
International Journal of Computer Applications (0975 – 8887)

Volume 119 – No.2, June 2015

19

A Vertical Partitioning Algorithm for Distributed

Object Oriented Databases

Nishant Gaurav
Manipal University, Manipal

Udupi, Karnataka

ABSTRACT

Object Oriented Databases (OODB) is becoming popular day

by day and being used in a large number of application

domains. In order to support homogeneous distributed

OODBs a clear understanding of partitioning of class and how

to do it by using different partitioning algorithms is needed. In

this paper an algorithm for vertical fragmentation in a model

consisting of class and comprising of complex attributes and

complex methods is presented. The approach for

fragmentation is top-down and entity of fragmentation is

class. The algorithm presented here is an enhancement to the

previous work of vertical partitioning algorithms in OODB

management systems. The algorithm takes input as the class

to be partitioned into fragments or groups, generates Method

Usage Matrix as its first step from the methods and queries

provided. It then generates Method Affinity matrix which is

constructed using above matrix and based on method affinity

values of two methods. Two new factors are introduced

Method Linking Factor and Group Linking Factor which

provides more control on deciding groups and increasing the

flexibility of the algorithm.

General Terms

Object Oriented Databases, Class, Methods, and Attributes.

Keywords

Vertical Partitioning, Distributed Object Oriented Database

Management Systems, Method Affinity, Method Usage,

Complex Methods, Complex Attributes.

1. INTRODUCTION

Distributed Database systems (DDBS) technology is union of

what appear to be diametrically opposed approaches to data

processing: database system and computer networks

technologies. DDBs are a collection of multiple logically

related databases distributed over a computer network. A

distributed database management systems is then defined as

the software system that permits the management of the

distributed databases and makes the distribution transparent to

the users [1].

Two main strategies that have been identified for designing

distributed databases are the top-down approach and bottom

up approach [2]. The top-down design approach takes a global

conceptual schema (GCS) describing the global databases

entities and their relationships, and combines it with access

pattern information to produce a set of local conceptual

schemas (LCS) describing database entities at each local site.

Top-down approach for designing OODB is more suitable for

tightly integrated homogeneous distributed database

management systems while bottom-up approach is more

suited to multiple databases.

A fragmentation is a process which breaks a class into a set of

smaller classes called fragments. A class can be fragmented

vertically or horizontally depending upon the requirements

and nature of schema. The vertical class fragment is defined

as the non-empty proper subsets of the attributes; while the

horizontal class fragments are non-empty proper subsets of

objects. The issues involved in distributed design are

presented in [3]. Two types of methods are identified: simple

and complex methods. A method that does not call/invoke any

other methods is called a simple method otherwise it is a

complex method. O(M) is the set of objects accessed by the

method M and A(M) is the set of attributes of these objects.

These sets are further group into sets of objects and attributes

based on classes to which they belong. This generates the set

pairs of objects and attributes as (Oi, Aj) accessed from a class

Ci by a method.

In this paper, top-down approach for fragmentation is

followed and OODBs has been designed by distributing the

entities over various sites. The presented work aims at

dividing a class into fragments or groups which are later

distributed over sites for better performance. The paper

presents an algorithm for vertically partitioning a class

consisting of complex attributes and complex methods. Rest

of the paper is as follows: Section 2 describes the work that

has been in distributed OODBs and Relational Database

Management Systems (RDBMS). Section 3 provides the

algorithm for Vertical Partitioning along with its objectives

and correctness criteria. Section 4 provides an example of the

algorithm. A class has been partitioned using the algorithm

and different steps of the algorithm are performed to provide a

better illustration. Section 5 gives the conclusion and future

work.

2. RELATED WORK

Most of the work has been concentrated on partitioning of

Relational Database Systems (RDBS). A little work has been

done on partitioning OODBs.

2.1 Relational Databases

The problem of vertical partitioning is to determine a relation

into fragments/partitions in order to increase the performance

of the database systems. Selecting an optimal partition is a

difficult problem: a relation with m attributes can be parted in

B(m) different ways, where B(m) is the Bell number (for large

m, B(m) approaches mm). Thus, heuristic approaches are

necessary to determine the near optimal partition.

