
International Journal of Computer Applications (0975 – 8887)

Volume 119 – No.24, June 2015

17

Distributed Control Law for Load Balancing with Delay

Adjustment and Primary Back-up Approach in Content

Delivery Network

Nitish M. Shinde

ME Scholer
Department of Computer Engineering
G. H. Raisoni College of Engineering

Pune, India

S. R. Khiani
Assistant Professor

Department of Information Technology
G. H. Raisoni College of Engineering

Pune, India

ABSTRACT

The distributed system characterized by the distributed

systems where server nodes can come up short forever with

probability of nonzero, the framework execution can be

evaluated by method for the administration quality,

characterized as the likelihood of serving all the task lined in

the distributed framework before all the failure of nodes. A

Content delivery network or Content Distribution Network

(CDN) is an expansive distributed systems of servers

conveyed in various server farm crosswise over internet. The

objective of CDN is to server with superior and accessibility.

Complex component of CDN is request routing system i.e.

demand for content to the suitable server focused around a

particular set of parameters. Load-balancing issues emerge in

numerous applications in any case; in particular, they assume

an exceptional part in the operation of parallel and distributed

registering systems. Load balancing manages parceling a

project into littler assignments that can be executed

simultaneously and mapping each of these assignments to

computational sources such a processor or a machine. By

creating methods that can outline tasks to processors in a

manner that adjusts out the load, the aggregate handling time

will be decreased with enhanced processor usage. The

proposed framework will actualize the model focused around

worldwide balancing that will similarly adjust the appeals in

framework queue which additionally considers different delay

modification plan and methods for backup with arbitrary crash

of nodes or failure. This paper propose load balancing

algorithm to improve stability, scalability, fault tolerance and

delay adjustment.

General Terms

Distributed System Load Balancing.

Keywords

Content Delivery Network (CDN); control theory; request

balancing.

1. INTRODUCTION
Content replication has developed as a better amongst the

most valuable standards for the procurement of adaptable and

for reliable Internet administrations [7]. With replication of

content, the same information is put away at numerous

geologically different servers and request by clients are then

sent to one of these servers. Due to its scalability and also

fault tolerance, content replication has turned into a

foundation of most advanced networking architectures,

including Content Delivery Networks (CDNs) and shared peer

to peer (P2p) networks [6]. One of the key issues emerging

with content replication is that of selection of server. Many

content replication networks, a number of selected server

nodes are in charge of mix variety of approaching customer

demands and sending them to one of the servers. Given the

geological span and the size of content replication networks,

server determination is in a general sense not quite the same

as customary load balancing issues, which more often than not

expect that servers are cofound [7].

In centralized algorithms of load-balancing the worldwide

load data is gathered at an only one processor, known as the

central scheduler. This scheduler will make each and every

load balancing choices focused around the data that is sent

from different processors. In decentralized load-balancing

each processor in the framework will show its load data to

whatever remains of the processors with the goal that

generally kept up load data tables can be upgraded. As every

processor in the framework stays informed concerning the

worldwide load data, load balancing choices can be made on

any processor. A centralized algorithm can help a bigger

framework as it forces less overhead on the framework than

the decentralized algorithm. Be that as it may, centralized

algorithm has lower dependability since the failure of the

central scheduler will bring about the brokenness of the load

balancing arrangement. So, its capacity to help small systems,

a decentralized algorithm is still simpler to demonstrate. In

addition, for static load-balancing issues, all data overseeing

load-balancing choices is known in advance. Task will be

designated at the time of arrange time as per from the earlier

learning and won’t be affected by the condition of the

framework at the time. Then again, a dynamic load balancing

technique needs to designate undertakings to the processors

alertly as they arrive. A close ideal plan must be resolved on

the fly such that the undertakings booked can be finished in

the most limited time. As redistribution of undertakings needs

to occur at the runtime, dynamic load balancing systems are

more often than tough to build. On the other hand, they tend

have better execution in comparison to static one.

