
International Journal of Computer Applications (0975 – 8887)

Volume 119 – No.22, June 2015

27

Survey on Data Processing and Scheduling
in Hadoop

Somya Singh

Department of Computer
Science and Engineering
ASET, Amity University

Noida, India

Neetu Narayan
Department of Computer
Science and Engineering
ASET, Amity University

Noida, India

Gaurav Raj
Department of Computer
Science and Engineering
ASET, Amity University

Noida, India

ABSTRACT

There is an explosion in the volume of data in the world. The

amount of data is increasing by leaps and bounds. The sources

are individuals, social media, organizations, etc. The data

may be structured, semi-structured or unstructured. Gaining

knowledge from this data and using it for competitive

advantage is the primary focus of all the organizations. In the

last few years Big Data has found its way in almost every

field, from government to private sectors, industry to

academia. The major challenges associated with Big Data are

data organization, modeling, data analysis and retrieval.

Hadoop is a widely used software framework used for the

large scale management and analysis of data. The main

components of Hadoop: HDFS and MapReduce, enable the

distributed storage and processing of data over a large number

of commodity servers. This paper provides an overview of

MapReduce and its capabilities and discusses the related

issues.

General Terms

Big Data, Hadoop, HDFS, MapReduce

Keywords

MapReduce, Scheduling

1. INTRODUCTION
There has been an immense increase in the volumes of data in

the past few years. The major sources of growth of data are

the individuals and their increased use of media and the

Internet. In the present era all the activities of the individuals

on the Internet is recorded. This is done by most of the

companies to study the customer's search patterns and

understand their demands. All activities of the individuals like

online transactions, searches, etc are recorded and analyzed.

Business data is analyzed to understand the customer better,

for promoting the brands and minimizing the risks and

thereby enhancing the productivity. Other sources of data are

the public and private sector organizations which store the

information of their customers and the market in order to plan

business strategies. This has brought the concept of Big Data

into picture. Big Data has found its way in almost every field-

industry, healthcare, banking, insurance, government,

telecommunications consumer products and businesses [11].

With the increasing volume of data, a number of issues come

up. Firstly, it is difficult to deal with huge amounts of data.

Storing and handling of large amounts of data needs to be

taken care of. The second issue that comes up is to decide

what is to be stored and what is important to us. The third

issue to extract the important data and analyze it in a way to

put it to our best advantage.

In 2001, Doug Laney, the META Group (now Gartner)

analyst defined big data in three dimensions, i.e.

 Volume: implies to the huge amount of data, which

continues to increase with time.

 Velocity: refers to the speed at which data grows.

 Variety: refers to the wide range of data types

(structured and unstructured) [3,11].

In 2012, Gartner updated its definition as follows: "Big data is

high volume, high velocity, and/or high variety information

assets that require new forms of processing to enable

enhanced decision making, insight discovery and process

optimization"[3,11].

2. HADOOP
Doug Cutting, the creator of Apache Lucene developed

Hadoop and named it after his son's toy elephant. Apache

Hadoop is an open source project that allows the processing of

huge amount of data on a cluster of thousands of commodity

servers. It can be scaled up to thousands of machines. These

machines do not share memory and each offers local

computation and storage. Hadoop replicates the data on

multiple servers and takes control over the parallel processing

of user's jobs on these servers. Hadoop is specially designed

to work with huge amounts of data. It does not work well

when the data is small.

Hadoop has two main components:

a) HDFS - the Hadoop Distributed File System is a file system

that is capable of efficiently storing and managing petabytes

of data. The files are stored on the commodity clusters. The

data files are broken down into blocks each of which is

replicated on more than one (usually three) servers. This

ensures that the data is not lost even if a node containing data

fails. It also checks for server failures and other hardware

problems. This replication of data provides fault-tolerance.

This way any block can be read from any one of the server.

