
International Journal of Computer Applications (0975 – 8887)

Volume 119 – No.18, June 2015

18

A Static Code and Dynamic Data Attestation based

Intrusion Detection System for Wireless Sensor

Networks

Neelam A Surti

Department of Computer Engineering
C. K. Pithawalla College of Engg. and Technology,

Surat, India

Devesh C Jinwala
Department of Computer Engineering
S. V. National Institute of Technology,

Surat, India

ABSTRACT

The Wireless Sensor Networks (WSNs) have applications

typically in ubiquitous and pervasive environments that make

ensuring the security therein critical. Despite deployment with

utmost stringent security measures, the intrusions and the

adversarial attacks like node compromise and node tampering

cannot be prevented. Hence, there is a need for devising an

intrusion detection and prevention system that can withstand

the resource constraints and work feasibly within the same.

One such intrusion detection technique is code attestation

which is useful for verifying the program integrity of nodes in

such networks. Our focus here is on software based remote

code attestation. The static code attestation techniques

published in the literature only check the integrity of the static

code embedded within sensor nodes whereas the dynamic data

attestation techniques check the structural integrity of

dynamically created data. We believe that an integrated

approach that uses both the static and dynamic code

attestation techniques can leverage the effectiveness of an

intrusion detection system. In this paper, we propose our

integrated approach for countering attacks based on code

attestation. As we demonstrate using our experimental

simulation studies, with the marginal increase in memory and

computational overhead, our approach ensures improved

overall security. To the best of our knowledge ours is the first

attempt in following such an approach.

General Terms

Networks, Security, Algorithms, Attacks.

Keywords

Wireless Sensor Networks, Intrusion Detection System, Code

Attestation, Pseudo Random number Generator.

1. INTRODUCTION
Wireless sensor Networks (WSNs) consists of small and low

cost sensor nodes logically interconnected to each other

through a wireless radio to form a network that senses and

processes a physical parameter in the real world. Even with

the limited resource availability in general and scarce

computational power in particular, the WSNs are deployed in

versatile applications in diverse areas ranging from

environment monitoring, defense, industrial process

monitoring and control, homeland securities and many more

[1]. However, being deployed ubiquitously, the

communication security issues in WSNs are critical and have

to be carefully examined.

Devising the security protocols for WSNs is as such

challenging and non-trivial. This is so because one hand the

traditional security protocols entail heavy resource overhead

whereas, on the other hand, the scarce resource availability on

the sensor nodes makes it difficult to implement the

conventional security protocols on the network nodes.

Nevertheless, even if security protocols tailored to the sensor

nodes were devised and implemented, as is true with security

implementations in general, there is a need to monitor the

network for any unwanted intrusions. Intrusion detection is a

set of actions that analyses and reports unauthorized activities

[30]. Detecting a physical layer attack of node compromise is

very crucial as the upper layer attacks can be introduced, with

the node’s memory contents being tampered.

There are numerous approaches proposed in classical network

security literature that implement network intrusion detection

[31]. One of these is a signature based approach wherein the

patterns for known attacks are compared with the current

events for intrusion detection. As compared in anomaly based

approach, the regular network behavior is studied and any

deviation from the regular behavior is used for detecting the

intrusion. In general, signature based [2],[4] approaches like

rule based traffic analysis, pattern matching are used for

intrusion detection. As compared, the anomaly based [3]

approaches use Finite State Machines [5], machine learning

techniques [6]. Few of the approaches have indeed been

adapted for the WSNs which are further discussed in section

2.1.

However, amongst all of these, code attestation based

intrusion detection [8],[9],[20] has been finding significant

attention. Using code attestation, a compromised node with

embedded malicious code within its memory can be detected.

Thus, code attestation can be used to verify the integrity of

memory within a sensor node. Here we focus on software

based code attestation techniques.

