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ABSTRACT 

A computer simulation system, which is based-siphon Petri 

net for control of concurrent processes of the reusable 

resources, that is mainly aimed to provide guidelines for 

control and management engineering of flexible 

manufacturing systems (FMSs) is presented in this work. We 

present an important technique for the analysis of siphon Petri 

net (PN) based on structural analysis, control, and simulation 

of the reachability tree used PN-tool with MATLAB. We are 

representing the deadlock prevention problem, which can be 

solved using the concept of Petri nets based siphons. 

Structural deadlock prevention is presenting for supervisors a 

class of FMS in simulating the system behaviour and 

elementary siphons control rule's inference. We are recovering 

the satiation of the liveness system from the consequence of 

analysis net by adding control place (monitor). Our 

experiment, a few monitors is added to the net for every 

minimal siphon taken from the consequence of the siphon in 

order to be liveness (i.e. deadlock-freeness), proposing 

extensions of the structural analysis of Petri nets, where 

deadlocks are regarding to the unmarked siphons. The siphon 

is recognized in the structural analysis of PN and can be used 

to control deadlocks in resource systems modelled.  

Keywords 
Petri net, Structural analysis,  Minimal siphons, S3PR, 

Reachability analysis, FMSs, Petri Net-Toolbox V. 2.3 

 

1. INTRODUCTION 
   Recently a great amount of work has been devoted to the 

control and performance evaluation of flexible manufacturing 

systems (FMSs) is a perfectly automated multi-product 

running system that consists of a finite number of shared 

resources of each type (machines, pallets, automated loading 

and unloading of parts), which achieves optimal 

configuration. An automated guided vehicle system (AGVs) is 

moving parts between machines, robots, buffers, fixtures, and 

other automated elements allow unattended production of 

parts, which are linked together with a central computer 

system. An FMS allow a manufacturer to change quickly 

processes or operations to produce any product, at any time. 

Raw parts in an FMS can be processed concurrently, 

synchronization in the system with respect to time. A dynamic 

modelling tool should represent these aspects to analyze the 

conflicts and deadlock during the system execution. In 

addition to all these requirements, a dynamic modelling tool 

should support the system designer for system performance 

evaluation and assist control engineers to control and monitor 

the FMS. Petri nets has all these capabilities and hence be 

suitable for dynamic modelling tools for the various methods 

used for object models. 

    The deadlock problem can occur to the system when 

competitive processes lead to shared resources can cause 

deadlocks, where two or more processes need to access a 

resource during the course of their execution or more jobs 

keeps waiting indefinitely for the other jobs in the set to 

release resources [1, 2].  A deadlock occurs to an FMS when 

raw parts are blocked waiting for shared resources held by 

others that will never be granted. Petri Nets (PNs) constituted 

a good tool for the design and operation of many systems is 

very useful in the deadlock solution to an FMS. Deadlock 

prevention is considered to be one of the most effective 

methods of deadlock control, which is usually implemented 

by adding monitors for a net model to ensure that deadlocks 

never occur. A Special class of Petri net models siphon is 

defined that allows to capture resource allocation conditions 

used to synchronize processes that have to share a set of 

reusable system resources [8-13].  

     Petri nets have been excellent tool as one of the most 

powerful tools to describe and analyze the behavior of 

discrete event systems, including (FMS) [1, 3], because it can 

describe resource sharing, conflict, mutual exclusion, 

concurrency, synchronization among objects and performance 

analysis of FMS, and uncertainty successfully. Besides, due to 

its brief and normative presentation, Petri net has applied 

more broadly and developed furthermore, in modelling, 

analyzing, simulation and control of the manufacturing 

systems. In this paper, a deadlock prevention policy is 

proposed to a class of Petri nets called S3PR control of FMS. 

In addition, the structural analysis and reachability graph 

analysis is used for analysis and control of Petri nets. 

    While the new production requirement concentrated, is an 

encouraging approach to improve significantly the 

competitiveness of the manufacturing industry. The advanced 

manufacturing lead to an increasingly automated world that 

will continue to rely less on labor-intensive mechanical 

processes and more on sophisticated information-technology 

intensive processes that enable flexibility to developers. Thus, 

optimal control strategies are used a central computer can be 

controlled all machines, robots, transportation, and 

communication system. Petri net is an excellent tool to 

describe structural analysis, and control of the behavior of 

discrete event systems (DES), including FMS, such as 

concurrency, synchronization competitive processes, conflict, 

deadlock, and shared resources. For the structural object of 

Petri nets calls siphon is a mainly used in the development of 

Petri net theory of the control  of FMS modelling to  design of 

operation, control can be representation it.  

    The liveness of a Petri net is closely related to the existence 

of some special structural so-called siphons [3]. Also, liveness 

in Flexible Manufacturing Systems (FMS) modelled by 

ordinary Petri nets is closely related to emptiable siphons.  

Deadlock analysis and control techniques that are based on 

the structural theory of Petri nets aim at finding a relationship 

between liveness of the net and its structure. Deadlock 

analysis of Petri nets has been extensively investigated in the 

context of FMSs, and other technological applications 
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involving a resource system [1-4].  Petri nets have been 

widely used to model a variety of resources including FMS. 