The processing power of any distributed framework can be

acknowledged by permitting its constituent Computational

Elements (CEs), or nodes, to work helpfully so that

substantial loads are dispensed among them in a reasonable

and powerful way. Any procedure for load distribution from

CEs is called load balancing (LB). A successful LB strategy

guarantees ideal utilization of the distributed resources so no

CE stays in an unmoving state while some other CE is being

used. For the most part, the execution of LB in delay

situations relies on the choice of balancing moments and in

addition the level of load-exchange permitted between nodes.

International Journal of Computer Applications (0975 – 8887)

Volume 119 – No.24, June 2015

18

Case in point, if the network delay is negligible inside the

setting of a certain application, the best execution is attained

to by permitting each node to send its entire excess load to

less-possessed nodes. On the other hand, in the case for which

the delay in network is unreasonably substantial, it would be

more judicious to diminish the measure of load exchange in

order to prevent wasted time while loads are transmitting.

Unmistakably, in a limited delay constrained distributed-

computing setting, the measure of load to be traded lies

between these two extremes and the sum of load-exchange

must be precisely chosen. A normally utilized parameter that

serves to control the force of load balancing is the LB pick up.

The load-balancing procedure can be characterized by three

rules: the location, the distribution and the selection rule. The

location rule figures out which processors will be included in

the balancing operation. Load-balancing areas can be either

global or local. A worldwide area permits the balancing

operation to exchange load from one processor to any of the

processors in the framework, while a local area just permits

balancing operations to be performed inside the set of closest

neighbor processors. The distribution rule decides how to

redistribute the workload among processors in the balancing

area. This rule relies on upon the balancing area that is dead

set by the location principle, while the choice standard settles

on whether the load-balancing operation can be performed

preemptively or non-preemptively. The previous may be

exchanged to different processors in between the execution

while, in the last, assignments must be exchanged on the off

chance that they are recently made.

This paper is composed further as: Section II details about

elated work studied till now. Section III presents

implementation details, preliminary definitions and

documentations and in addition formally expresses the IWI

and MIWI mining undertakings tended to by this paper.

Section IV draws conclusions and presents future work.

2. RELATED WORK
Throughout the most recent decades, clients have seen the

development of the Internet. As an outcome, there has been a

huge development in network movement, determined by

quick acknowledgement of broadband access, alongside

increments in framework complexity nature and content

lavishness. The over-advancing nature of the Internet brings

new difficulties in overseeing and conveying content to

clients. As an illustration, prevalent Web benefits frequently

endure congestion and bottleneck because of the vast requests

made on their administrations. A sudden spike in Web content

request may cause huge workload on specific Web server(s),

and thus a hotspot can be produced. In the long run the Web

servers are completely overpowered with the sudden

increment in traffic, and the Web website holding the content

gets to be incidentally unavailable. Content provider sees the

Web as a vehicle to bring rich content to their clients. A

diminishing in administration quality, alongside high get to

postpone primarily created by long download times, leaves

the clients in dissatisfaction. Organizations procure critical

money related impetuses from Web-based e-business.

Consequently, they are concerned to enhance the

administration quality experienced by the clients while getting

to their Web locales. All things considered, the past few a

long time have seen a development of advances that mean to

enhance content delivery and administration provisioning over

the Web. At the point when utilized together, the bases

supporting these advances structure another kind of network,

which is regularly called to as content network [7]. In our

prior work [8], [9] demonstrated that for distributed systems

with reasonable irregular correspondence delays, constraining

the quantity of balancing moments and improving the

execution over the decision of the balancing times and the LB

pick up at each one balancing moment can result in

noteworthy change in processing proficiency. This inspired us

to investigate the purported one-shot LB method. Specifically,

once nodes are at first appointed a specific number of

assignments, all nodes would together execute LB just at one

recommended moment [8]. Monte Carlo studies what’s more

ongoing investigations directed over WLAN affirmed our idea

that, for a given starting load and normal preparing rates, there

exist an ideal LB pick up and an ideal balancing moment

connected with the one-shot LB arrangement, which together

minimize the normal general completion time. This has

additionally been checked scientifically through our recovery

hypothesis based numerical model [10]. In any case, this

analysis has been constrained to just two nodes and has

concentrated on taking care of a stating load without

considering similar type of arrival loads.