Hoffer and Severance [4] measures the affinity between pair

of attributes and try to cluster the attributes according to pair

wise affinity by using the Bond Energy Algorithm developed

in [5]. Navathe extended the results of Hoffer and Severance

International Journal of Computer Applications (0975 – 8887)

Volume 119 – No.2, June 2015

20

and proposed a heuristic approach for vertical partitioning.

They use the given input parameters in the form of an

attribute usage matrix and transactions, to construct the

attribute affinity matrix on which clustering is performed [6].

After clustering, iterative binary partitioning is attempted, first

with an empirical objective function. The process is continued

until no further partitioning results. During the second phase,

the fragments can be further refined by incorporating

estimated cost factors weighted on the basis of the type of

problem being solved.

Navathe and Ra have developed a new algorithm based on a

graphical technique [7]. This algorithm starts from the

attribute affinity matrix by considering it as a complete graph

called the “affinity graph” in which an edge value represents

the affinity between the two attributes and then forms a

linearly connected spanning tree. The algorithm generates all

meaningful fragments in one iteration by considering a cycle

as a fragment. “Affinity cycles” are formed in the tree by

including the edges of the high affinity value around the nodes

and growing these cycles as large as possible. After the cycles

are formed, partitions are easily generated by cutting the cycle

apart along cut-edges.

2.2 Object Oriented Databases

Three major partitioning schemes for object oriented

databases, namely vertical class partitioning, path partitioning

and horizontal class partitioning along with their

completeness and reconstruction properties have been

presented [8]. Their approach in developing this partitioning

scheme is to assure that all the resultant class fragments can

be represented and implemented as classes in an OODBMS.

This resultant class fragments can be either locally accessed

or globally accessed.

Bellatreche and Simonet proposed an algorithm which is

adaptation of the graphical technique presented by Navathe

and Ra for the relational model [9]. The algorithm is an

extension of the graphical algorithm suggested by [7] to a

model consisting of complex attributes and complex methods,

and the domain of an attribute being an arbitrary class the

definition of a class results in an directed graph (S, E) where S

represents the graph and E represents the edges which

corresponds to the relationship between two classes. These

edges are nothing but method affinity of two methods mi and

mj which is calculated as the total number of accesses of the

queries referencing both methods mi and mj.. These method

affinities of all the combinations of mi and mj are populated in

Method Affinity Matrix (MAM) similar as attribute affinity

matrix in previous algorithms. Method affinity Matrix is in

turn dependent on Method Usage Matrix. It is populated using

method usage values which are is the count a method is

accessed by a particular query in a class. The algorithm that is

presented here is an extension of this algorithm. MUM and

MAM is constructed using method usage values and method

affinity values respectively. The factors introduced in the

algorithm provide more flexibility and control in constructing

the groups or the fragments. Also, the attributes are not openly

accessed, they are accessible through methods. Basically, all

attributes are encapsulated under methods and through these

methods only one can access attributes.

3. ALGORITHM

3.1 Objective

The objective of vertical fragmentation (VF) is to break a

class model into a set of smaller classes (fragments) that

permit user applications to be executed using only one

fragment. This means that optimal vertical fragmentation will

minimize the execution time of user applications. VF aims at

splitting a class so that all the attributes and methods most

frequently accessed together by user queries are grouped

together.

3.2 Enhancement Factors

 The two factors we added in the enhanced version of our

algorithm are [10]:

• Method Linking Factor (MLF): This factor is added to avoid

having poor grouping between two (or more) methods. The

factor is used in the formula: aff(i,j) ≥ P (mi)* ALF/100 which

should be true for linking two methods.

• Groups Linking Factor (GLF): This factor is added to avoid

having poor grouping between two groups. Here we have two

scenarios: First: If we want to connect method mi in group k

to an independent method mj, then the condition aff(i,j) ≥

P(gk) * GLF/100 must be true. Second: If we want to connect

a method mi in group k to method mj in group l, then the

condition P (gl) ≥ P (gk)* GLF/100 must be satisfied.