   Abdul-Hussin (2015) [1, 2] presents a structural analysis of 

Petri nets, where siphon is a main utility used in the 

development of Petri net theory to control  of flexible 

manufacturing systems (FMSs) modelling, control and 

simulation, which has been exploited successfully for the 

design of supervisors of some supervisory control problems of 

FMS. In addition, the effective deadlock prevention policy of 

a special class of Petri nets namely S3PR and be shown the 

discriminating siphon can be solved deadlock prevention 

policy. In addition, Petri net models in the efficiency structure 

analysis and utilization of the FMSs when different policy can 

be implemented for the prevention of deadlock.  

  

  Abdul-Hussin (2014) [3, 4] proposed  two techniques when 

analysis Petri nets models for deadlock prevention in FMSs,  

structure analysis to find the elementary siphons, and 

reachability graph analysis was used Petri net with MATLAB. 

Siphons and traps are analysis structures which allow for 

some implications on the net's can be well controlled by 

adding control places and related arcs for strict minimal 

siphons (SMS) of its Petri net model  for each uncontrolled 

siphon in the net in order to become  deadlock-free stations in 

the system. The structured analysis techniques and behavior in 

Petri nets is investigating the relationship between the 

behavior and structures of the net. In particular structural, a 

computer simulation system, and the Petri Net Toolbox in 

MATLAB [5] environment, which is based on analytical 

models of concurrent processes of the reusable resources that 

are aimed mainly at providing for control of a system   is 

representative of   this work.  

       Banaszak and Abdul-Hussin (1988) [6] proposed the 

deadlocks avoidance methods with a Petri net approach to the 

automatic design of control programs which are aimed at 

supervision of concurrent, pipeline-like flowing processes of 

FMS. They formulated investigation of the sufficient 

condition for the design of a class of deadlock-free Petri net. 

Petri nets have been proven to be convenient and multi-level 

applicable tools for the specification as well as for the 

verification of complex distributed industrial control systems. 

They provide not only a language for the design process, but 

also a theory backing this process. They had applied for the 

course of the formal investigation into the conditions 

necessary for the design of a net class respecting such basic 

dynamic properties as the buffer overflows and deadlock 

avoidance. The main results obtained allow for automatic 

conversion to a process specification, via a Petri net model of 

a control flow, into the relevant control program. 

   Banaszak and Abdul-Hussin (1999) [7] presents an 

approach towards constructing a class of Place/ Transition 

Petri nets for modelling, simulation and control of processes 

occurring in the Flexible  Assembly Systems (FASs). The 

assembly and robots can perform their tasks asynchronously, 

some conflicts may occur. They present modelling of FASs by 

means of Petri nets has allowed the programmer to determine 

an algorithm transforming a given process specification into 

their simulation program. This program reflecting the 

structure of admissible controls involved in the processes 

accomplishment, can be able to serve as a control program for 

a system controller as well as a task-oriented package for the 

computer-assisted process planning of FASs. 

     The system of simple sequential processes with resources 

(S3PR) has attracted many scholars' attention since it was 

proposed by Ezpeleta et al. [8]. It can model a class of FMS in 

which a set of different types of products can be manufactured 

concurrently and each step in one manufacturing process only 

needs one resource such as a machine or robot. While  the 

competition among manufacturing processes of the limited 

resources, deadlocks can occur. One way policy, which is 

based on strict minimal siphons (SMSs), is proposed in [8] to 

prevent deadlocks. 

      

    Li and Zhou [9, 10] divide siphon into two kind’s 

elementary and dependent siphons. They can control all SMS 

by controlling elementary SMS only, leading to a simple 

supervisor, and this is needed control place smaller than [8]. 

In addition, they are used a linear integer programming (LIP) 

to test must be carried out to decide the liveness of the 

controlled system. For all the deadlock prevention policies 

afterwards monitor added to SMS to enforce liveness, which 

is resulting in a deadlock-free Petri Net. This new method 

requires a much smaller number of control places. Although 

this paper explores the ways to minimize the new additions of 

places, while achieving the same controlling purpose, the 

control policy is similar to [8]. In this paper, an elementary 

siphon concept is used to reduce the number of control places. 

This paper further presents a new siphon-based policy of 

deadlock prevention for improving the complex Petri nets and 

their controlled nets permissive problems. Moreover, they are 

proposing a method to compute some SMS in a S3PR based 

on resource circuits. In their approach, for each resource 

circuit in the net, they compute its related strict minimal 

siphon. Their method can reduce the computational 

complexity, but it only computes the SMS generated by 

resource circuits and hence we can’t compute all the SMS in a 

S3PR by their method. 

    Huang et al. (2002) [11] present an algorithm of deadlock 

prevention for the class Petri nets, where a new class of Petri 

nets called extended S3PR to (ES3PR) for modeling, 

manufacturing systems where only parts can interact with 

resources, and resources alone cannot interact with one 

another. They proposed method is an iterative approach by 

adding two kinds of control places called the ordinary control 

place and weighted control place to the original model can be 

to prevent siphoning from being unmarked.  

