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ABSTRACT 

There is an explosion in the volume of data in the world. The 

amount of data is increasing by leaps and bounds. The sources 

are individuals, social media,  organizations, etc. The data 

may be structured, semi-structured or unstructured. Gaining 

knowledge from this data and using it for competitive 

advantage is the primary focus of all the organizations. In the 

last few years Big Data has found its way in almost every 

field, from government to private sectors, industry to 

academia. The major challenges associated with Big Data are 

data organization, modeling, data analysis and retrieval. 

Hadoop is a widely used software framework used for the 

large scale management and analysis of data. The main 

components of Hadoop: HDFS and MapReduce, enable the 

distributed storage and processing of data over a large number 

of commodity servers. This paper provides an overview of 

MapReduce and its capabilities and discusses the related 

issues. 
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1. INTRODUCTION 
There has been an immense increase in the volumes of data in 

the past few years. The major sources of growth of data are 

the individuals and their increased use of media and the 

Internet. In the present era all the activities of the individuals 

on the Internet is recorded. This is done by most of the 

companies to study the customer's search patterns and 

understand their demands. All activities of the individuals like 

online transactions, searches, etc are recorded and analyzed. 

Business data is analyzed to understand the customer better, 

for promoting the brands and minimizing the risks and 

thereby enhancing the productivity. Other sources of data are 

the public and private sector organizations which store the 

information of their customers and the market in order to plan 

business strategies. This has brought the concept of Big Data 

into picture. Big Data has found its way in almost every field- 

industry, healthcare, banking, insurance, government, 

telecommunications consumer products and businesses [11]. 

With the increasing volume of data, a number of issues come 

up. Firstly, it is difficult to deal with huge amounts of data. 

Storing and handling of large amounts of data needs to be 

taken care of. The second issue that comes up is to decide 

what is to be stored and what is important to us. The third 

issue to extract the important data and analyze it in a way to 

put it to our best advantage. 

In 2001, Doug Laney, the META Group (now Gartner) 

analyst defined big data in three dimensions, i.e. 

 Volume: implies to the huge amount of data, which 

continues to increase with time. 

 Velocity: refers to the speed at which data grows. 

 Variety: refers to the wide range of data types 

(structured and unstructured) [3,11].  

In 2012, Gartner updated its definition as follows: "Big data is 

high volume, high velocity, and/or high variety information 

assets that require new forms of processing to enable 

enhanced decision making, insight discovery and process 

optimization"[3,11]. 

2. HADOOP 
Doug Cutting, the creator of Apache Lucene developed 

Hadoop and named it after his son's toy elephant. Apache 

Hadoop is an open source project that allows the processing of 

huge amount of data on a cluster of thousands of commodity 

servers. It can be scaled up to thousands of machines. These 

machines do not share memory and each offers local 

computation and storage. Hadoop replicates the data on 

multiple servers and takes control over the parallel processing 

of user's jobs on these servers. Hadoop is specially designed 

to work with huge amounts of data. It does not work well 

when the data is small. 

Hadoop has two main components: 

a) HDFS - the Hadoop Distributed File System is a file system 

that is capable of efficiently storing and managing petabytes 

of data. The files are stored on the commodity clusters. The 

data files are broken down into blocks each of which is 

replicated on more than one (usually three) servers. This 

ensures that the data is not lost even if a node containing data 

fails. It also checks for server failures and other hardware 

problems. This replication of data provides fault-tolerance. 

This way any block can be read from any one of the server. 

Thus it also helps in enhancing the performance. It continually 

monitors the servers in a cluster and also the data blocks and 

thus ensures data availability. In Hadoop, checksums are 

given to all the data splits. Whenever data is read from a 

block, its checksum is verified. This way it finds out if any 

block is damaged or not. In case any block is damaged, it is 

restored from its replicas. This way it provides scalable, 

inexpensive, reliable and fault-tolerant storage [1,2]. 

http://en.wikipedia.org/wiki/META_Group
http://en.wikipedia.org/wiki/Gartner
http://en.wikipedia.org/wiki/Gartner
http://www-01.ibm.com/software/data/infosphere/hadoop/hdfs/
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b) MapReduce - It is the framework that handles the parallel 

processing of data on the cluster. The user applications are 

divided into smaller tasks which are executed on different 

nodes in a cluster. 