3.3 Algorithm: Vertical Fragmentation

Input of the Algorithm: The class to be fragmented,

Access Frequency, MLF, GLF.

Step 1: Construct the Method Usage Matrix (MUM) of the

owner class C. Given a set of queries Q = {q1,q2,…..ql} that

will run on the class C (A,M), the following parameter is

defined for each query qj(1 ≤ j ≤ l):

In MUM, the value will be 1 if a method say mi is referenced

by query qj else it is 0.

This generates the method usage matrix whose rows are

queries and columns are methods. Access frequency of a

query is the number of access of the query to the instances of

objects per unit tine period.

Step 2: Construct the Method Affinity Matrix n × n (n

methods) whose (i,j) element equals the two methods mi and

mj (1 ≤ i,j ≤ n). The affinity is the total number of accesses of

the queries referencing both methods mi and mj in class C plus

the total number of accesses of both methods mi and mj of

class C. The affinity matrix is symmetric. The rows and

columns of the matrix are both methods.

Step 3: Iterate starting from the first method of MAM (from

first row) trying to generate initial groups by joining it to

other method(s) with the highest affinity value (Max

(aff(i,j))), forming the initial groups and i ≠ j (run i for rows

and j for columns). The resulted group will have a power

factor P(g) that takes the affinity value aff(i,j). Here we will

have three possible scenarios:

First: The two methods are independent (do not belong to any

group), in this case perform a direct grouping is performed if

the condition aff(i,j) ≥ P(mi) * ALF/100 is satisfied where

aff(i,j) is affinity of methods i and j in the method affinity

matrix.

International Journal of Computer Applications (0975 – 8887)

Volume 119 – No.2, June 2015

21

Second: One of the methods i or j belongs to a group k and the

other method is independent, in this case join the independent

method to group k if the condition aff(i,j) ≥ P(gk) is true.

Third: Having method mi in group k and method mj in group

l, then we will join the two groups if P(gk)=P(gl).

By the end of this step, we will have all possible groups.

Step 5: Trying to search for the best extension, two possible

scenarios exist.

First: The best extension connects method mi in group k and

method mj that has not been joined to any initial group in

previous step, in this case the independent method mj will be

joined to group k if the condition aff(i,j) ≥ P(gk) * GLF/100 is

true, then the extended group’s power will be equal to aff(i,j)

value. Calculate the MinMerge value = P(gk) – aff(i,j).

Second: The best extension connects method mi in group k

and mj in group l in this case, ensure that the two conditions

aff(i,j) ≥ P(gk) * GLF/100 and P(gl) ≥ P(gk) * GLF/100 are

true. The new group’s power will be equal to the power of

group l. Calculate the MinMerge value = P(gk) – P(gl).

Keep repeating this last step until there is no possible best

extension found and then obtain final groupings of our

algorithm. MinMerge should be the minimum value. It will

decide the best extension. Methods corresponding to

MinMerge value should be joined or the group having

MinMerge value should be joined.

3.4 Correctness of the Vertical

Fragmentation Algorithm

For an algorithm to be correct it must satisfy the correctness

rules - completeness, reconstruction and disjointness.

 Completeness : A class C(A,M) is fragmented

 into a set of class fragments F1, F2, ..., Fk which is

 complete if and only if each attribute or method in

 C(A, M) can also be found in some Fi (1 ≤ i ≤ k).

 Reconstruction : The join of all class-fragments

 should reproduce the original class.

 Disjointness: Each attribute or method in Fi (1 ≤ i

≤ k) should not be in any other fragment Fj (j ≠ i).

4. EXAMPLE

In figure given below, Schema of a class Dept. and shown

how the Faculty class is fragmented according to the set of

queries.

Dept. Faculty

Dept ID

 Name

Building

Courses

Responsible

Fig1: Schema of class Dept

The schema of this Object Oriented Databases is:

Class: Dept

Attributes

ID : Integer,

Name : String,

Building : String,

courses : String,

Responsible : String

Method

 Modify courses (course) :String

Class: Faculty

 Attributes

Voter ID : Integer,

Name : String,

Address : String,

Salary : Integer,

Children : Integer

Methods

 Age (Voter ID) : Integer,

 Income Tax (Salary and Children) : Real,

 Modify courses (course) :String

Faculty class is part of Dept. class.