 

Organization. In section 2, briefly review preliminaries to 

Petri nets that are used in this paper. A method of computing 

all, the concept of elementary siphons in S3PR is developed in 

Section 3. Section 4, introduces the practical application to 

present an FMS example.  Finally, section 5 conclude’s this 

paper.   

 

2.  PRELIMINARIES  [1] 

 

Definitions 1.   

   A Petri net is a four-tuple  = (P, T, E, W), where P and T 

are a finite nonempty, and disjoint sets. P is the set of places, 

and T is the set of transitions. The set of E  (P × T )  (T × 

P) is the flow relation or (a set of directed arcs). W: (P x T)  

(T x P) Z+ is a weight function attached to the arcs, where 

Z+  (1, 2, 3, …, Z+).  A net  = (P, T, E, W) is ordinary, 

when weights W, of the arcs (W) = l, the net  is called 

ordinary Petri net.  The weights W: (P x T)  (T x P) Z is 

a mapping that assigns a weight to an arc: W(x, y) > 0 if (x, y) 

 E, and W(x, y) = 0 otherwise, where x, y  P  T and Z = 

{0, 1, 2, …}is a set of non-negative integers. A net is said to 

be ordinary if (x, y) E, W(x, y) = 1.     

 

 Definition 2.  A marking Petri net is  = (, M0) where,  is 

a Petri net, and M0: P{1, 2, …. , Z+} is the net initial 
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marking of  , assigned to each place p P, M0(p) tokens, 

and where (Z+ is a set of non-negative integers). Every P/T-

net is provided with an initial marking M0 that may change 

from results of the firing of a transition (or a marking Petri net 

is 5 – tuple:  = (P, T, E, W, M0). Moreover, PN will be 

described either by the pair  = (, M0), where  is a Petri 

net and M0 is initial marking, or by 5 – tuple:  = (P, T, E, W, 

M0). P is marked by M iff M(p) > 0. Tokens reside in the 

places of a Petri net. The number and position of tokens may 

change during the execution of a Petri net.  

 Definition 3.   A net is pure (self-loop free) if  (x, y)  (P x 

T)  (T x P), W(x, y) > 0 implies W(y, x) = 0. Incidence 

matrix [] of pure net  is a |P| × |T| integer matrix with [] 

(p, t) = W(t, p) −  W(p, t).   The pre-set (post-set) of a 

transition t is the set of all input (output) places of t, ●t = {p | 

Pre(p, t) > 0} and (t● ={p | Post(p, t) > 0}).  The preset (post-

set) of a place p is the set of all input (output) transitions of p,  
●p = {t  T, | E(t, p) ≠ 0}, and  (p● = {t  T, | E(p, t) ≠ 0}).  

Suppose x  X is arbitrary elements of the net , ●x = {y | ( y,  

x)  E} is called pre-set of x, and x● = {y | (x, y)  E} is 

called post-set of x. The usefulness of the symbols is a pre-set 

and a post-set of a place p  P or a transition t  T:  
●t = {p  P| W(p, t) > 0} is the set of input places of t.  t● = {p 

 P| W(p, t) > 0}is the set of output places of t. ●p ={p  P| 

W(p, t) > 0}is the set of input transitions of p. p● ={p  P| 

W(p, t) > 0} is the set of output transitions of p.  

 

  Definition 4.   At the  marking M, a transition t is enabled if  

(p  ●t), M(p) ≥  E(p, t). This fact is denoted as M[t. Firing 

an enabled transition t results in a new marking M1, which is 

obtained by removing E(p, t) tokens from each place p  ●t), 

and placing E(t, p' ) tokens in each place p'  ●t   moving the 

system state from M0 to M1. Repeating this process, it reaches 

M' by firing a sequence  ={t1, t2, … , tn } of transitions. M' is 

said to be reachable from M0; i. e, [M0[M' ]. The firing 

sequence is a marking (M1, M2 , M3, … , Mn+1)  such that: (i, 

1  i  n), and (Mi [ti Mi+1), We can also write its by 

[M1[Mn+1]. The set of all markings reachable from M0 is 

denoted by Reachability set R(M0). The function ’: TZ+ 

is the firing count vector of the firable sequence , i.e.  [t], 

presents the algebraic sum of all the occurrences of t  T in . 

If M0[M’, then we can write in vector form M’= M0+ C. , 

which is referred to as the linear state equation of the Petri 

net. 

Definition 5.   

A transition  t  T is enabled at M if and only if (iff): (p  

●t) (M(p) =1) and ( p  t●) ( M(p) = 0).  

 

Definition 6.  P-invariant (resp.  T-invariant) of a net  = (, 

M0)  is a non-negative row integer |P|-vector x (resp., |T|-

vector y)  satisfying   the  equation  xT. C = 0, (resp., C. yT = 

0), where C is the incidence matrix of .  A non-zero integer 

vector y ≠ 0, (resp. x ≠ 0). 