Paper [4] outlines delay routing issue in the setting of

dispersed networks with and without incomplete load data.

Despite the fact that a general least delay routing issue is NP

hard, expecting consistently distributed K source destination

(SD) pairs at irregular, it uses a lower bound on the normal

delay and exhibit by reproduction that it is tight for a certain

classes of routinely deployed networks. It demonstrates that

some routing in a distributed way is sufficient to accomplish

asymptotically ideal load adjusting with high likelihood as K

has a tendency to infinity. Keeping in mind the end goal to set

such routing, in any case, every SD pair ought to know

worldwide load data, which is impossible for generally

networks. They proposed a novel algorithm for routing in

which every SD pair picks its routing way just among a set of

predefined ways. On the other hand propose an effective

method for dispersed development for predefined ways that

have the capacity appropriate traffic over a system. The

predefined routing algorithm work in a completely circulated

way with exceptionally restricted load data.

In [2], this paper displays a review of different existing load

distribution models, and classifies them as far as their key

functionalities for example, traffic partitioning and path

selection. In view of a number of critical criteria, for example

the capacity to adjust load and to keep up packet ordering

alongside a few different issues, which influence system

execution saw by clients and examine different cases of

existing models, and after that think about and recognize their

advantages and in addition deficiencies. The execution of

each one model is assessed by utilizing distinctive criteria,

i.e., flexibility for dynamic traffic alternately system condition

changes, load adjusting and bandwidth usage efficiencies,

level of flow redistribution, packet requesting preservation,

communication overhead, computational complexity, and

usage complexity. It is likewise clear that the execution of

load circulation models generally relies on upon the features

of their traffic part and way determination plans.

3. IMPLEMENTATION DETAILS

3.1 System Architecture
Following Fig. 1 shows the proposed system architecture. It

shows the Back end server, Surrogate Server and client

.Where after the network established all the surrogate server

and Back-end server is interconnected and the Client is

responsible to send Request. The main aim of proposed

system is Load balancing in the network and to use scheduler

for request processing and load balancing. Scheduler is

International Journal of Computer Applications (0975 – 8887)

Volume 119 – No.24, June 2015

19

located just after the Queue and Just before the server. And

load in the queue decides whether the request is processed

locally or remote server. The surrogate server is responsible

for data gathering from Back End server. Load in the network

is managed by forwarding the request to the least loaded

server.

In a queue adjustment system, the scheduler is found after the

queue and just before the server. The scheduler may assign

request to pull out from queue to remote server relying upon

the status of the framework queue. In a rate-change model,

rather the scheduler is found just before the nearby line: Upon

arrival of another demand, the scheduler chooses whether to

assign it to the local queue or remote server. When a request

is appointed to a queue, no remote rescheduling is permitted.

In a hybrid adjustment procedure for load balancing, the

scheduler is permitted to control both the approaching request

rate at a node and the queue length. Such a methodology

permits to have a more proficient load balancing in an

exceptionally progressive situation; anyway in the meantime

it requires a complex algorithm. The proposed systems have

achieved following features by using modified approach to

existing system.

3.2 Proposed Work
3.2.1 Stability
Algorithm for scheduling purpose is called unstable on the off

chance that it can enter a state in which all the nodes of the

framework are spreading all their times in moving

methodologies without fulfilling any helpful work trying to

legitimately plan the methods for better execution. This

migration of unbeneficial movement is known as processor

thrashing. e.g. it may like that node n1 and n2 both watched

that node n is unmoving and afterward both offload bit of

their work to node n3 without being offloading choice made

by one another. Presently if hub n3 get to be overloaded

because of the techniques got from both n1 and n2, then it

might again begin exchanging its methodologies to different

nodes. This whole cycle may be rehashed over and over,

bringing about an unsteady state. The objective of load

adjusting algorithms is to defeat this issue.