Queries:

Queries running on Dept class are:

QDept 1: Find the courses of a Dept. given its ID.

QDept 2: Find the name and courses of all Dept.

QDept 3: Find the names of Dept located at given building.

QDept 4:Find the names and salary of HOD of Dept, given

its Faculty ID.

Queries running on Faculty class are:

QFact 1: Give the voter ID of all Faculty with age < 35.

QFact 2: Give the voter ID, names and address of all Faculties

with salary < 20000.

QFact 3: List the voter ID and children of all the Faculty with

Income tax < 15000.

QFact 4:Increase by 10% the salary of all the faculties with

children < 3 and Age <45.

 QDept 4 which runs on the Dept class uses the name and

salary attributes of the Faculty class. Considering this as one

more query running in the Faculty class, rename it Q5.

Before the fragmentation of Faculty class, construct the

Method usage Matrix of class Dept. There are five methods of

the Dept class to access attributes.

m1 = r_DeptID ; m2 = r_Name ; m3 = r_Building ; m4 =

r_courses ; m5 = r_Responsible ; m6 = r_ModifyCourses.

Method Usage Matrix of this class is shown. Access column

is added to show the access number to a method for a

specified period for each query.

 M1 M2 M3 M4 M5 M6 Acc

Q1 1 0 0 1 0 0 40

Q2 0 1 0 1 0 0 15

Q3 0 1 1 0 0 0 25

Q4 1 0 0 0 1 0 15

Fig. 2: Method Usage Matrix of class Dept

Now, partition the class faculty which contains five methods

to access attributes:

m1 = r_VoterID ; m2 = r_Name ; m3 = r_Address ; m4 =

r_Salary ; m5 = r_Children.

The other methods are:

m6 = Age ; m7 = Income Tax ; m8 = Modify Salary

Voter ID

Name

Address

Salary

Children

International Journal of Computer Applications (0975 – 8887)

Volume 119 – No.2, June 2015

22

The Method Usage Matrix of this class, shown in Fig.3. It is

constructed by analyzing the queries on this class and the

queries running and queries running on their owner class.

 M1 M2 M3 M4 M5 M6 M7 M8 acc

Q1 1 0 0 0 0 1 0 0 30

Q2 1 1 1 1 0 0 0 0 25

Q3 1 0 0 0 1 0 1 0 35

Q4 0 0 0 0 1 1 0 1 15

Q5 0 1 0 1 0 0 0 0 15

Fig. 3: Method Usage Matrix of class Faculty

 Now, construct the Method Affinity Matrix (MAM) for

faculty class using the algorithm. It is a symmetric square

matrix which is populated by the affinity of mi and mj based

on accessibility on queries. The MAM is presented in fig. 4.

 M1 M2 M3 M4 M5 M6 M7 M8

M1 90 25 25 25 35 30 35 0

M2 25 40 25 40 0 0 0 0

M3 25 25 25 25 0 0 0 0

M4 25 40 25 40 0 0 0 0

M5 35 0 0 0 50 15 35 15

M6 30 0 0 0 15 45 0 15

M7 35 0 0 0 35 0 35 0

M8 0 0 0 0 15 15 0 15

Fig. 4: Method Affinity Matrix of class Faculty

Taking MLF = 55% and GLF = 60% proceed to step 3 of our

algorithm. Running i for rows and j for columns.

1. Start from the first row of MAM (i = 1) and

searching for the Max(Affi,j) =35 for j = 5 (i ≠ j).

Checking MLF cond. aff(i,j) ≥ P(mi) * ALF/100 i.e.

35 ≥ 35 * 0.55,which is true. So, first initial group is

formed with 1 and 5 as its elements. The power of

the group is 35. j = 7 has also the same affinity as j

= 5.So it will also be included in the same group as

shown in fig. 6(a).