   

 Definition 7.  Let S is a non-empty sub-set of places. S   P 

is a siphon (trap) iff ●S ⊆ S● and trap (Q● ⊆ ●Q). A marked 

trap can never be emptied. A siphon is said to be minimal iff 

contain no other siphons as its proper sub-sets. A minimal 

siphon is strict if it contains no marked trap. A siphon is said 

to be controlled in an ordinary net system iff it can never be 

emptied. A siphon S is said to be invariant- controlled by P-

invariant I if IT . M0 > 0, and || I ||+  S.  

Example 1: Consider the Petri net of Fig. 1, show an example 

of a Petri net. The Petri net consists of the five places, and 

four transitions is shown in Fig. 1, which has the strict 

minimal siphons as: S1 = {p1, p4 }, S2 = {p2, p5}, and the two 

minimal trap as Q1= {p1, p2, p3}, Q2 ={p2, p5}. Siphons are 

very usefulness in the analysis structure and control of 

deadlocks in a Petri net for FMS. The Petri net model in Fig. 1 

is not live.  

 

   Fig. 1 shows a simple example of a Petri net. 

 

Definition 8. Let Petri net  PN = ( P, T, E, M0 ),  n = | P | row , 

m = | T | columns, be a PT-net.  A matrix A of size (m x n) is 

said to be the  incidence matrix of  PN if:  

 
 

  A pair C = (C  C─ ), Pre = C = [C
ij ]m x n  ,   and post = C─  

= [ C─
ij]m x n . We further define the pre  incidence matrix:, and 

the  post  incidence matrix : where (•t ={p|(p, t)  E }{t• ={p | 

(t, p)  E }) is called a set of the input (respectively output) 

places of the transition t.  We can be writing; C[i] = ( C [i], 

C─ [i]) for the i-th row of matrix  C as well as C[ i, j] for the 

j-th column in the i-th row of matrix C (resp. C─). The 

incidence matrix be C = (Cij) which is defined by:  

C(pi, tj) = post(pi, tj) − pre(pi, tj), is the change in  number of 

tokens in pi after firing tj once, for i = (1, 2, ... , n) and j = (1, 

2, ..., m). We can be calculated T-vector as follows: 

 

                 Figure 2. The incidence matrix of Fig. 1 

     Let us comeback to the definition (4) (linear state equation) 

of an ordinary Petri net a transition t of an ordinary. Petri net 

is enabled if and only if each of its input places contains at 

least one token. In the example represented in Fig. 1, the 

initial marking is M0 = [2, 0, 0, 0, 1]T and the following 

transitions can be fired starting from M0.  

    Having applied definition (4), state equation M = M0 + 

C.t , and taking the column vector of firing transition from 

the incidence matrix on Fig.  2. The marking can be evolves 

as:  M1 = [1,1,0,0,0]T after the firing of t1.  Such that M1 = M0 
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+ C. t1  = M0 [2,0,0,0,1]T + column t1 [-1,1,0,0,-1]T = 

[1,1,0,0,0] = M1. Each of these new markings represents a 

node of the reachability tree and used next-state at firing 

transition. 

    In sequel, the next marking can be find by add last marking 

to the column of transition shown in Fig. 2, where transition t2 

is enable. The new marking M2 = M1+ C.t2  = [1, 1, 0, 0, 0] + 

[0,-1,1, 0, 1] T
 =  [1,0,1,0,1] = M2. Then the firing t3, M4 = M2 

+ C.t3  = M2 [1,0,1,0,1]T + t3 [0,0,-1,1,0]T
 = [1, 0, 0, 1,1] = 

M4 in the right side in Fig. 3.  In the rest, of our mathematical 

computation of the net of Fig. 1, the reachability tree of Petri 

net is shown in Fig. 3. The reachability tree can show 

deadlock in Petri net.   In the Fig. 1, the deadlock is occurring 

at the marking: M5(t2) = [0, 0, 2, 0,1] in red colored. 

   

Fig. 3, the reachability tree of  Petri net Fig. 1. 

      

Fig.  4 control Petri net of Fig. 1. 

    The minimal siphon that is empty marking leads to the 

deadlock of the net.  To control the net, we can prevent forms 

being unmarked, a place V1 is added with ●V1 = {t2} and V1
● 

= {t1}, as shown in Fig. 4, in order to the control is a Petri net. 

Additional place V1, called control place in order to controlled 

to siphon (deadlock). We have predicted a deadlock with a 

look-ahead Petri net controller.  

 

Fig.  5. The coverability tree is live of Fig. 4, simulation of 

Petri net in Toolbox with MATLAB [5]. 

After adding control place in the net, we can see that the Petri 

net liveness, and have three location return to the initial 

marking can be see in Fig. 5.  The effecting controlled place 

in Petri net is shown in Fig. 3. It can verify that deadlock does 

not occur to this Petri net. 