Thus it also helps in enhancing the performance. It continually

monitors the servers in a cluster and also the data blocks and

thus ensures data availability. In Hadoop, checksums are

given to all the data splits. Whenever data is read from a

block, its checksum is verified. This way it finds out if any

block is damaged or not. In case any block is damaged, it is

restored from its replicas. This way it provides scalable,

inexpensive, reliable and fault-tolerant storage [1,2].

http://en.wikipedia.org/wiki/META_Group
http://en.wikipedia.org/wiki/Gartner
http://en.wikipedia.org/wiki/Gartner
http://www-01.ibm.com/software/data/infosphere/hadoop/hdfs/

International Journal of Computer Applications (0975 – 8887)

Volume 119 – No.22, June 2015

28

b) MapReduce - It is the framework that handles the parallel

processing of data on the cluster. The user applications are

divided into smaller tasks which are executed on different

nodes in a cluster.

3. MAPREDUCE
MapReduce is a programming model that is used for the

processing and analysis of large data sets. It is a parallel data

processing system. It is capable of processing terabytes of

data on thousands of servers efficiently. It is capable of

handling multi-structured data files. The processing of large

data files is distributed across the cluster of machines. It

copies the data across multiple servers, runs various tasks in

parallel and manages all communications and data transfers

between various parts of the system. It provides abstraction to

the messy details of parallelization and supports simple

computation for deep data analysis. This helps inexperienced

programmers to utilize the resources of a large distributed

system easily. The MapReduce computation requires only two

simple programs to be written by the user- the Map() function

and the Reduce() function and the programmer doesn't have to

bother about the details of parallelization of work or the data

distribution and its management [1,2,9,10].

3.1 Map and Reduce Procedures
MapReduce performs processing in two phases: the Map

phase and the Reduce phase. The input-output of both these

phases are key value pairs[9]. The programmer writes two

functions: the map function and the reduce function.

Map() procedure: It is a simple procedure written by user. It

takes the input data set and gives as output a set of

intermediate key/value pair. Its performs filtering of the input

data set and sorts them. Its main function is to find all the

intermediate values and associates them with an intermediate

key. The output of the Map() procedure is passed to the

Reduce() function as input.

Reduce() procedure: It is also written by the user. It takes as

input the intermediate key I produced by the Map() function

and the set of values for that key. These keys are merged

together which results in a smaller set of values. The reduce

workers can begin executing as soon as any map worker

finishes its execution and passes its output. This means that

the reduce workers don't have to wait for the completion of all

map workers. This helps in achieving better throughput [2,9].

3.2 Implementation
MapReduce can be implemented in a number of ways. The

right implementation depends upon the environment in which

it is to be used. For example, in some cases small shared-

memory machine may be needed while in other cases larger

collection of networked machines may be required. The most

common implementation uses hundreds of machines with at

least 2-4 GB of memory connected via Ethernet. These

machines are usually dual processors running Linux. The

commodity network has 1 gigabit/second bandwidth at

machine level. IDE disks are attached to each of the machines

to provide storage. The data on these disks is managed by the

distributed file system (HDFS). To ensure reliability and

availability of data, the data is replicated at least three times

[9].

3.3 Execution Overview
A job consists of a MapReduce program and input data set.

MapReduce consists of a software component called the Job

Client. The Job Client sends the job to the Job Tracker. The

Job Tracker then chooses the servers that will run that job.

The Job Tracker consults the NameNode to look up the

location of all the blocks that make up a file required by a job.

And then it instructs each of the servers to perform the user's

analysis.

1. The input data is divided into a set of M smaller parts. Each

sub part is of size 16-60 MB per split. These copies are then

distributed to different servers for processing.

2. There is a Master Node which is nothing but one of the

copies of the program. The rest of the nodes are the Worker

nodes. The Master node consists of the Job Tracker, Task

Tracker, NameNode and DataNode. The worker node consists

of Data Node and Task Tracker. The master nodes distribute

the data obtained from the client to the HDFS and assign the

tasks to Map-Reduce layer. It looks up for the idle worker

nodes and assigns the map task or reduce task to them.