3. MAPREDUCE 
MapReduce is a programming model that is used for the 

processing and analysis of large data sets. It is a parallel data 

processing system. It is capable of processing terabytes of 

data on thousands of servers efficiently. It is capable of 

handling multi-structured data files. The processing of  large 

data files is distributed across the cluster of machines. It 

copies the data across multiple servers, runs various tasks in 

parallel and manages all communications and data transfers 

between various parts of the system. It provides abstraction to 

the messy details of parallelization and supports simple 

computation for deep data analysis. This helps inexperienced 

programmers to utilize the resources of a large distributed 

system easily. The MapReduce computation requires only two 

simple programs to be written by the user- the Map() function 

and the Reduce() function and the programmer doesn't have to 

bother about the details of parallelization of work or the data 

distribution and its management [1,2,9,10]. 

3.1 Map and Reduce Procedures 
MapReduce performs processing in two phases: the Map 

phase and the Reduce phase. The input-output of both these 

phases are key value pairs[9]. The programmer writes two 

functions: the map function and the reduce function. 

Map() procedure: It is a simple procedure written by user. It 

takes the input data set and gives as output a set of 

intermediate key/value pair. Its performs filtering of the input 

data set and sorts them. Its main function is to find all the 

intermediate values and associates them with an intermediate 

key. The output of the Map() procedure is passed to the 

Reduce() function as input. 

Reduce() procedure: It is also written by the user. It takes as 

input the intermediate key I produced by the Map() function 

and the set of values for that key. These keys are merged 

together which results in a smaller set of values. The reduce 

workers can begin executing as soon as any map worker 

finishes its execution and passes its output. This means that 

the reduce workers don't have to wait for the completion of all 

map workers. This helps in achieving better throughput [2,9]. 

3.2 Implementation 
MapReduce can be implemented in a number of ways. The 

right implementation depends upon the environment in which 

it is to be used. For example, in some cases small shared-

memory machine may be needed while in other cases larger 

collection of networked machines may be required. The most 

common implementation uses hundreds of machines with at 

least 2-4 GB of memory connected via Ethernet. These 

machines are usually dual processors running Linux. The 

commodity network has 1 gigabit/second bandwidth at 

machine level. IDE disks are attached to each of the machines 

to provide storage. The data on these disks is managed by the 

distributed file system (HDFS). To ensure reliability and 

availability of data, the data is replicated at least three times 

[9].  

3.3 Execution Overview 
A job consists of a MapReduce program and input data set. 

MapReduce consists of a software component called the Job 

Client. The Job Client sends the job to the Job Tracker. The 

Job Tracker then chooses the servers that will run that job. 

The Job Tracker consults the NameNode to look up the 

location of all the blocks that make up a file required by a job. 

And then it instructs each of the servers to perform the user's 

analysis. 

1. The input data is divided into a set of M smaller parts. Each 

sub part is of size 16-60 MB per split. These copies are then 

distributed to different servers for processing.  

2. There is a Master Node which is nothing but one of the 

copies of the program. The rest of the nodes are the Worker 

nodes. The Master node consists of the Job Tracker, Task 

Tracker, NameNode and DataNode. The worker node consists 

of Data Node and Task Tracker. The master nodes distribute 

the data obtained from the client to the HDFS and assign the 

tasks to Map-Reduce layer. It looks up for the idle worker 

nodes and assigns the map task or reduce task to them. 

3. The worker node that is given a map task reads the input 

data and decomposes key pairs. These entity pairs are fed to 

the Map function as input. They are also buffered in memory. 

4. The system writes the buffered intermediate entity pairs to 

local disk in some time intervals.  The locations of these 

buffered entity pairs on the local disk are passed to the master. 

The master then forwards the location information to the 

reduce workers. 

5. The data written by the map workers is read by the reduce 

workers from the local disks. And then it performs the sorting 

of the intermediate entity pairs.  

6. The reduce worker then sends the entity and its 

intermediate pair to the Reduce function written by user.  

7. When the entire map and reduce tasks have been finished, 

the master node wakes up the user program and the output of 

the map-reduce execution is handed over to the user [9]. 

4. SCHEDULING ISSUES IN 

MAPREDUCE 
Hadoop is a cluster of multiple machines. Managing the 

execution of tasks on the multiple machines is the primary 

aim of scheduling. There are three main factors that affect 

scheduling decision such as locality, synchronization and 

fairness constraints. These are discussed below: 

1. Locality 

Locality is an important factor which needs to be kept in mind 

before designing a scheduling algorithm. Locality is nothing 

but the distance between a node which has been assigned the 

task and the node which contains the input data required by 

the task. If the input data is closer to the computation node it 

will be quickly available thereby increasing the throughput of 

the system. In ideal case the data is available at the 

computation node itself. This is called node locality. When 

the data node and computation node are on the same rack, it is 

called rack locality. Locality greatly affects the cost of data 

transfer and the performance in a shared cluster environment 

because of the limited bandwidth. Some schedulers assign the 

task to a node which is not far away from the node containing 

the input data [8]. 