 

Definition 9. A P-vector is a column vector I: P Z indexed 

by P, where Z is the set of integers. I is a P-invariant (place 

invariant) if and only if (iff) I ≠ 0 and  IT • [] = 0T
  holds. P-

invariant I is said to be a P-semiflow if every element of I is 

non-negative. ||I ||+ = {p  P |  I(p) ≠ 0} is called the support of 

I.  If  I  is a P-invariant of (, M0) then M  R(, M0): I
T • 

M  =  IT • M0. In an ordinary net, siphon S is controlled by P-

invariant I under M0 if and only if (IT • M0 > 0) and {p 
P | I(p) > 0}   S}. Such a siphon is called invariant-

controlled siphon. 

3. DEADLOCK PREVENT POLICY 
Deadlock prevention policy is dealing with a special class of 

Petri nets, which is a subclass of ordinary and conservative 

Petri nets called S³PR. In this the section, we introduced some 

definitions have been needed for our application for a 

deadlock prevention policy which can be kept the system in 

liveness for a class of Petri nets, that is called S3PR nets. 

 

3.1 The class of the S
3
PR  nets 

   The class of Petri nets investigated in this research is an 

S3PR that is first proposed in Ezpeleta et al. [8]. Before the 

representation of its formal definition is needing for our 

application. The following results are mainly from [8].  

 

Definition 10. A simple sequential process (S2P) is a Petri net 

 = (PA  {p0},T, E), where the following statements are 

true: (1) PA    is called a set of operation places;  

(2)  p0   PA is called the process idle place;  

(3) A net  is a strongly connected state  machine;  

(4)  Every circuit of  contains place p0. 

Definition 11. A system of simple sequential processes with 

resources (S3PR):    i

k

i 1  

),,( 0 ETPPP Riii   is defined in [8] as the union 

of a set of nets: ),,,}{( 0

iiRiii ETPPP   

sharing common places, where the following statements are 

true:  (1) 
0

iP is called the process idle places of net i .  The 

elements in 
i

AP    and 
i

RP   are called operation places and 

resource places respectively.  

(2) 
i

Ap ≠ ; 
i

Rp ≠ ;  
ip0 

i

Ap ; and (
i

Ap   {
ip0 }  

i

Rp = ;   p 
i

Ap  , t   p , 't  p ,  

 pr    
i

Rp , ●t  
i

Rp  =  
't   

i

Rp   = { pr }; 

i

rpr ,
i

Apr 
=  i

Apr , and   rr

,  )()( 0 i

Ri pp   i

Ri pp )( 0
;  

(3)  'i  is a strongly connected state machine, where  

'i  = ),},{( 0 ii

ii

A ETpp  , is the  resulting net after the 

places in
i

Rp  and related arcs are removed from i .  

(4) Every circuit of i'   contains place ;0

iP  
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(5) Any two i'  are composable when they share a set of  

common places. Every shared place must be a resource.  

(6) Transitions in )()( 00

ii pandp 
  are called source and  

sink transitions of the net   respectively.   

 Definition 12. Let ),,,( 0 ETPPP RAi   be an 

S3PR. An initial marking M0 is called an acceptable one if: 1) 

,0Pp  M0(p) ≥ 1; 2) ,APp  M0(p) = 0; and   3) 

,RPp  M0(p) ≥ 1. 

3.2 Elementary Siphons in Petri Nets  
The concept of elementary and dependent siphons is original 

work by Li et al. [9, 10] and [12]. They are developed the 

Petri nets theory of computation and powerful   mathematics. 

We have introduced the concept of elementary and dependent 

siphons as well as used in this paper.  

  Definition 13.  Let S ⊆ P be a subset of places of Petri net 

 = (P, T, F, W). P-vector S  is called the characteristic P-

vector of S  iff ∀p ∈ S, S  (p) = 1; otherwise s (p) = 0. 

Definition 14.  Let S   P is a subset of places of Petri net . 

S is characteristic T-Vector of S if and only if 

],[CT

SS   where C is incidence matrix of the net . 

Definition 15.  

Let  = (P, T, F, W) be a net with |P| = m, |T| = n, and k 

siphons, S1, S2, ... , Sk, m, n, k ∈ Z+. Let )(
ii SS    is be the 

characteristic P(T)-vector of siphon Si , where i ∈ {1, 2, ... , 

k}. We define []k x m = [S1 |S2 | … | Sk ]
T, and []k x n = []k 

x m x [C]m x n  = [S1 |S2 | … | Sk ]
T. Where []([]) is called 

the characteristic P(T)-vector matrix of the siphons in net .  

Definition 16.  

Let S , S , … , and S  ({, , …., } k) a linearly 

independent maximal set of matrix []. Then E = {S, S, . . . 

, S} is called a set of elementary siphons in net .  

 

Definition 17. Let S   E be a siphon in net . Then S is 

called a strongly dependent siphon if S = 
iEi

SS ia 
 

holds, where .0ia  

 

4. PETRI NET MODELLING OF FMS 
      A Flexible manufacturing cells have machined station 

show in Fig. 6 (a), where for machines (M1-M4) are served 

by three robotics (R1-R3), are used for moving parts between 

machines by Colom et al. [13]. This manufacturing is 

producing two product types, i.e. part-1 and part-2 (p1, and 

p2), is represented to show how to model and control of an 

FMS using methodologies Petri net presented throughout this 

paper.   

