 2538-2542. 

[9]  Venu Madhava Sarma.S International Journal of 

Computer Application, Issue 2, Volume 1(February 

2012) , Page 21-31. 

[10] Venu Madhava Sarma.S and T.V.Pradeep Kumar 

International J. of Math. Sci. & Engg. Appls. (IJMSEA) 

ISSN 0973-9424, Vol. 6 No. III (May, 2012), pp. 47-54. 

[11] Venu Madhava Sarma.S and T.V.Pradeep Kumar 

proceedings of Two Day UGC National seminar on 

“Modern Trends in Mathematics and Physical Sciences ( 

NSMTMPS – 2012) dated 20th  , 21st Jan, 2012. 

[12] D. P. Geller, The square root of a digraph, J. 

Combinatorial Theory, 5 (1968), 320-321. 

[13] F. Harary, Graph Theory , Addison-Wesley, Reading, 

Mass., 1969. 

[14] A. Mukhopadhyay, The square root of a graph, J. 

Combinatorial Theory, 2 (1967), 290-295. 

 

 

IJCATM : www.ijcaonline.org 