2. Synchronization 

The Map processes transfer the intermediate key pairs to the 

reduce processes as input. This process is called 

synchronization. Synchronization also affects the performance 

http://www-01.ibm.com/software/data/infosphere/hadoop/mapreduce/
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of the system. The intermediate outputs are sent to the reduce 

processes only after all the map processes have been 

completed. Thus if any of the map process is running slow, 

the other processes have to wait for its completion. This 

increases the overall processing time thereby, causing a 

degradation in the throughput. There may be a decrease in 

throughput because of some other factors as well. Like a node 

fails, the other nodes have to wait until the failed node 

finishes its task again. Moreover in a heterogeneous 

environment, every node has different execution time. The 

network bandwidth may also be different. So, all the nodes do 

not perform at the same rate. Thus some nodes may have to 

wait for the other nodes to complete execution [8].  

3. Fairness  

There are a number of map and reduce tasks performing at the 

same time. At times, there may be a situation where a map-

reduce job with heavy workload takes over the processing 

units for a long time. The smaller jobs have to wait for a very 

long period of time. Thus the short computation jobs do get a 

fair share of cluster resources and their execution time is 

increased. Synchronization also affects fairness. For example, 

if a map process delays too long, the nodes remain idle as the 

reduce jobs keep waiting for it to finish and this leads to the 

starvation of other jobs [8]. 

5.  SCHEDULING IN HADOOP 
1. Default FIFO Scheduler  

The default scheduler of Hadoop uses a FIFO queue. This 

scheduler works irrespective of the heterogeneity of Hadoop 

cluster components. A job is partitioned into smaller tasks. 

These tasks are loaded into a queue. When the free slots 

become available the tasks are assigned in FIFO order. Every 

job uses the entire cluster. Thus the other jobs in the queue 

have to wait for their turn. There is no concept of prioritizing 

the jobs [1,13].  

2. Fair Scheduler 

The Facebook group developed the Fair Scheduler to manage 

large amount of data with their Hadoop cluster. Fair 

scheduling aims to give a fair share of the resources to every 

user. In this the jobs are divided into pools and each pool is 

allocated a fair share of the resources i.e., the Map and 

Reduce slots. The jobs assigned in a pool can be scheduled 

either in a FIFO order or by using fair sharing. This method 

assigns resources to jobs in such a way that all the jobs at that 

time get approximately the same share of resources. If at a 

time there is only one job running then that job can use the 

entire cluster resources. When new jobs are submitted the idle 

slots are allocated to them in such a way that each job gets the 

same CPU time to execute [1,13]. 

The Fair Scheduler also gives the provision of pre-emption. If 

a pool does not receive the minimum number of resources for 

some time, the tasks of other pools that are over capacity are 

killed and the slots are given to those that are under capacity. 

The most recently launched jobs are selected for killing from 

the over allocated pools so that the wasted computations are 

less. Preemption ensures that the jobs are not starved and that 

the small jobs get to finish on time, unlike in FIFO 

scheduling. 

Moreover, priorities can also be assigned to certain jobs in 

pools so that the jobs are scheduled according to their 

priorities. Priorities are used to govern the fraction of the total 

computation time that every job will get [1,13]. 

3.  Capacity Scheduler  

Capacity Scheduler was developed at 'Yahoo' [9]. It works 

best for large Hadoop systems which have a large number of 

resources which are to be fairly allocated among the users. In 

the Capacity Scheduler the user jobs are submitted into 

queues and each queue is allocated a fraction of the total 

resource capacity. All the jobs assigned in a queue can use the 

entire capacity of resources given to the queue. The free 

capacity of a queue is shared by the other queues. When any 

Map or Reduce slot becomes free, the queue which has the 

least load is selected and the oldest remaining job is picked 

for execution from this queue.  

The capacity scheduler does not support preemption. The total 

resource capacity is distributed among the queues even if it is 

beyond their capacity. But if new queues request for the 

resources, the scheduler waits for the jobs running on the 

resources to finish and then allocates these resources to the 

new queues. This helps in the efficient and elastic use of the 

resources. Within a pool the jobs can also be prioritized i.e., 

the job with higher priority will be executed first. However, 

this feature is turned off by default. 