The production routing of J1 is part type P1: 

The production routing of J2 is part type P2: 

      

    In this cell, two types of parts must be processed according 

to their own production routings that is  depicted in Fig. 6 (b). 

These machines use different tools for their work (H1-H4). 

Robot R1 can load parts of conveyor I1 to M1 and M3 and 

unload parts from M3 to conveyor O2. Machines M1 and M3 

can use tools H1 and H2. Robot R2 can load and unload M1-

M4. Machines, M2 and M4 can use tools H3 and H4. Finally, 

robot R3 can unload M2 to load exit conveyor O1 and can 

load M4 from conveyor I2.   

   Parts of type 1 enter into the system via conveyor I1 and 

leave it via conveyor O1. They can be processed first in M1 or 

M3. M1 needs to take the tool H1 to accomplish its work and 

M3 needs to take the tools H1 and H2. After that, the parts are 

to be processed in M2 that needs to use tools H3 and H4 

(according to production routing J1). Parts of type 2 arrive to 

the system via conveyor I2 and leave it via conveyor O2. 

They first need to be processed in M4. This machine takes 

tools H3 and H4 to do the processing. Later, they are 

processed in M3 that needs to use tools H1 and H2 (according 

to production routing J2). Suppose that M1 and M4 can 

process two parts concurrently; M2 and M3 can manage three 

parts each and that the system  has two tools H1, one tool H2, 

three tools H3 and three H4. Each robot can hold a single part 

at a time. 

      In this cell, two types of parts must be processed 

according to their own production routings that are depicted in 

Fig. 1(b). 

 

 

Fig. 6. (a) The layout of an FMS 

 

 

Fig. 6. (b) Production routing. 
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A parts enter into the FMS through input/output buffers I1/O1 

and I2/O2. In the state, we consider that there are two part 

types J1–J2’s, can be produced in this system. 

    The Petri net model of the FMS is shown in Fig. 7, where 

are the pleases (p16, p21, p22, p23) denoted to (M1-M4) and 

places (p13, p17, p20) represented R1, R2, and R3 respectively. 

Places (p2  p7) represent the operation of R1, M2, R2 and M3 

respectively, for production routing part type-P1, while places 

(p8  p12) are represented the operation place of M3, R2 and 

M2 respectively for production routing part type-P2. 

   The Petri net is represented an S3PR by this place 

specification that uses a multi-set of resource at a production 

routing. The number of token in Fig. 7, M0 is an acceptable 

initial marking if M0(p1) = M0(p24) = 9, places  M0(p13) = 

M0(p17) = M0(p20) = 1, places M0(p14) = M0(p15) = M0(p18) = 

M0(p19) = M0(p21) = M0(p22) = M0(p23) = 2, places M0(p16) = 

3, and others are zero. The elements of this net are defined as 

the process idle places 
0P = {p1, p24}, the resource places: 

RP = {p13, p16 , p17, p20 – p23}. 

 

  

Figure 7, S3PR net model of the FMS 

 

     Simulation and structural analysis of the behavioral 

properties of Petri net model use the PN-tool with MATLAB 

[5], starts with coverability tree key. We can see the original 

net system  has (1155) reachable states with initial marking, 

among which there are 27- deadlock states. To solve the 

deadlock problem, one of the most extensively is used the 

Petri nets tool to design a controller to avoid deadlock. We 

can find out minimal siphons of Petri net shown in Fig. 7. The 

net system of FMS is an S3PR, and contains deadlocks. 

Analysis structured of PN, there are 54 strict minimal siphons 

as shown  below, among the set of siphons from  S1−S4 are 

elementary siphon, and S5−S54 are element dependent which 

are referred to the element dependent ones are marked by *.  