Software based code attestation can be categorized into static

code based and dynamic data based attestation. Static code

based attestation [8],[18],[21] checks the integrity violation of

the static code embedded within sensor node using

cryptographic checksum technique. As compared in dynamic

attestation [9],[20] the dynamically created data at runtime is

considered for attestation. This enables verification of the

structural integrity violating parameters of these data.

Using static code attestation techniques integrity of program

code within sensor node can be attested but such sensor node

are still vulnerable to attacks which are created at run time.

There are some attacks on sensor nodes which are created by

utilizing the existing program code of it, like return-into-libc

[38] and ROP [35] attacks.

International Journal of Computer Applications (0975 – 8887)

Volume 119 – No.18, June 2015

19

In return-into-libc [38] attack the existing code in the program

memory is reused by manipulating the stack to call an existing

library function. This technique violates the normal flow of

the program by calling library function, but it is not useful to

create a specific task.

While in ROP [35] attack the vulnerabilities within the

program code is utilized to create gadgets (pieces of codes

within the program memory ending with ret instructions).

Multiple gadgets are combined in various patterns to create

specific operations as specified in [35] which are useful for

creating attacks. Some of the techniques through which ROP

attacks are introduced in network are stack smashing [36],

buffer overflow [39] and mal-packet injection [37] within

network.

We observe from the literature that there is as yet an attempt

lacking that demonstrates the feasibility of an integrated

approach for code attestation. Therefore, in this paper we

propose our approach that combines the static code and

dynamic data attestation techniques. We show that this

approach can withstand various attacks like pre computation

of checksum, return oriented programming attack, memory

copy attack and buffer overflow attack. This advantage can be

realized at a small increase in overhead in memory and energy

consumption as compared to the same without using any

attestation. To the best of our knowledge ours is the first

approach in combining the static code and dynamic data

attestation techniques.

 The rest of the paper is organized as follows. In

section 2 we introduce the intrusion detection system in

wireless sensor network as well as literature survey related to

code attestation in the area. In section 3 we cover our

assumptions and threat model for the proposed algorithm. In

section 4, we discuss the approach for combining static code

and dynamic data techniques. Section 5 covers the

methodology of implementation. Section 6 covers analysis

and performance results. Lastly in section 7, we conclude with

future scope of the work ahead in the area.

2. THEORITICAL BACKGROUND
WSNs are vulnerable to many security attacks as it uses open-

to-all wireless communication for information exchange

which is an unsecure transmission media. Furthermore, WSNs

are deployed in intimidating environments where it is difficult

to provide physical protection. Hence, security at different

layers is desired in protocol stack design for communication.

2.1 Intrusion Detection System for

Wireless Sensor Networks
Intrusion detection systems (IDS) are processes that check the

normal flow of a system or a network and notifies if some

violations are there due to unwanted activities within it [30].

Few of the IDS adapted in WSNs are cited here, signature

based approach using spontaneous watch-dog [11] and the

Received Signal Strength Indicator value used to detect

intruder as in [5]. In [6] node impersonation attack and route

depletion attacks are detected using an intrusion detection

algorithm with sliding window and packet buffering. Intrusion

detection algorithm based on estimation of the network flow

information [10] in the attacked area is used for intruder

identification. Game theory based approaches [15] and

machine learning based approach using automata based

learning [16] is used for intruder detection. Code Attestation

based IDS [8], [9], [18] is used at physical layer for node

compromise detection.

2.2 Code Attestation Techniques
WSNs are having applications in ubiquitous and unattended

environments for han-dling various events like temperature

monitoring etc. Security is crucial in such envi-ronments as a

node within the network can be tampered which lead to an

attack, may on the whole network by disclosing the node’s

confidential information. To detect compromised nodes, code

attestation techniques are used for verifying the program

integrity on the sensor nodes in WSNs. There are two

approaches proposed for the same – Hardware based code

attestation and software based code attestation. Memory

traversal for checksum computation can be pseudo random

cell based, block based or sequential.