The capacity scheduler also supports resource based 

scheduling where a task can explicitly specify the resources 

(like RAM and virtual memory) required by it. The task is 

then allocated to the node which has the required amount of 

resources [1,13]. 

4. Deadline Constraint Scheduler  

The Deadline Constraint Scheduler focuses on the deadlines 

for scheduling the jobs. It has two main proposed 

components: 

a) Job execution cost model- It deals with the distribution of 

data and handles different parameters like runtime of map and 

reduce tasks, input data sizes, etc. 

b) Constraint based scheduler- This component takes the user 

deadlines as input and performs the scheduling. 

The system works on the assumption that the reduce tasks 

begin only after the execution of all map tasks is finished and 

same amount of input data is given to each reduce node. The 

proposed job execution cost model handles the scheduling of 

the jobs. It schedules a job only if its deadlines can be met. 

The scheduling is independent of the number of jobs 

submitted to the cluster. When a new job is submitted to the 

cluster its schedulability test is performed to see if it is 

possible to finish the job within the specified deadline. The 

number of free slots at that time is checked. The minimum 

number of map and reduce tasks required in that job are also 

estimated and if it is less than the available free slots, then the 

job is enlisted for scheduling [13]. 

5. Resource Aware Scheduling  

In Hadoop the Job Tracker is responsible for taking all the 

scheduling decisions. It splits the input data and assigns the 

work to the Task Trackers. The Task Trackers then execute 

the tasks. The Job tracker takes care of the running jobs and 

maintains a record of the tasks assigned to the Task Tracker 
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and the state of each Task Tracker. Each Task Tracker has a 

fixed number of computation slots allocated to it. The idea of 

the Resource Aware Scheduling is that the Task Trackers 

keep a track of the utilization of the resources (CPU 

utilization, channel, I/O, etc). There are two Resource Aware 

Scheduling mechanisms: 

a) Dynamic Free Slot Advertisement- In this approach the 

available number of free computation slots is estimated 

dynamically. This helps in improving the throughput of the 

system. 

b) Free Slot Priorities/Filtering- In this approach the 

maximum number of computation slots is configured. The 

free Task Tracker slots are buffered in memory for some time 

and then they are advertised according to the resource 

availability. This means that the Task Tracker nodes which 

have higher resource availability are advertised first for 

scheduling. This helps in achieving higher throughput because 

the tasks are not scheduled based on next available free slot 

but on the basis of higher resource availability [13]. 

6. CONCLUSION 
In order to handle multiple nodes in a shared cluster 

environment an efficient scheduling algorithm is required. 

The scheduling techniques that exist today provide a tradeoff 

between the three issues of scheduling- locality, fairness and 

synchronization. There is no scheduling that is capable of 

resolving all three at the same time. If we try to resolve the 

synchronization issue then it is not possible to achieve 

fairness. The reduce operation begins after the completion of 

all map tasks. So the reduce tasks need to sit idle until all map 

tasks finish execution. This means that the resource utilization 

is poor. 

In a scenario where every task is given equal number of 

resources, if the data is not present on the same server itself 

(i.e., no locality) then the task has to fetch the data from the 

other servers. This is an unnecessary delay caused which 

increases the processing time and decreases the throughput. 

The FIFO Scheduler is simple to implement and is efficient 

for small systems. But if it is deployed on large systems it can 

degrade the throughput and the performance of the system. It 

is not applicable to the environment where the data is shared 

among multiple users. In the Fair Scheduler the throughput is 

good enough but the feature of data locality is hampered. The 

Deadline Constraint Scheduler takes parameters like deadlines 

as input. This improves the performance. 

With the rise of Big Data, Hadoop has emerged as a new 

research field. The Hadoop architecture and its schedulers are 

evolving. Its new versions have been released with enhanced 

features and functionalities. Many new scheduler 

improvement ideas have been suggested by researchers and a 

lot of further research work is being done in this area. The 

Hadoop systems being deployed are user specific and hybrid 

scheduling approaches have come up that are best suited to 

the user's needs. The hybrid approaches combine the features 

of two or more scheduling techniques to offer their combined 

specialty. These approaches are developed with a motivation 

of achieving best resource utilization and average 

computation time. The development of a scheduler which is 

capable of taking into account all aspects of scheduling and 

heterogeneity levels is still awaited. 
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