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ABSTRACT 

Understanding community structure helps to interpret the role 

of actors in a social network. Actor has close ties to actors 

within a community than actors outside of its community. 

Community structure reveals important information such as 

central members in communities and bridges members who 

connect communities. Clustering algorithms like hierarchical 

clustering, affinity propagation, modularity and spectral graph 

clustering had been applied in social network clustering to 

identify community structures in it. This study proposes a 

novel method for distance measurement between nodes and 

centroids. Distance is measured based on the shortest path 

length and number of common nearest neighbors with one 

path length. This measure, "Proportional closeness" is used to 

assign nodes to the closest centroid. A fuzzy system is also 

applied to find the closest centroid to a node when similar 

proportional closeness values are present for multiple 

centroids. The method has been applied to two artificial 

networks and one real world network data to test its accuracy 

on membership identification. The results revealed that the 

method successfully assigns members to its nearest centroid 

and leave neutral members aside without assigning to any 

centroid. 
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1. INTRODUCTION 
This study is focused on membership of entities in sub-

communities of networks. In social networks, nodes represent 

actors and edges represent interaction between them [1]. 

Edges can be directed or undirected, depending on the 

representation of the interaction among actors [1]. For 

example, a network displays telephone calls between actors, 

directed edges show who initiate the calls. On the other hand, 

an undirected edge in a social media network represents 

simply a friendship between two actors. Though self-loops are 

also possible in graphs and networks, they are seldom 

considered in social networks. 

The network structure shows sub communities inside the 

network and their interactions. In general, it can be observed 

that link densities are comparatively high within the groups 

than in-between the groups [2].The variation in link densities 

in the network shows the varied interests of individual actors 

and communities that they are part of. Different community 

structures can be observed in sparse networks and it is very 

interesting to study them compared to dense networks. For 

example, in a fully connected network each actor has direct 

edges to all others in the network. Therefore, every actor plays 

a similar role in the network. Some cases, actors in the 

network may be crucial to the information flow of the 

network. For example, information flow in a bowtie network 

with seven actors as shown in Figure 1 and it strictly depends 

on the participation of actor 4. Though symmetric networks 

like bowtie or hundred percent identical actors are not 

commonly available in real word [3]. The purpose of this 

study is to find identical behaviours of actors and find the 

actors who fall within the boundaries of communities in a 

network. 

1.1 Related Work 
Graph clustering algorithms are applied to find communities 

in many social network analysis studies. Hierarchical 

clustering [4, 5], affinity propagation [6] and spectral graph 

clustering [7] are popular methods for clustering of networks. 

Modularity of a network, proposed by Newman and Girvan 

[8] finds optimal community structure for networks based on 

the network topology. The model compares the edge 

placement with the null model of the graph to find the 

modularity. Then the network is partitioned into communities 

as it maximizes the modularity. Modularity also contains 

similar properties of spectral graph clustering as rows and 

columns of the modularity matrix and the Laplacian matrix 

sum up to zero [2]. Hierarchical clustering [4, 5] requires the 

measuring of similarity between nodes presented in the 

network. Hierarchical agglomerative clustering method was 

applied instead of divisive clustering method, where each 

node is a cluster at the beginning and it is merged till all 

become one large cluster. Number of clusters can be 
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determined by choosing a cut point in the dendrogram. 

However, this algorithm doesn’t provide good results on real 

world network as presented by Newman in [9] for Zachary’s 

karate club network [10]. Community detection by edge 

removal requires to find edge betweenness and remove the 

edge with the highest betweenness value. However, 

betweenness need to be recalculated because once an edge is 

removed, the network topology is changed [9]. Clustering by 

message passing proposed by Frey and Dueck [6] which also 

requires a similarity measurement between nodes in the 

network and an additional preference value for each node. The 

preference value has a direct effect on the number of clusters 

returned by the algorithm.  

One of the limitations of the methods mentioned above is the 

failure to leave neutral members in network without assigning 

them to a centroid. Therefore, a novel method is required to 

assign nodes to central members while leaving neutral 

members intact. 

 

Figure 1: Bowtie network with equally weighted edges 

partitioned into two communities (a) community structure 

given by spectral graph clustering (b) community 

structure identified with the maximum modularity 

2. METHOD PROPOSED 
To describe the problem, three graph partitioning algorithms 

were applied on a bowtie network with seven nodes and 

equally weighted eight edges to identify possible community 

structures. To demonstrate the above limitation of the existing 

clustering algorithms; modularity, spectral graph clustering, 

hierarchical clustering, community detection by edge 

removing were applied to artificial networks shown in Figure 

1 and Figure 2. Modularity method [2] founds first four nodes 

into one community and the rest to the other community while 

spectral graph clustering [7] portioned the graph’s first three 

nodes into one and the rest to the other. Community detection 

by removing edges [8] also requires to choose which edge 

should be removed since both 3-4 and 4-5 edges received the 

similar values for edge betweenness, which received result 

similar to modularity of spectral graph clustering based on the 

selection of the edge to remove.  Complete link hierarchical 

clustering algorithms produced results similar to the spectral 

graph clustering algorithm, partitioning nodes 1 to 3 and 

nodes 4 to 7 into separate communities. The distances for 

hierarchical clustering was computed by taking the reciprocal 

of shortest path length among edges. Affinity propagation also 

clustered node 4 with nodes 1, 2 and 3 while nodes 5, 6 and 7 

were selected to other cluster. 