2.2.1 Hardware Based Code Attestation.
Hardware based code attestation protocols includes a tamper

resistant hardware which uses Trusted Platform Module

(TPM) [11] to validate the system integrity. Periodic

Broadcast Attestation Protocol(PBAP) and Individual

Attestation protocol(IAP) [12] are hardware based code

attestation protocols in which cluster nodes verify the system

integrity of cluster head at regular interval in PBAP and at any

time in IAP. TRAP [13] justifies that TPM can be included in

all the sensors and not just in the cluster heads.

2.2.2 Software Based Code Attestation.
Instead of adding extra hardware like TPM chips, in software

based code attestation memory checksum is computed to

verify the system integrity. All the existing soft-ware based

attestation techniques are based on a challenge-response

protocol where the verifier challenges a prover to compute a

checksum of its program memory.

Software attestation can be categorized as static code

attestation [8],[15],[16],[17],[18,[19] which checks the static

code embedded within the program address space of a sensor

node and dynamic data attestation [9],[20] which checks the

dynamically generated data while in program execution.

Multiple nodes are involved in attesting a single node in

distributed attestation [21]. From the various techniques

available for attestation our focus is on software based remote

code and data attestation.

2.3 Related Work
SWATT (Software-based ATTestation) [8] is software based

static code attestation protocol which relies on the time bound

of the attestation response. Software based remote code

attestations techniques as proposed in [15],[16],[17],[18]

includes the static memory traversal or pseudo random cell

based memory traversal for computing the checksum of only

static memory contents. Checksum computation is not useful

to check the integrity of memory locations with dynamic data

like stack and heap storage. In DataGuard [9] data are

protected by guard values and on corrupting the guard values

an intruder can be detected. While ReDAS [20] uses the

structure integrity violation of the system properties of

dynamically created data for intrusion detection.

3. ASSUMPTIONS AND THREAT

MODEL

3.1 Assumptions
We assume that the Base station working as verifier is aware

of hardware con-figuration, static memory image and other

International Journal of Computer Applications (0975 – 8887)

Volume 119 – No.18, June 2015

20

vital information of sensor node to be verified. We assume

that sensor node are equipped with microcontrollers with

Harvard architecture were only program memory is

executable and data memory is non-executable. Free memory

space within program memory is filled with pre-deployment

random noise. We have taken non-optimized application

codes for experimentation.

3.2 Threat Model
We assume that the attacker has full control over the sensor

node and can read and write any memory location of the

sensor node. Extending or modification of hardware is not

allowed to the attacker. Also the attacker cannot insert

powerful laptop class machine within the network.

We have created Return Oriented Programming (ROP) attack

using buffer overflow vulnerability on sensor motes for

testing our approach. In [32] one attack is described for

hacking the sensor motes using existing functions of the

program code. In our attack model we used inline assembly

codes for getting the stack pointer values and frame pointer

values. These values are used to insert into system stack at the

time of buffer overflow so that the control flow of the

program is changed. Detail description is specified in [33]

and for experimentation we changed the control flow of the

program to call an existing routine code while sustaining the

program execution.

4. THE PROPOSED APPROACH
When some new updated modules are to be inserted within

WSNs, then code updating was essential to make it adaptable.

Due to self-updating process included in AVR

microcontrollers, malicious code may propagate from the

writable data address space to executable program address

space. Most of the code attestation techniques are attesting the

program memory to verifying the program integrity of the

embedded code. These techniques are failing to withstand

against ROP [22] attacks were it alters the control flow of the

running program without modifying the program memory.

Hence it is needed that attestation routine include both the

program memory and data memory as well at the time of

attestation.

As shown in Table 1 the checksum is computed taking a

randomly generated number m as challenge from the Base

Station working as verifier. Using the challenge as a seed to

the RC4 stream cipher used as a Pseudo Random number

Generator (PRG), the prover travels the memory location and

update the checksum vector C.