S1 = {p5, p11, p14, p17},  S2 = {p3, p4, p12, p13, p14}, 

S3 = {p7, p9, p19, p20},  S4 = {p5, p11, p16, p17}, 

S5
* = {p6, p10, p17, p18}, S6

* = {p7, p9, p18, p20}, 

S7
* = {p5, p11, p15, p17}, S8

*
 = {p6, p10, p17, p19},  

S9
* = {p7, p12, p13, p16, p17, p18, p20, p21},  

S10
* = {p7, p12, p13, p15, p17, p18, p20, p21},  

S11
* = {p7, p11, p16, p17, p18, p20},  

S12
* = {p7, p11, p16, p17, p19, p20},  

S13
* = {p7, p12, p13, p16, p17, p19, p20, p21},  

S14
* = {p7, p12, p13, p15, p17, p19, p20, p21}, 

S15
* = {p7, p11, p15, p17, p18, p20},  

S16
* = {p7, p11, p15, p17, p19, p20},  

S17
* = {p7, p12, p13, p14, p17, p19, p20}, 

S18 = {p7, p12, p13, p14, p17, p18, p20}, 

S19
* = {p7, p11, p14, p17, p19, p20},  

S20
* = {p7, p11, p14, p17, p18, p20}, 

S21
* = {p7, p10, p17, p19, p20},  

S22
* = {p7, p10, p17, p18, p20}, 

S23
* = {p6, p12, p13, p15, p17, p18, p21},  

S24
* = {p6, p12, p13, p16, p17, p18, p21}, 

S25
* = {p7, p12, p13, p16, p17, p20, p21, p22, p23}, 

S26
* = {p5, p12, p13, p15, p17, p21},  

S27
* = {p6, p12, p13, p15, p17, p19, p21},  

S28
* = {p6, p12, p13, p16, p17, p19, p21}, 

S29
* = {p7, p12, p13, p15, p17, p20, p21, p22, p23}, 

S30
* ={p5, p12, p13, p16, p17, p21},  

S31
* = {p6, p12, p13, p14, p17, p18},  

S32
* = {p6, p12, p13, p14, p17, p19},  

S33
* ={p7, p12, p13, p14, p17, p20, p22, p23},  

S34
* = {p5, p12, p13, p14, p17},  

S35
* = {p6, p11, p14, p17, p19},  

S36
* = {p6, p11, p14, p17, p18},  

S37
* = {p7, p11, p16, p17, p20, p22, p23}, 

S38
* = {p7, p11, p15, p17, p20, p22, p23},  

S39
* = {p7, p11, p14, p17, p20, p22, p23}, 

S40
* = {p7, p10, p17, p20, p22, p23},   

S41
* = {p6, p11, p15, p17, p19},   

S42
* = {p6, p11, p16, p17, p19},  

S43
* = {p6, p11, p16, p17, p18},   

S44
* = {p6, p11, p15, p17, p18},  

S45
* = {p3, p4, p5, p11, p15, p21},  

S46
* = {p3, p4, p5, p11, p14, p15},  

S47
* = {p3, p4, p5, p11, p16, p21}, 

S48
* = {p3, p4, p5, p11, p14, p16},   

S49
* = {p3, p4, p5, p11, p12, p15, p21},  

S50
* = {p3, p4, p5, p11, p12, p14, p15},  

S51
* = {p3, p4, p5, p11, p12, p16, p21},  

S52
* = {p3, p4, p5, p11, p12, p14, p16},  

S53
* = {p3, p4, p5, p12, p13, p14},  

S54
* = {p2, p3, p4, p5, p12, p13, p16}. 

 

  We have choices four the strict minimal siphons S1, S2, S3, 

and S4, which are depending on the elementary theorem 

siphons in [9, 10] as:   

         S1 = {p5, p11, p14, p17},  S2 = {p3, p4, p12, p13, p14}, 

         S3 = {p7, p9, p19, p20},  S4 = {p5, p11, p16, p17}. 

 

   According to elementary theorem [10], we can obtain that 

the p-vector such as: 

S1 = (0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0,0,0)T , 

S2 = (0,0,1,1,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0)T , 

S3 = (0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0)T ,  

S4=  (0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,0)T .  

 

    The T-vector matrix can be constructed in [η] shown as 

follows:  

S1 = − t1 + t4 + t5 − t9  + t13 , 

S2 = − t1 + t7 − t9 + t12,  

S3 = − t1 + t2 + t3 − t9 + t11.   
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The T-vector matrix can be constructed in [η] shown as 

follows: 

 

    Later, we calculated, the linearly independent vectors can 

be write as:  

S4 = S1 +S2 = − 2t1 + t4 + t5 + t7 − 2t9 + t12 + t13, and S5 = 

S1 +S3 = − 2t1 + t2 + t3 + t4 + t5 − 2t9 + t11 + t13.  

 

 
Fig. 8.  Additional place VS1, VS2, and VS3, called control 

place in order to controlled siphon. 

 

 
 

Fig. 9 shows reachability tree of Fig. 7, with two monitors 

VS1, and VS2. 

    At the first, we can add two control places VS1 and VS2 to 

Fig. 8. The reachability tree is live and has 49 reachable states 

with initial marking shown in Fig. 8, and Fig. 9. For the 

purposed to reduce the reachability tree more, we are the 

choice (S4) as the third control place (monitor), because 

when added (S3), the net does not affect as shown in Fig. 8. 

Adding control place (S4) such as VS3 the reachability tree is 

live and has 21 reachable states as shown in Fig. 10.  

    Having resulting a P-invariant form the incidence matrix of 

Figure 8. A control place VS1 is added such that: I1 = {p2 + p3 

+ p4 + p8 + p9 + p10 + p11 + VS1} is a p- invariant  of (1, M1). 

Therefore, I1 ● M1 = 0 by definition 9, the computation of 

places control that is:  

[(1]( VS1, t) = − t1 + t4 + t5 − t9 + t13,    Similarly, I2 = {p2 + 

p3 + p4 + p5 +p6 + p8 + p9 + p10 + VS2} is a p-invariant  of (1, 

M1). Therefore, I2 ● M1 = 0, by the computation of places 

control that is:  [(1]( VS2, t)  = − t1 + t7 − t9 + t12,  Similarly,  

I3 = {2p2 + 2p3 + 2p4 + p5 + p6 + 2p8 + 2p9 + 2p10 + p11+ VS3} 

is a p-invariant  of (1, M1). Therefore, I3 ● M1 = 0, by the 

computation of places control that is:  

[(1]( VS3, t) = − 2t1 + t4 + t5 + t7 − 2t9 + t12 + t13. 