It was also found that with weighted edges, nodes are 

attracted to the community with the highest weight. Therefore, 

it is required to find a way to interpret the role of actors who 

has symmetric interactions with communities.  

To address the inability in methods mentioned above, in 

finding neutral members in a network, additional feature 

“proportional closeness” is extracted from the network in 

addition to the basic centrality measures: degree; betweenness 

and closeness [1]. Given a network, it is required to find 

central members of the network and calculate the distance 

from each central member to every node of the network. Then 

this will provide a measure indicating how close each node to 

the central members of the network. Eigenvector centrality 

measure has been used to find the centrality of each node in 

the network. The threshold has been determined by the 

maximum slope of the sorted eigenvector centrality measures 

to separate most of the central members of the network. For 

the Zachary’s karate club network [10], nodes 1, 3, 33 and 34 

have been found as the most central members of the network. 

For the bowtie network, nodes 3 and 5 have been found as the 

central members. To find the strength of the proposed method, 

an artificial network has been created by adding three more 

nodes to the fourth node in bowtie network (Figure 2). 

Shortest path length of each node from central nodes, 

betweenness, closeness, degree and eccentricity have been 

extracted from the network as features for the model. Then a 

new proportional closeness value has been calculated to each 

centroid by the following model. 

 

Figure 2: Artificial network created by adding three more 

nodes to fourth node in bowtie network 

2.1 Proportional Closeness 
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Table 1. Symbols and notations 

Symbol Description 

   Degree of node n 

        
 

 

Number of common nearest neighbors for 

node n and centroid i with 1 path length 

away 

c Number of centroids 

  
   

 
Shortest path length from node n to 

centroid i 

  
   

 
Proportional closeness from node n to 

centroid i 
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Equation 1 measure the proportional closeness and Table 1 

describes symbols involved in the equation. The proportional 

distance for node n to centroid i is calculated by considering 

the normalized shortest path length to each centroid and 

number of nearest neighbours common to both node n and 

centroids which are in one path length distance. When 

considering the shortest path length (where is the shortest path 

length from node n to centroid i), to remove the effect of other 

centroids j, the average shortest path length of all j from (c is 

number of centroids) the shortest path length to the centroid i 

is subtracted. Then we consider the number of common 

neighbours with one path length away (where is count of 

common nearest neighbours l to both i and n, which are one 

path length away) from both actor and the centroid. Similarly 

we remove the effect of common neighbours with actor to 

other centroids by taking average of counts. To remove the 

effect of degree to the count, it was divided by the degree. 

When number of nearest neighbors for a centroid and a node 

is higher compared to other centroids that implies the 

particular node is close to the particular centroid compared to 

others. Therefore, count of nearest neighbors positively effect 

to the proportional closeness. However, shortest path length is 

negatively affected since a node is more close to a centroid it 

has a shorter length compared to length to other centroids. 

Then n is assigned to centroid i for maximum value of 

proportional closeness.  

2.2 Fuzzy Closeness 
“Proportional closeness” measurement sometimes generates 

equal values for the same node for several centroids. This 

raises an ambiguity in assigning the corresponding node into a 

particular centroid. To overcome this, a fuzzy model was 

generated using the Matlab fuzzy logic toolbox [11], in which 

“Proportional closeness” and the centrality of the 

corresponding centroid are taken as the input parameters. The 

model then generates a generalized value for the closeness as 

marks (fuzzy closeness) as in Equation 2. 

                
                            
 

 

        
 

 

    

(2) 
  

 

Figure 3: The model takes two inputs; D (proportional 

closeness) and centrality measurement. The output 

generates a fuzzy closeness value as marks. The model 

uses Mamdani fuzzy inference to generate the output. 

Figure 3 shows the developed fuzzy model in which Mamdani 

[12] method is used as the fuzzy inference technique. Input 

“D” is modelled as a linear membership function while 

centrality is modelled as a “Sigmoid right” membership 

function. The output is modelled as a linear membership 

function. 

 

Figure 4: Fuzzy rule evaluation by the model. The instance 

shows x1 = 0.3, y1 = 0.6 

The one and only one rule of the rule base basically provides 

the “proportional closeness”, a biasness towards the centroids 

with higher centrality values as a “fuzzy closeness” 

measurement. Figure 4 shows the rule evaluation of the fuzzy 

model. 