Dynamic objects which are changing frequently are not

considered in static code attestation like the stack and heap

contents. Hence runtime threats like buffer overflow attacks

that modify the dynamic objects cannot be detected. Using

dynamic data attestation, hash computation of dynamically

changing objects is also incorporated. In one of the dynamic

data attestation technique, DataGuards[9] runtime program

data are tracked for any superfluous manipulation. Basically

an executing statement only affects some fixed number of

data objects, but by enforcing some of the attacks like stack

buffer overflow which can change the return address and can

modify the function pointers, runtime data objects are

modified. In Data Guard the data boundary integrity is

checked were a program variable should not affect anything

outside its boundary limits. In data guard technique, from an

input program which is about to execute the number of data

objects are categorized into local, global and heap data

objects. Additional data guard variables are created around the

data objects to check their boundary integrity. Detail

description of generating guard elements is provided in

DataGuards[9].

Table 1. Algorithm for static code attestation using Pseudo

random memory traversal

Algorithm Compute_Checksum(n)

//Input: n initial nonce value is the challenge sent by the

verifier

//Output: Checksum of memory

Let C be the checksum vector and j be the current index into

the checksum vector, m is the maximum memory location

available, mm = m*ln(m)[due to Coupon collector’s problem]

for i=1 to mm do

 Ai = PRG(n)[1-m]

 //Update checksum byte

 Cj = Cj + (Mem[Ai] (exor) C((j−2) mod 8))

 Cj = rotate left one bit(Cj)

 //Update checksum index

 j = (j + 1) mod 8

return C

Here it is assumed that the data guard variables are already

inserted within the program using the criteria specified in [9].

Table 2 shows the hashing computed on the data guards using

the nonce n sent by the verifier for attestation.

Checksum generated using static code attestation is appended

with hash value generated over data guard values as described

in the combined algorithm in Table 3. The reason behind

combining both these techniques is to provide protection

against static code and dynamic data attacks. The verifier

needs to get both the combined value as response as the

values are generated atomically so there is no way to change

the code for in-between computation of both the techniques.

Table 2. Algorithm for Data Guard Assignment [9]

Algorithm data_guard_assignment(int seq)

//seq the sequence to generate the data guard and nonce is the

change given by the verifier

if(seq == 0) then

 {e,nonce} = get_secret_data_from_verifier();

 Seq++;

 V = hash(e,nonce,seq);

 Erase(e,nonce);

 Set_data_guard_value(v);

End

Else

 V = readout_last_data_guard_value();

 Seq++;

 Update_last_data_guard_value(hash(v,seq));

 Set_data_guard_value(hash(v,-seq));

End

As far as data memory is concerned the data lying on that

memory contents are unpredictable as they are dynamic data

created and collected by running application in program

memory. SMARTIES [24] uses the technique of filling the

empty data space with randomness at the time of attestation,

but the data overhead increases largely between the challenger

and the prover to withstand the attack like Time Of Use to

International Journal of Computer Applications (0975 – 8887)

Volume 119 – No.18, June 2015

21

Time Of Attestation (TOUTOA). Hence, the dynamically

created data can be guarded using DATAGUARD [9] to

provide protection against buffer overflow attack. Other

mechanisms used to provide protection against ROP attack is

using STACKGUARD [25] and StackShield [34] but even

these tools are not secured against ROP attack. One of the

vulnerability with the STACKGUARD [25] as specified by

[26] is double memory corruption through which the canary

words are not corrupted but the return address is manipulated

without detection.

Thus we can say that program memory and the data memory

both are to be checked at the time of attestation. As data

memory contents are not predefined we cannot use checksum

method to attest it. But by checking the control flow integrity

or by guarding the data by canary words we can provide the

attestation of data memory.