3. The worker node that is given a map task reads the input

data and decomposes key pairs. These entity pairs are fed to

the Map function as input. They are also buffered in memory.

4. The system writes the buffered intermediate entity pairs to

local disk in some time intervals. The locations of these

buffered entity pairs on the local disk are passed to the master.

The master then forwards the location information to the

reduce workers.

5. The data written by the map workers is read by the reduce

workers from the local disks. And then it performs the sorting

of the intermediate entity pairs.

6. The reduce worker then sends the entity and its

intermediate pair to the Reduce function written by user.

7. When the entire map and reduce tasks have been finished,

the master node wakes up the user program and the output of

the map-reduce execution is handed over to the user [9].

4. SCHEDULING ISSUES IN

MAPREDUCE
Hadoop is a cluster of multiple machines. Managing the

execution of tasks on the multiple machines is the primary

aim of scheduling. There are three main factors that affect

scheduling decision such as locality, synchronization and

fairness constraints. These are discussed below:

1. Locality

Locality is an important factor which needs to be kept in mind

before designing a scheduling algorithm. Locality is nothing

but the distance between a node which has been assigned the

task and the node which contains the input data required by

the task. If the input data is closer to the computation node it

will be quickly available thereby increasing the throughput of

the system. In ideal case the data is available at the

computation node itself. This is called node locality. When

the data node and computation node are on the same rack, it is

called rack locality. Locality greatly affects the cost of data

transfer and the performance in a shared cluster environment

because of the limited bandwidth. Some schedulers assign the

task to a node which is not far away from the node containing

the input data [8].

2. Synchronization

The Map processes transfer the intermediate key pairs to the

reduce processes as input. This process is called

synchronization. Synchronization also affects the performance

http://www-01.ibm.com/software/data/infosphere/hadoop/mapreduce/

International Journal of Computer Applications (0975 – 8887)

Volume 119 – No.22, June 2015

29

of the system. The intermediate outputs are sent to the reduce

processes only after all the map processes have been

completed. Thus if any of the map process is running slow,

the other processes have to wait for its completion. This

increases the overall processing time thereby, causing a

degradation in the throughput. There may be a decrease in

throughput because of some other factors as well. Like a node

fails, the other nodes have to wait until the failed node

finishes its task again. Moreover in a heterogeneous

environment, every node has different execution time. The

network bandwidth may also be different. So, all the nodes do

not perform at the same rate. Thus some nodes may have to

wait for the other nodes to complete execution [8].

3. Fairness

There are a number of map and reduce tasks performing at the

same time. At times, there may be a situation where a map-

reduce job with heavy workload takes over the processing

units for a long time. The smaller jobs have to wait for a very

long period of time. Thus the short computation jobs do get a

fair share of cluster resources and their execution time is

increased. Synchronization also affects fairness. For example,

if a map process delays too long, the nodes remain idle as the

reduce jobs keep waiting for it to finish and this leads to the

starvation of other jobs [8].

5. SCHEDULING IN HADOOP
1. Default FIFO Scheduler

The default scheduler of Hadoop uses a FIFO queue. This

scheduler works irrespective of the heterogeneity of Hadoop

cluster components. A job is partitioned into smaller tasks.

These tasks are loaded into a queue. When the free slots

become available the tasks are assigned in FIFO order. Every

job uses the entire cluster. Thus the other jobs in the queue

have to wait for their turn. There is no concept of prioritizing

the jobs [1,13].

2. Fair Scheduler

The Facebook group developed the Fair Scheduler to manage

large amount of data with their Hadoop cluster. Fair

scheduling aims to give a fair share of the resources to every

user. In this the jobs are divided into pools and each pool is

allocated a fair share of the resources i.e., the Map and

Reduce slots. The jobs assigned in a pool can be scheduled

either in a FIFO order or by using fair sharing. This method

assigns resources to jobs in such a way that all the jobs at that

time get approximately the same share of resources. If at a

time there is only one job running then that job can use the

entire cluster resources. When new jobs are submitted the idle

slots are allocated to them in such a way that each job gets the

same CPU time to execute [1,13].