2. Moving to the next row i = 2, (i ≠ j) the Max(Affi,j)

= 40 for j = 4. Checking MLF cond. aff(i,j) ≥ P(mi)

* ALF/100 i.e. 40 ≥ 40 * 0.55,which is true. So,

second initial group is formed with 2 and 4 as its

elements. The power of the group is 40 shown in

fig. 6(b).

3. Moving to i =3, Max(Affi,j) = 25 for j = 1. But 1

belongs to first initial group and since the power of

the initial group (35) is greater than Affi,j i.e. affinity

of 1 and 3 which is 25. So, 3 is not included in the

group. Same reason goes for next max. affinity for j

= 2 and j = 4.

4. For i = 4, Max(Affi,j) = 40 for j = 2. But 4 and 2 is

already placed in second group. So, skipping it and

moving ahead getting Max(Affi,j) = 25 for j = 1.

Skip j = 1 since power of the group holding 1 is

greater than the current max. affinity. All the other

affinity are also not included due to the same above

reason.

5. For i = 5, Max (Affi,j) = 35 for j = 7 and 1.But 5 is

already included in the same group so skipped.

Moving ahead, j = 6 Max (Affi,j) = 15,same value as

j = 8. But both are not included to the group since

the current max. affinity is less than the power of

the group holding 5.

6. For i = 6, j = 1 Max (Affi,j) = 30 but not included,

same reason as above. Same goes for next max.

affinity j = 5. For j = 8 Max (Affi,j) = 15 and 8 is not

included in any group so both are independent

methods therefore checking MLF condition. 15 ≥ 15

* 0.55, which is true. So a new group third initial

group is formed containing 6 and 8. Power of this

group is 15 shown in fig. 6(c).

7. For i = 7 Max (Affi,j) = 35 for j = 5 but they are in

same group, so skipped.

8. For i = 8 Max (Affi,j) = 15 for j = 5 and 6. Method

5 is excluded since the power of the group holding 5

is greater than the max. affinity. Method 6 is also

not included because it belongs to the same group.

9. Now all the initial groups have been formed. Three

initial groups are there with their respective powers.

Method 3 is an independent method.

10. Searching for the best extension. Iterating from the

first row i = 1 of MAM and searching for Max

(Affi,j) for method j where i ≠ j and i and j are not in

the same group. Now for i = 1 , j = 5 and 7 are

skipped (same group), for j = 6 Max (Affi,j) = 30.

Here, we are joining method 1 of first initial group

and method 6 of third initial group i.e. we are trying

to join two groups, so checking for GLF condition,

P(gl) ≥ P(gk) * GLF/100 (15 ≥ 35 * .6) which is

false, so these two groups cannot be joined. For j =

3, Max (Affi,j) = 25. Since 3 is an independent

method so we have to check GLF condition for

independent method for linking it with other group

i.e. aff(i,j) ≥ P(gk) * GLF/100 (25 ≥ 35 * 0.6) is

true.

MinMerge = P(gk) – aff(i,j) = 35 – 25 =10. Hence,

Method 3 can be linked to first initial group.

11. For i = 2, j = 4 cannot be included (same group)

choosing j = 3, Max (Affi,j) = 25. Checking the GLF

condition for linking independent method with

another group, aff(i,j) ≥ P(gk) * GLF/100 (25 ≥ 35 *

0.6) which is true. MinMerge = P(gk) – aff(i,j) = 40

- 25 =15 but current MinMerge is not less than the

previous MinMerge which is 10. So cannot be

linked.

12. For i = 3 same result occurs as in 11 and 12. So no

change occurs.

13. Iterating for the remaining methods, we found the

same earlier results occurs for different methods.

14. Searching for the best extension we could find only

one linking, i.e. method 3 to first initial group. So,

placing in that group also the power of the group

will be 25 shown in fig. 7(a).

15. Continuing the search for next best extension we

couldn’t find any so the algorithm stops.

International Journal of Computer Applications (0975 – 8887)

Volume 119 – No.2, June 2015

23

Final groups as shown in fig. 7:

G1 = {r_voterID, r_Address, r_IncomeTax, r_Salary}

G2 = {r_name, r_Salary}

G3 = {r_Age, r_ModifySalary}

Because we are interested in the attributes used by the

methods, we are going to construct an Attribute Usage Matrix

(AUM) shown in Fig 5.