Table 3. Algorithm for Combined Static Code and

Dynamic Data Attestation

Algorithm combine_static_code_dynamic_data(challenge

C)

//Challenge C sent by the verifier

Checksum = Compute_Checksum(C);

Hash_val = hash(data_guard_assignment(C);

Result =

First_Four_most_significant_bytes(Checksum)+First_Four_le

ast_significant_bytes(Hash_val);

return Result

5. SECURITY ANALYSIS
In this section we consider the resistance of our attestation

protocol against pre-computation of checksum, TOUTOA,

Memory copy, buffer overflow and ROP attacks.

Pre-computation of checksum: Pre-computation of checksum

attack is created if the attacker compromises the sensor node

and stores all the possible values of checksum before inserting

the malicious code. As shown in Figure 1 it uses Pseudo

random memory traversal were RC4 stream cipher is used as

PRG (Pseudo Random Generator) which utilizes the challenge

sent from verifier as a random seed value. Hence, computing

checksum in advance is not possible.

TOUTOA attack: In this attack, the attack uses the sensor

node as a compromised node and at the time of attestation, the

attack may reset the setting so that node is working as a

genuine node. Here we have considered data guard values

with each data elements as shown in Figure 2 in which one

way hash function SHA-1 is used to create guard elements

which are once corrupted, cannot generate the correct answer

at later attestation time. Hence, TOUTOA attack can be

prevented by our attestation protocol.

Memory copy attack: In this attack, the original program code

is copied at another location in memory and the malicious

code is copied at the original code. Otherwise the original

code is at its place only and malicious code is copied into

program memory. This attack is prevented as we are filling

the empty space in program memory with pre-deployment

random noise and if these values are over written by malicious

code, checksum computed would be incorrect.

Buffer Overflow attack: In this attack, any of the data or stack

elements are extended beyond their storage capacity and

malicious routines are inserted in the extended space. In our

dynamic data guard algorithm as in [9] we are protecting all

the data from overflow by assigning guards around it so, if

buffer overflow occurs the guard elements are corrupted and

the checksum generated by data guard values would be

incorrect.

ROP attack: ROP [22] attack can be created using buffer

overflow vulnerability or stack smashing[36] technique in

both these technique the data boundary of local data is

changed beyond its limit. Using dynamic data guard technique

we can always detect the attack as guarding elements are

manipulated which cannot be recovered again as described in

[9].

Most static code attestation techniques withstand against

attacks like pre-computation of checksum, proxy attack,

memory copy attack and TOUTOA if strictly time bounding

is included. But these techniques are lacking resistance

against buffer overflow and ROP attacks which can be

provided using dynamic data attestation as combining both

proposed in our attestation technique.

6. METHODOLOGY OF EVALUATION

AND RESULT ANALYSIS
In this section we describe the evaluation methodology and

the brief analysis of the result we got from our proposed

algorithm.

6.1 Methodology of Evaluation

6.1.1 Platform/Tools used
To develop our application we are using tinyos-2.1.0 version

of TinyOS [27] which is a free operating system basically

designed for WSNs applications. For our experimentation we

are using mica2 motes with MIB510 programming board and

avrora [29] emulator for computing the energy consumption.

6.1.2 Test Application
Sense application from TinyOS simulator is used as a base

application for implementing the code attestation algorithms.

Sense application periodically collects environment

monitoring data and displays the value on LEDs. Attestation

algorithms are truly applicable in such environment

monitoring applications.

6.1.3 Metrics of Evaluation
For evaluating the algorithms memory overhead and

computation overhead are considered for analysis.

6.2 Result Analysis
Memory required in terms of RAM and ROM usage in bytes

and energy consumption in joules are considered for static

code attestation, dynamic data attestation and combined

algorithms.

Within the Sense application (appl) of TinyOS simulator we

have added combined static code and dynamic data attestation

routines and evaluated these based on different metrics viz.

Storage requirement and energy consumption.

6.2.1 Storage Requirement
Storage requirement of RAM and ROM in joules are

computed for mica2 mote in TinyOS. Considering the total

capacity of mica2 mote as 4k Byte of RAM and 128 kByte of

ROM limit for the Atmega128- microcontroller % utilization

of RAM and ROM in mica2 are computed for result analysis.