3.2.2 Scalability
Algorithms ought to be fit for taking care of little and

additionally expansive system. Algorithm that settles on

booking choices by first asking the workload from all the

nodes and afterward selecting the most likely node as

possibility for accepting the courses of action has poor

scalability element. Such algorithm may work fine for little

system yet gets failure when connected to huge system.

3.2.3 Fault Tolerance
A good algorithm ought not to be crippled by the accident of

one or more nodes of the frameworks. In distributed

frameworks where server nodes can come up short for all time

with probability of nonzero, the framework execution can be

evaluated by method for the administration dependability,

characterized as the likelihood of serving all the tasks lined in

the system before all the nodes failed. The system additionally

allows arbitrarily detailed, load-adjusting moves to be made

by the individual nodes keeping in mind the end goal to

enhance the administration reliability.

3.2.4 Delay Adjustment
The system latency might never again be ignored the change

in the load of the servers because of system delay would

influence the execution of the algorithm of load balancing. At

the point when the local servers have gotten the load adjusting

arrangements from the other server after some system delay,

the loads of the nearby servers may be altogether different and

the load adjusting arrangements might never again be exact,

because of the dynamic feature of DVEs.

3.3 Algorithm
Input: Load, Queue Buffer length.

Fig 1 Proposed System Architecture

International Journal of Computer Applications (0975 – 8887)

Volume 119 – No.24, June 2015

20

Output: Least loaded server

Step 1: Network Creation;

Step 2: create Queue [] at each server local and remote.

Step 3: For Each Node Find neighbor

Step 4: At every T seconds

Step 5: Update load status of neighbor’s Node

Step 6: get Current Queue Length for each neighbor.

Step 7: Find neighbor with least loaded.

Step 8: End For

Step 9: request client Request

Step 10: add Request in Queue

Step 11: Start Scheduling

Step 12: send request to Local or Remote Server.

Step 13: Distribute the request to Least Loaded neighbor.

Step 14: Request Processing.

3.4 Experimental Setup
The system is built using Java framework (version jdk 6) on

Windows platform. The Net beans (version 6.9) are used as a

development tool. The system doesn’t require any specific

hardware to run any standard machine is capable of running

the application.

4. RESULTS AND DISCUSSION

4.1 Datasets
In this work algorithm considers several different inputs from

range 50. Table I shows training time table

4.2 Results
Following table I shows training time table.

Table 1. Training Time

Input Serve

r1

Serv

er2

Serve

r3

Serve

r4

Serve

r5

Serve

r6

Serve

r 7

50 20 15 33 45 22 60 75

100 25 17 38 40 28 62 74

150 35 21 36 42 32 55 74

200 40 19 39 48 33 61 71

250 26 23 41 51 28 63 78

300 37 25 42 52 34 61 79

350 40 25 45 53 35 65 74

400 41 23 41 54 38 68 72

450 39 19 50 49 39 62 71

500 38 17 45 56 42 64 76

550 41 16 47 50 43 61 75

This graph shows the Expected result for Queue length of

each server at the specific period of time. Here we are

considering two factors queue length and time in seconds.

This is the graph for 7 servers, the queue length is periodically

updated due to request processing present in the queue. And

in the proposed work the load is distributed based on least

load present server. Fig. 2 shows graph for training time

according to Table I.

Fig2:Training Time Graph

5. CONCLUSION
In this proposed work, the algorithm proposes a load-

balancing technique for helpful CDN networks. We initially

characterized a model of such networks focused around a flow

characterization. We thus moved to the meaning of a

algorithm that aims for attaining to load balancing in the

system by removing nearby local queue conditions through

redistribution of potential abundance traffic to the set of

neighbors of the congested server. The algorithm is initially

presented in now is the ideal time constant plan and afterward

put in a discrete adaptation particularly imagined for its real

execution and sending in an operational situation. Through the

assistance of recreations, we showed the scalability, stability,

fault tolerance and delay adjustment the effectiveness of our

proposal, which performs the majority of the potential plan. In

future work will be extended to the real execution of solution

in a framework, so to arrive at a first model of a load-adjusted,

CDN system to be utilized both as an evidence of-idea

execution of the results got through recreations and as a play

area for further research in the more non specific field of

network administration.