Finally the fuzzy closeness value is obtained using the above 

equation which is applied on the output shape obtained from 

the alpha cut as shown in Fig. 4. After modeling the inference 

engine of the developed fuzzy model, the rule surface shown 

in Figure 5 is generated. The rule surface provides a clear idea 

of how the output value has varied against the two inputs: 
centrality and d (proportional closeness). It is very clear that 

when the two inputs have values close to 1 the effect of fuzzy 

closeness also comes close to one, letting the corresponding 

node to be biased towards the centroid in consideration. 

 

Figure 5: This is a two dimensional view of the rule 

surface represents the variation of the output value 

against the two inputs in which the output value varies 

between 0 to 1 from dark blue to dark brown. 

3. RESULTS AND DISCUSSION 
Three networks bowtie (Figure 1), extended bowtie (Figure 2) 

and Zachary’s karate club have been analysed using the 

Matlab Tools for Network Analysis package [13] in Octave 

[14]. For the bowtie network, node 4 has no attraction to 

either of two centroids. For the network in Fig. 2, four central 

members-node 3, 4, 5 and 8 have been identified by the 

eigenvector centrality. When the  centroid 4 was isolated,  all 
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other centroids received two directly connected nodes who are 

not centroids. Out of curiosity we test the network with only 

three centroids by removing the centroid 4. All three centroids 

attracted the same node sets as in test with four centroids 

except node 4 has no attraction to either of centroids. The 

karate club network has been analysed separately with four 

centroids and two centroids. When only actors 1 and 34 are 

considered for centroid all other actors correctly attracted to 

them as depicted in Figure 6. More comparative results are 

displayed in Table 2 including original faction membership 

and subgroup membership of each node returned by the model 

proposed in the paper. When all four actors: 1, 3, 33 and 34 

are considered as centroids, actor 3 was isolated from actor 1 

and other actors previously attracted to centroid 1. Actor 9 

was attracted to centroid 33 while rest of the actors resided 

with centroid 34. This method returns the same value for 

proportional closeness to both centroids for node 4, in the 

bowtie network mentioned in earlier. With the fuzzy model 

the result of similar values is omitted. For example, the 

“Proportional Closeness” for the 19th instance (node) 

generated are equal to 0.3559, 0.49152, 0.4915 and 0.4915 for 

the centroids 1, 3, 33 and 34 respectively. Therefore, there 

was a problem of assigning the 19th node in to one of the four 

centroids. With the fuzzy model it generates the values 

0.5123, 0.5223, 0.5218 and 0.5258 for the centroids 1, 3, 33 

and 34 respectively.  From the fuzzy closeness values, it is 

clear that the 19th node should be close to the centroid 34 in 

which the highest closeness value has resulted.  

 

Figure 6: Zachary's karate club network. Node sizes are 

varied according to the degree of node. Dashed line 

displays the sub-groups found by proportional closeness of 

nodes to centroids 1 and 34 

This work assumed that the networks is undirected and there 

are no self-loops. Further for large sparse networks, 

eigenvector centrality doesn’t provide acceptable values to 

find centroids. Therefore, more general method is required to 

find central members prior to membership identification. 

Table 2. Faction membership of karate club and 

subgroup membership returned from the model 

proposed in the paper 

Faction membership from 

reference [10] 

Results returned from the 

method proposed in the 

paper for centroids 1 and 

34 

Mr. Hi John Node 1 Node 34 

1 9 1 9 

2 10 2 10 

3 15 3 15 

4 16 4 16 

5 19 5 19 

6 21 6 21 

7 23 7 23 

8 24 8 24 

11 25 11 25 

12 26 12 26 

13 27 13 27 

14 28 14 28 

17 29 17 29 

18 30 18 30 

20 31 20 31 

22 32 22 32 

 33  33 

 34  34 

 

4. CONCLUSION 
The method proposed in this study clearly identifies 

memberships of nodes to central member based on the 

interactions presented in the network. For the karate club 

network, the method correctly identified members attracted to 

two central members (manager and instructor) after the 

separation of the club, as presented in reference [10]. Fuzzy 

closeness measurement generated a generalized value for the 

closeness of a particular node to a particular centroid. The 

computational complexity of the method is depends on 

number of nodes in the network (n) and number of centroids 

(m) input to the algorithm resulting       time complexity. 

Comparatively this is a very low value compare to algorithms 

run with time complexity of square of number of nodes and 

number of iterations to converge times the square of number 

of nodes. When a node is symmetric it shows no closeness to 

any centroid, which is the prime objective of this study.  

The model accounts common nearest neighbours with only 

one path length. However for large networks with long 

network diameter, members may have more than one 

transitive nodes between them and the centroid. Therefore, as 

a future direction of the study, common nearest neighbours 

with more than one path length can also be considered in 

calculating the proportional distance. 
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