International Journal of Computer Applications (0975 – 8887)

Volume 119 – No.18, June 2015

22

Fig 1: % utilization of RAM on mica2 mote

Fig 2: % utilization of ROM on mica2 mote

From the graphs shown in figure 1 and figure 2 for the

memory storage in RAM and ROM we can conclude that

memory required for combined technique of static code and

dynamic data attestation is highest compared to Sense

application with only static code attestation and with only

dynamic code attestation. With only 17.23% RAM and

25.19% ROM overhead is needed in combined attestation

technique compared to code without attestation, we gain

resistance of the application against various attack. RAM

memory is very crucial in sensor node; we are sustaining it as

shown in the results.

6.2.2 Energy consumption
Figure 3 shows the energy consumption in % increase over

Sense application without attestation. From the figure we can

say that with only increase of 4.56% energy consumption

compared to Sense application without attestation we gain

security against various attacks using the combined code

attestation technique.

Fig 3: % increase in energy consumption over Sense appl

without attestation

7. CONCLUSION AND FUTURE WORK
Using static code attestation techniques, it is possible to verify

the program integrity of static code embedded within a sensor

node. In addition, using dynamic data attestation, dynamically

changing system properties of running application like

function data can be guarded from vulnerabilities like buffer

overflow. We observe that the existing static code attestation

techniques are time bounded and are vulnerable to attacks like

return-oriented programming attack and buffer overflow

attacks, while dynamic data attestation techniques are

vulnerable to attacks violating integrity of complex

programming structures. In this paper, using an integrated

approach we demonstrate that the static and dynamic code

attestation techniques can be combinedly exploited to an

advantage. To the best of our knowledge, ours is the first

attempt to propose an integrated approach that realizes code

attestation on motes with AVR microcontroller. From the

experimental results that we obtained, using combined

technique of static code and dynamic data attestation nearly

17.23% increase in RAM usage while 4.56% increase in

energy consumption entails in WSNs while we get protection

from attacks like buffer overflow, pre-computation of

checksum and root-kit attacks.

In future work we would like to concentrate on other

structural integrity violating parameters of running application

which may lead to attacks in WSNs.

8. REFERENCES
[1] Y. Zhou, Y. Fang and Y. Zhang: Securing wireless

sensor networks: A Survey. In: IEEE communications

Surveys, vol. 10, no. 3, pp. 6-28. (2008)

[2] M. Roesch : Snort – Lightweight Intrusion Detection for

Networks. In: Proceedings of USENIX LISA’99,

November (1999)

[3] P. García-Teodoroa, J. Díaz-Verdejoa, G. Maciá-

Fernándeza, and E. Vázquez : Anomaly-based Network

Intrusion Detection: Techniques, Systems and

Challenges. Computers & Security, vol. 28, no. 1–2, pp.

18–28, (2009)

[4] Sekar, R., Guang, Y., Verma, S., and Shanbhag, T.: A

high-performance network intrusion detection system. In:

Proceedings of the 6th ACM conference on Computer

and communi- cations security. ACM Press, 8-17. (1999)

0
5

10
15
20
25
30
35

Sense appl with
attestation algorithms

Sense appl
without
Attestation

Sense appl
with static
code
attestation

Mica2 mote - % utilization of
total RAM

%
 u

ti
liz

at
io

n
 o

f
R

A
M

0

10

20

30

40

50

60

Sense appl with
attestation algorithms

Sense appl
without
Attestation

Sense appl
with static
code
attestation

Mica2 mote - % utilization of
total ROM

%
 u

ti
liz

at
io

n
 o

f
R

O
M

0

1

2

3

4

5

Sense appl with
attestation algorithms

Sense appl
with static
code
attestation

Sense appl
with dynamic
data
attestation

Mica2 mote - % increase in energy
over Sense appl without

Attestation

 %
 in

cr
ea

se
 in

en

er
gy

International Journal of Computer Applications (0975 – 8887)

Volume 119 – No.18, June 2015

23

[5] V. Bhuse, A. Gupta: Anomaly intrusion detection in

wireless sensor network. Journal of High Speed

Networks, Volume 15, Issue 1, pp 33-51, Jan 2006.