The Fair Scheduler also gives the provision of pre-emption. If

a pool does not receive the minimum number of resources for

some time, the tasks of other pools that are over capacity are

killed and the slots are given to those that are under capacity.

The most recently launched jobs are selected for killing from

the over allocated pools so that the wasted computations are

less. Preemption ensures that the jobs are not starved and that

the small jobs get to finish on time, unlike in FIFO

scheduling.

Moreover, priorities can also be assigned to certain jobs in

pools so that the jobs are scheduled according to their

priorities. Priorities are used to govern the fraction of the total

computation time that every job will get [1,13].

3. Capacity Scheduler

Capacity Scheduler was developed at 'Yahoo' [9]. It works

best for large Hadoop systems which have a large number of

resources which are to be fairly allocated among the users. In

the Capacity Scheduler the user jobs are submitted into

queues and each queue is allocated a fraction of the total

resource capacity. All the jobs assigned in a queue can use the

entire capacity of resources given to the queue. The free

capacity of a queue is shared by the other queues. When any

Map or Reduce slot becomes free, the queue which has the

least load is selected and the oldest remaining job is picked

for execution from this queue.

The capacity scheduler does not support preemption. The total

resource capacity is distributed among the queues even if it is

beyond their capacity. But if new queues request for the

resources, the scheduler waits for the jobs running on the

resources to finish and then allocates these resources to the

new queues. This helps in the efficient and elastic use of the

resources. Within a pool the jobs can also be prioritized i.e.,

the job with higher priority will be executed first. However,

this feature is turned off by default.

The capacity scheduler also supports resource based

scheduling where a task can explicitly specify the resources

(like RAM and virtual memory) required by it. The task is

then allocated to the node which has the required amount of

resources [1,13].

4. Deadline Constraint Scheduler

The Deadline Constraint Scheduler focuses on the deadlines

for scheduling the jobs. It has two main proposed

components:

a) Job execution cost model- It deals with the distribution of

data and handles different parameters like runtime of map and

reduce tasks, input data sizes, etc.

b) Constraint based scheduler- This component takes the user

deadlines as input and performs the scheduling.

The system works on the assumption that the reduce tasks

begin only after the execution of all map tasks is finished and

same amount of input data is given to each reduce node. The

proposed job execution cost model handles the scheduling of

the jobs. It schedules a job only if its deadlines can be met.

The scheduling is independent of the number of jobs

submitted to the cluster. When a new job is submitted to the

cluster its schedulability test is performed to see if it is

possible to finish the job within the specified deadline. The

number of free slots at that time is checked. The minimum

number of map and reduce tasks required in that job are also

estimated and if it is less than the available free slots, then the

job is enlisted for scheduling [13].

5. Resource Aware Scheduling

In Hadoop the Job Tracker is responsible for taking all the

scheduling decisions. It splits the input data and assigns the

work to the Task Trackers. The Task Trackers then execute

the tasks. The Job tracker takes care of the running jobs and

maintains a record of the tasks assigned to the Task Tracker

International Journal of Computer Applications (0975 – 8887)

Volume 119 – No.22, June 2015

30

and the state of each Task Tracker. Each Task Tracker has a

fixed number of computation slots allocated to it. The idea of

the Resource Aware Scheduling is that the Task Trackers

keep a track of the utilization of the resources (CPU

utilization, channel, I/O, etc). There are two Resource Aware

Scheduling mechanisms:

a) Dynamic Free Slot Advertisement- In this approach the

available number of free computation slots is estimated

dynamically. This helps in improving the throughput of the

system.

b) Free Slot Priorities/Filtering- In this approach the

maximum number of computation slots is configured. The

free Task Tracker slots are buffered in memory for some time

and then they are advertised according to the resource

availability. This means that the Task Tracker nodes which

have higher resource availability are advertised first for

scheduling. This helps in achieving higher throughput because

the tasks are not scheduled based on next available free slot

but on the basis of higher resource availability [13].