6. ACKNOWLEDGMENTS
We are grateful to our project guide Mrs. Simran Khiani for

her remarks, suggestions and time. Also the Head of the

Department And Principal for providing all the vital facilities

like for providing the required facilities, Internet access and

important books, which were essential. We are also thankful

to all the staff members of the Department of Information

Technology of G. H. Raisoni college of Engg & mgmt. Pune.

7. REFERENCES
[1] Sabato Manfredi, Member, IEEE, Francesco Oliviero,

Member, IEEE, and Simon Pietro Romano, Member,

IEEE,“A Distributed Control Law for load balancing in

Content Delivery Network”, IEEE/ACM

TRANSACTIONS ON NETWORKING, VOL. 21, NO.

1, FEBRUARY 2013.

[2] Sang-Woon Jeon,“Fully Distributed Algorithms for

Minimum Delay Routing Under Heavy Traffic”, IEEE

TRANSACTIONS ON MOBILE COMPUTI NG, VOL.

13, NO. 5, MAY 2014.

[3] Jasma Balasangameshwara and Nedunchezhian Raju

“Performance- Driven Load Balancing with a Primary-

Backup Approach for Computational Grids with Low

0

10

20

30

40

50

60

70

80

90

5
0

1
0

0

1
5

0

2
0

0

2
5

0

3
0

0

3
5

0

4
0

0

4
5

0

5
0

0

5
5

0

Q
u

e
u

e
 L

e
n

gt
h

Time In seconds

Server1

Server2

Server3

Server4

Server5

Server6

Server7

International Journal of Computer Applications (0975 – 8887)

Volume 119 – No.24, June 2015

21

Communication Cost and Replication Cost” in IEEE

TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 5,

MAY 2013

[4] Yunhua Deng and Rynson W.H. Lau “‘On Delay

Adjustment for Dynamic Load Balancing in Distributed

Virtual Environments” in IEEE TRANSACTIONS ON

VISUALIZATION AND COMPUTER GRAPHICS,

VOL. 18, NO. 4, APRIL 2012.

[5] Jorge E. Pezoa, Student Member, IEEE, Sagar Dhakal,

Member, IEEE, and Majeed M. Hayat, Senior Member,

IEEE “Maximizing Service Reliability in Distributed

Computing Systems with Random Node Failures: Theory

and Implementation:” in IEEE TRANSACTIONS ON

PARALLEL AND DISTRIBUTED SYSTEMS, VOL.

21, NO. 10, OCTOBER 2010.

[6] S. Manfredi, F. Oliviero, and S. P. Romano, “Distributed

management for load balancing in content delivery

networks,” in Proc. IEEE GLOBECOM Workshop,

Miami, FL, Dec. 2010, pp. 579583.

[7] H. Yin, X. Liu, G. Min, and C. Lin, “Content delivery

networks: A Bridge between emerging applications and

future IP networks,” IEEE Netw., vol. 24, no. 4, pp.

5256, Jul.Aug. 2010.

[8] Sumet Prabhavat,“On Load Distribution over Multipath

Networks”, IEEE COMMUNICATIONS SURVEYS and

TUTORIALS, VOL. 14, NO. 3,THIRD QUARTER

2012.

[9] M.M. Hayat, S. Dhakal, C.T. Abdallah, J.D. Birdwell,

and J. Chiasson, “Dynamic Time Delay Models for Load

balancing. Part II: Stochastic Analysis of the Effect of

Delay Uncertainty,” Advances in Time Delay Systems,

vol. 38, pp. 355-368, Springer- Verlag, 2004

[10] S. Dhakal, B.S. Paskaleva, M.M. Hayat, E. Schamiloglu,

and C.T. Abdallah, “Dynamical Discrete-Time Load

Balancing in Distributed Systems in the Presence of

Time Delays,” Proc. IEEE

IJCATM : www.ijcaonline.org