[6] I. Onat, A. Miri.: An intrusion detection system for

wireless sensor networks. In: IEEE International

Conference on Wireless and Mobile Computing,

Networking and Communications, pp. 253–259,

Montreal, Canada (2005)

[7] Krontiris Ioannis, Tassos Dimitriou and Felix C. Freiling:

Towards Intrusion Detection in Wireless Sensor

Networks. In :13th European Wireless Conference, Paris,

France (2007)

[8] Seshadri, A., Perrig, A., van Doorn, L., and Khosla, P.

K.: SWATT: SoftWare-based ATTestation for embedded

devices. In: IEEE Symposium on Security and Privacy

(2004)

[9] Dazhi Zhang and Donggang Li u: DataGuard: Dynamic

Data Attestation in Wireless Sensor Networks. In:

IEEE/IFIP International Conference on Dependable

Systems & Networks (DSN) (2010)

[10] E. Ngai, J. Liu, M. Lyu.: An efficient intruder detection

algorithm against sinkhole attacks in wireless sensor

networks. In: Proc. of IEEE International Conference on

Communications (ICC’06) (2006)

[11] Technical report Group, T.C.:Trusted Platform Module

(TPM) specifications.

http://www.trustedcomputinggroup.org/specs/tpm.

[12] Christoph Krauf, Frederic Stumpf, and Claudia M.

Eckert: Detecting node compromise in hybrid wireless

sensor networks using attestation techniques. In: ESAS,

pp 203–217, (2007)

[13] Hailun Tan, Wen hu, Sanjay Jha: A TPM-enabled remote

attestation protocol (TRAP) in wireless sensor networks.

In: Proceedings of the 6th ACM workshop on

Performance monitoring and measurement of

heterogeneous wireless and wired networks (2011)

[14] Elaine Shi, Adrian Perrig, and Leendert van Doorn:

Bind: A fine-grained attestation service for secure

distributed systems. In: IEEE Symposium on Security

and Privacy, pages 154–168 (2005)

[15] Seshadri, A., Luk, M., Shi, E., Perrig, A., van Doorn, L.,

and Khosla, P.: Pioneer: verifying code integrity and

enforcing untampered code execution on legacy systems.

In: SOSP ’05: Proceedings of the twentieth ACM

symposium on Operating systems principles (2005)

[16] A.Seshadri, M.Luk, A.Perrig, L. van Doorn, and

P.Khosla: Using FIRE and ICE for detecting and

recovering compromised nodes in sensor networks.

Technical Report CMU-CS-04-187, School of Computer

Science, Carnegie Mellon University, (2004)

[17] T. Park, K.G. Shin: Soft tamper-proofing via program

integrity verification in wireless sensor networks. In:

IEEE Transaction Mobile Computing pp. 297–309

(2005)

[18] M. Shaneck, K. Mahadevan, V. Kher, Y. Kim: Remote

software-based attestation for wireless sensors. In:

ESAS, LNCS, vol. 3818, pp. 27–41 (2005)

[19] Seshadri, A., Luk, M., and Perrig, A.: SAKE: Software

attestation for key establishment in sensor networks. In:

DCOSS ’08: Proceedings of the 4th IEEE international

conference on Distributed Computing in Sensor Systems

(2008).

[20] C. Kil, E. C. Sezer, A. M. Azab, P. Ning, and X. Zhang:

Remote attestation to dynamic system properties:

Towards providing complete system integrity evidence.