6. CONCLUSION
In order to handle multiple nodes in a shared cluster

environment an efficient scheduling algorithm is required.

The scheduling techniques that exist today provide a tradeoff

between the three issues of scheduling- locality, fairness and

synchronization. There is no scheduling that is capable of

resolving all three at the same time. If we try to resolve the

synchronization issue then it is not possible to achieve

fairness. The reduce operation begins after the completion of

all map tasks. So the reduce tasks need to sit idle until all map

tasks finish execution. This means that the resource utilization

is poor.

In a scenario where every task is given equal number of

resources, if the data is not present on the same server itself

(i.e., no locality) then the task has to fetch the data from the

other servers. This is an unnecessary delay caused which

increases the processing time and decreases the throughput.

The FIFO Scheduler is simple to implement and is efficient

for small systems. But if it is deployed on large systems it can

degrade the throughput and the performance of the system. It

is not applicable to the environment where the data is shared

among multiple users. In the Fair Scheduler the throughput is

good enough but the feature of data locality is hampered. The

Deadline Constraint Scheduler takes parameters like deadlines

as input. This improves the performance.

With the rise of Big Data, Hadoop has emerged as a new

research field. The Hadoop architecture and its schedulers are

evolving. Its new versions have been released with enhanced

features and functionalities. Many new scheduler

improvement ideas have been suggested by researchers and a

lot of further research work is being done in this area. The

Hadoop systems being deployed are user specific and hybrid

scheduling approaches have come up that are best suited to

the user's needs. The hybrid approaches combine the features

of two or more scheduling techniques to offer their combined

specialty. These approaches are developed with a motivation

of achieving best resource utilization and average

computation time. The development of a scheduler which is

capable of taking into account all aspects of scheduling and

heterogeneity levels is still awaited.

7. REFERENCES
[1] Heger, A.D. Hadoop Design, Architecture & MapReduce

Performance. DHTechnologies.

[2] Olson, M. 2010 Hadoop: Scalable, Flexible Data Storage

and Analysis. Cloudera, IQT Quarterly.

[3] Doug, L. 2001 3D Data Management: Controlling Data

Volume, Velocity and Variety. Meta Group, File 949.

[4] White, C. 2012 MapReduce and the Data Scientist. BI

Research.

[5] Einav,L. and Levin, J. 2013. The Data Revolution and

Economic Analysis. In Proceedings of the NBER

Innovation Policy and the Economy Conference,

Stanford University and NBER.

[6] White, T. Hadoop: The Definitive Guide. 3rd Edition,

O’Reilly.

[7] Zhiqiang ,M. L. G. The Limitation of MapReduce: A

Probing Case and a Lightweight Solution.

[8] Yoo, D. and Sim K. M. 2011. A comparative review of

Job Scheduling for MapReduce. In Proceedings of IEEE

CCIS2011.

[9] Dean, J. and Ghemawat, S. 2010. MapReduce:

Simplified Data Processing on Large Clusters. Google

Inc.

[10] Dean, J. and Ghemawat, S. 2010. MapReduce: A

Flexible Data Processing Tool. Communications of the

ACM.

[11] Big Data, http://en.wikipedia.org/wiki/Big_data.

[12] Apache Hadoop, http://hadoop.apache.org/.

[13] Rao, B. T. and Reddy. L.S.S. Survey on Improved

Scheduling in Hadoop MapReduce in Cloud

Environments. IJC A, 2011.

[14] Haoop, https://en.wikipedia.org/wiki/Apache_Hadoop.

IJCATM : www.ijcaonline.org

http://en.wikipedia.org/wiki/Big_data