In AUM, the value will be 1 if attribute Aj is referenced by mi

else it is 0.

A1 = VoterID, A2 = Name, A3 = Address, A4 = Salary, A5 =

Children

 A1 A2 A3 A4 A5

M1 1 0 0 0 0

M2 0 1 0 0 0

M3 0 0 1 0 0

M4 0 0 0 1 0

M5 0 0 0 0 1

M6 1 0 0 0 0

M7 0 0 0 1 1

M8 0 0 0 1 0

Fig. 5: Attribute Usage Matrix of class Faculty

Fig. 6: Initial groups with their powers

Fig. 7: Final groups with their powers

5. CONCLUSION
Most of the algorithms that have been worked are in the area

of Relational Database Management Systems (RDBMS) or

Object Oriented Database Systems (OODBS) concentrated on

a single site. Little work has been done on homogeneous

distributed databases. In this paper, an algorithm which is far

more flexible than previous algorithm (Graphical, BEA etc.)

and easy to understand has been proposed. The class

fragmentation is based on the object model with complex

attributes and complex models. All the three conditions of the

correctness of the algorithm are satisfied.

The algorithm is more efficient because the added factors

(MLF) and (GLF) provide an enhanced grouping of methods

based on problem specification. The contributed factors in the

algorithm provide more control on the methods and generate

no unnecessary calculation. The level of performance is better

and the time taken for whole computation is also less.

Also, the values for the enhancement factors are chosen based

on several qualitative and quantitative issues such as network

bandwidth, number of sites, number of methods and

attributes, query/transaction frequencies. In future, extensive

work will be on horizontal and hybrid partitioning algorithms,

to obtain more solution for fragment allocation problem.

International Journal of Computer Applications (0975 – 8887)

Volume 119 – No.2, June 2015

24

6. REFERENCES
[1] M. T. Ozsu and P. Valduriez, Principles of Distributed

Database Systems, Prentice Hall, 1991.

[2] S. Ceri, M. Negri, and G. Pelagatti, Horizontal Data

Partitioning in Database Design, In Proceedings of the

ACM SIGMOD International Conference on

Management of Data. SIGPLAN Notices, 1982.

[3] K. Karlapalem, S. B. Navathe, and M. M. A. Morsi,

Issues in Distributed Databases of Object-Oriented

Database Systems, in Distributed Object Management

Edited by M. T. Ozsu, U. Dayal, P. Valduriez, Morgan

Kauffmann Publishers Inc., 1994.

[4] J. A. Hoffer, and D. G. Severance, The Use of Cluster

Analysis in Physical Database Design, In Proceedings of

the 1st International Conference on Very Large

Databases. Morgan Kaufmann Publishers, 1975.

[5] W. T. McCormick, P. J. Schweitzer, and T. W. White,

Problem Decomposition and Data Reorganization by a

Clustering Technique, Operation Research, Vol. 20, No

5, September 1972.

[6] S. B. Navathe, S. Ceri, G. Winderhold and J .Dou

Vertical Partitioning Algorithms for Databases Design

ACM transactions on Database Systems, Vol. 9, No. 4,

1984.

[7] S. B. Navathe, M. Ra and J. Dou, Vertical Partitioning

Algorithms for Databases Design ACM transactions on

Database Systems, Vol. 9, No. 4, 1989.

[8] K. Karlapalem, and Q. Li, Partitioning Schemes for

Object Oriented Databases, Proc. of the Fifth

International Workshop on Research Issues in Data

Engineering-Distributed Object Management, RIDE-

DOM’95,1995.

[9] L. Bellatreche, A. Simonet and M.Simonet, Vertical

Fragmentation in Distributed Object Database with

Complex Attributes and Complex Methods, in

International Workshop on Database and Expert Systems

Applications (DEXA’96), September, 1996.

[10] F. Marir, Y. Najjar, M. A. AlFaress and H. I. Abdalla,

An Enhanced Grouping Algorithm for Vertical

Partitioining Problem in DDBs, IEEE Conference, 2007.

IJCATM : www.ijcaonline.org