In: Proceedings of the 39th Annual IEEE International

Conference on Dependable Systems and Networks

(DSN) (2009)

[21] Y. Yang, X. Wang, S. Zhu, G. Cao: Distributed software-

based attestation for node compromise detection in

sensor networks. In: 26th IEEE International Symposium

on Reliable Distributed Systems, pp. 219–230. (2007)

[22] C. Castelluccia, A. Francillon, D. Perito, and C. Soriente:

On the difficulty of software-based attestation of

embedded devices. In: Proceedings of ACM Conference

on Computer and communications Security (CCS)

(2009)

[23] M.J.B. Robshaw: MD2, MD4, MD5, SHA and Other

Hash Functions. Technical Report TR-101, version 4.0,

RSA Laboratories, July 1995.

[24] Aurélien Francillon and Claude Castelluccia: Code

injection attacks on Harvard architecture devices. In:

CCS ’08: Proceedings of the 15th ACM conference on

Computer and Communications Security, October 2008.

ACM.

[25] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S.

Beattie, A. Grier, P. Wagle, Q. Zhang, and H. Hinton:

Stack-Guard: automatic adaptive detection and

prevention of buffer-overflow attacks. In: Proceedings of

the 7th USENIX Security Symposium, January 1998.

[26] A. Francillon, Attacking and Protecting Constrained

Embedded Systems from Control Flow Attacks, Ph.D.

dissertation, Institut Polytechnique de Grenoble (2009)

[27] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K.

Whitehouse, A. Woo, D. Gay, J. Hill, M. Welsh, E.

Brewer, and D. Culler: TinyOS: An Operating System

for Sensor Networks. Springer-Verlag (2004)

[28] TinyOS tutorial, http://www.tinyos.net/tinyos-

1.x/doc/tutorial

[29] Ben L. Titzer: Avrora: Scalable sensor Network

simulation with precise Timing. In: Proceeding of 4th

IPSN (2005)

[30] John McHugh, Alan Christie, and Julia Allen: Defending

yourself: The Role of Intrusion Detection Systems. IEEE

software (2000)

[31] F. Schepers: Network- vs. Host-based Intrusion

Detection: A Guide to Intrusion Detection Technology.

Information Security Technical Report (1998)

[32] Qijun Gu and Rizwan Noorani: Towards self-propagate

mal-packets in sensor networks. In WiSec ’08:

Proceedings of the first ACM conference on Wireless

network security, pages 172–182, New York, NY, USA.

(2008)

[33] http://fuxi.cs.txstate.edu/~download/attack/report4demo1

.pdf

http://www.tinyos.net/tinyos-1.x/doc/tutorial
http://www.tinyos.net/tinyos-1.x/doc/tutorial
http://fuxi.cs.txstate.edu/~download/attack/report4demo1.pdf
http://fuxi.cs.txstate.edu/~download/attack/report4demo1.pdf

International Journal of Computer Applications (0975 – 8887)

Volume 119 – No.18, June 2015

24

[34] StackShield. http://www.angelfire.com/sk/stackshield

[35] H. Shacham,” The Geometry of Innocent Flesh on the

Bone: Return-into-libc without Function Calls (on the

x86)”, In Proceedings of the 14th ACM Conference on

Computer and Communications Security (CCS), 2007

[36] A. One,”Smashing the stack for fun and profit”, Phrack,

7(49), Nov. 1996.

[37] Ferguson, C., Gu, Q., and Shi. H.,”Self-healing control

flow protection in sensor applications”. In WiSec '09

(2009), ACM.

[38] Tran, Minh, Mark Etheridge, Tyler Bletsch, Xuxian

Jiang, Vincent Freeh, and Peng Ning. "On the

expressiveness of return-into-libc attacks." In Recent

Advances in Intrusion Detection, pp. 121-141. Springer

Berlin Heidelberg, 2011.

[39] Steven Alexander. “Defeating compiler-level buffer

overflow protection.” Usenix LOGIN;, 30(3), June 2005.

IJCATM : www.ijcaonline.org

http://www.angelfire.com/sk/stackshield