 

 
Fig. 10  shows reachability tree of Fig. 8, with three monitors 

VS1VS3. 

 Definition 18. Siphon S in a net system (, M0) is invariant 

controlled  by  P-invariant I under M0 iff  I
T 

• M0 > 0, and p 

P\S, I(p) ≤ 0, or equivalently, IT 
• M0 > 0  and that || I ||+   

S,  [10].  Such a siphon is  also called an invariant-controlled 

one. If S is controlled by P-invariant I under M0, S cannot be 

emptied, i.e., M  R(, M0), S is marked under M. 

      Let I4 is a P-invariant can be found from Fig. 8, and 

implementation manual. For instance siphon S1 = {p5, p11, p14, 

p17} can be found on p-invariant from Fig. 8.  

I4 ={–1, 0, 1, 0, 0, –1, –1, 0, 0, 1, 1, –1, 0, 1, 0, –1, 1, 0, 0, 0, 

0, 0, 0, –1, –1VS1}.  We have I4 • [ ] = 0T, {p | I4(p)  0}  

S1, and  I4 • M0 = {M0(p5) + M0(p11) + M0(p14) + M0(p17) – 

M0(p1) + M0(p3) – M0(p5) – M0(p6) – M0(p7) + M0(p10) – 

M0(p12) + M0(p16) – M0(p24)  – M0 (VS1)} = 1 0. It is mean:  

 I4 = {p5 + p11 + p14 + p17 – p1 + p3 – p5 – p6 – p7 + p10 – p12 – 

p16 – p24 –VS1}. Then S1 is invariant controlled siphon and it 

can never be emptied. Similarly, we can compute P-invariant 

of the siphon S2 = {p3, p4, p12, p13, p14} is a siphon of the net. 

Siphon S2 is controlling  by P-invariant: I5 ={-1, 1, 1, 1, 0, 0, –

1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, –1, –1VS2}. We 

have I5 • [ ] = 0T, {p | I5(p)  0}  S2, and  I5 • M0 = {M0(p3) 

+ M0(p4) + M0(p12) + M0(p13) + M0(p14) – M0(p1) + M0(p2) + 

M0(p7) – M0(p12)  – M0(p24)  – M0 (VS2)} = 1 0. It is mean:  

I5 = {(p3 + p4+ p12+ p13+ p14) – p1 + p2 + p7 – p12 – p24 –VS2}. 
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Then S2 is invariant controlled siphon and it can never be 

emptied. Therefore, both S1 and S2 are invariant controlled 

siphons. This work  has been done with a Laptop computer, 

Intel(R) Core(TM) i5-3337U  CPU @ 1.80GHz, with 4Gb of 

RAM, with Windows 7 Ultimate.  

 

       In addition, there are eleven resources in this system 

leading to eleven minimal P-invariants, we would like 

mention as follow: 

I13 =  p2 + p12 + p13, where M0(p13) =1,  

I14 =  p3 + p4 + p11 + p14, where M0(p14) = 2, 

I15 =  p4 + p11 + p15 , where M0(p15) = 2,  

I16 =  p4 + p11 + p16 , M0(p16) = 3 ,  

I17 =  p5 + p10 + p17 , M0(p17) = 1 ,  

I18 =  p6 + p9 + p18 , M0(p18) = 2 ,  

I19 =  p6 + p9 + p19 , M0(p19) = 2 ,  

I20 =  p7 + p8 + p20 , M0(p20 ) = 1 ,  

I21 =  p3 + p21 ,  M0(p21) = 2 ,  

I22 =  p6 + p22 ,  M0(p22) = 2 ,  

I23 =  p9 + p23 ,  M0(p23) = 2 . 

 

5. CONCLUSIONS 
This paper presents a Petri net-based siphon for designing and 

implementing the modular supervisor for   control FMSs. A 

deadlock prevention method of a class of FMS, where the 

unmarked siphons in their Petri net models cause the 

deadlocks is presented in this work. The FMS are modelled 

using S3PR, which is a special class of Petri nets. We propose 

to allocate the tokens in the control places reasonably to 

guarantee with absence of deadlock states, and monitor added 

is to each elementary siphon to make ensure that all 

elementary siphons in the S3PR net are invariant-controlled. 

The siphon is successfully controlled and the resultant net 

system is live (i.e. deadlock-free). An efficient method to 

compute all the resource system of FMS represented in the 

Petri net model, which is shown in the experimental results, 

used to test Petri net toolbox in [5] MATLAB. The minimal 

siphons in the class of  S3PR nets have become a conceptual 

and practical central tools to deal with deadlocks caused by 

the sharing of resources in flexible manufacturing systems. 

Future work should be included extending this method of 

more general classes of Petri nets.   
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