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ABSTRACT
In this paper, output feedback control is investigated for a general
class of uncertain non-affine nonlinear systems in discrete time.
Control system design employs feedback linearization, coupled
with a novel filter which is built to estimate the feedback lineariza-
tion error. Output feedback control is then developed to stabilize the
systems by utilizing the estimation. In the control design, implicit
function theorem and the mean value theorem are exploited to han-
dle the difficulty of non-affine appearance of the control input. The
proposed control is of great significance in engineering practice
due to its linear control architecture, high dynamic performance,
clear physical meanings and robustness to the modeling errors.
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1. INTRODUCTION
Recently, the control problem of non-affine nonlinear systems has
attracted increasing research interests within the control systems
community. Many elegant control schemes for continuous-time
systems in this area have been obtained, including adaptive neural
network (NN) control [1]-[4], adaptive fuzzy control [5], and back-
stepping control by incorporating the adaptive NN control method
[6]. However, due to the the fact that the linearity property of the
derivative of a Lyapunov function in continuous-time is not pre-
sented in the difference of the Lyapunov function in discrete time
[7] and the lack of applicability of Lyapunov techniques [8], many
elegant control methods in continuous-time domain may be not
suitable for discrete-time systems. Therefore, it is challenging and
very important to develop control scheme for discrete-time nonlin-
ear systems.

In [9], the authors considered the control problem of a class of non-
linear discrete-time systems with general relative degree and pro-
posed a stable NN controller through backpropagation such that the
closed loop achieved the desired control performance. For strict-

feedback nonlinear dynamical systems in discrete time, adaptive
NN control schemes were presented by state feedback in [10] and
output feedback in [11]. And for pure-feedback nonlinear systems
in the discrete-time form adaptive neural output feedback tracking
controllers were further investigated in [12, 13]. The common fea-
tures of these adaptive control approaches are employed online NN
to compensate for the unknown continuous functions, of which the
tremendous advantage is that the unknown functions can be approx-
imated to an arbitrarily accuracy. A limitation lies that reconstruc-
tion errors must occur if the structure of the approximators (i.e.,
the number of hidden layers and neurons of NN) is not sufficiently
rich, and these reconstruction errors are introduced into the closed-
loop and deteriorate the performance of the system. In general, the
richer the structure is the more favorable performance the system
exhibits. However, the richer structure may lead to the complexity
of the controller and cause the heavy computational burden.

In practical applications, it is expected that control strategy can
reduce the effects of uncertainties to a given accuracy, and has a
simple control architecture, high dynamic performance and clear
physical meanings. In this paper, output feedback control is inves-
tigated for a general class of highly uncertain discrete-time non-
affine nonlinear systems. Control system design employs feedback
linearization, coupled with a novel filter which is built to estimate
the feedback linearization error. Output feedback control is then
developed to stabilize the systems by utilizing the estimation. To
handle the difficulty of non-affine appearance of the control input,
implicit function theorem and the mean value theorem are exploited
in the control design. The main contributions of the paper are as
follows:

—Novel filter is constructed for a class of non-affine nonlinear sys-
tems, by which the feedback linearization error can be estimated
without using NN;

—Based on the novel filter, robust output feedback control is devel-
oped to stabilize the discrete-time non-affine nonlinear systems;

—The proposed control is of great significance in engineering prac-
tice due to its linear control architecture, high dynamic perfor-
mance, clear physical meanings and robustness to the modeling
errors.

Throughout this paper, Z+
0 stands for nonnegative integers, | · |

denotes the absolute value of a scalar, ‖ · ‖ denotes the norm
of a matrix, In×n denotes the n × n dimension identity matrix,
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a := b means that b is defined as a, [ ]T denotes the transpose
of a vector/matrix, σ(M) denotes the spectral radius of a square
matrix M , i.e., σ(M) := max1≤i≤n{|λi|}, where λ1, · · · , λn are

the eigenvalues of matrix M , A :=

 0
... I(n−1)×(n−1)

0 · · · 0


n×n

,

B := [0, 0, · · · , 0, 1]Tn , C := [1, 0, · · · , 0, 0]Tn . The following
lemma will be used for control design and stability analysis in Sec-
tion 3.

LEMMA 1 IMPLICIT FUNCTION THEOREM[14]. Assume
that function f(x, u) : Rn × R→ R is continuously differentiable
∀(x, u) ∈ Rn × R. If there exists a constant c > 0 such that
∂f/∂u ≥ c > 0,∀(x, u) ∈ Rn×R, then, there exists a continuous
function u(x) : Rn → R such that f(x, u(x)) = 0.

2. PROBLEM FORMULATION
Consider the non-affine nonlinear systems in the following form{

yk+n = f(xk, uk), k ∈ Z+
0

xk = [yk, yk+1, · · · , yk+n−1]T
(1)

where
uk ∈ R is the control input;
yk ∈ R is the measured output;
xk ∈ Rn is the state vector;
f : Rn+1 → R is an unknown implicit function;
ψ : uk → f is a bijection for every fixed (xk, uk);
n ≥ 1 is system order.

Assume that system function f is continuously differentiable with
respect to all the arguments and only the output yi, 0 ≤ i ≤ k
are available for feedback at each step k. And without lose of gen-
erality, assume that the origin x = 0 is an equilibrium point of
system (1), i.e., f(0, 0) = 0. In order to design a control input u
which stabilizes the system, the following assumption is made for
the function f .

ASSUMPTION 1. The sign of ∂f/∂uk is known, and
∂f/∂uk 6= 0,∀(x, uk) ∈ Ωx × R, where Ωx ⊂ Rn is a
certain controllability region containing the origin.

The control objective is to design a robust control for the system
such that the output is stabilized at the origin, and meanwhile all the
signals in the closed-loop system remain semi-globally uniformly
ultimately bounded (SGUUB).

REMARK 1. Assumption 1 implies that ∂f/∂uk is strictly ei-
ther positive or negative. Without lose of generality, assume that
∂f/∂uk > 0,∀(x, uk) ∈ Ωx × R. Assumption 1 is reasonable
because ∂f/∂uk being away from zero is controllable condition of
system (1).

REMARK 2. In practice, many engineering plants includ-
ing active magnetic bearing systems [3], vibrating systems
[15],continuous stirred-tank reactor systems [16], etc, are rea-
sonably described in the non-affine forms (1). Because, for these
plants, they are difficult to be exactly described in affine forms even
though the modeling errors are neglected.

REMARK 3. Under Assumption 1, the non-affine nonlinear
system described by (1) includes a large class of nonlinear sys-
tems. It is should be noted that many elegant results in this area
have been obtained using the approximators (e.g., NN) to estimate

the uncertainties. Next section in this paper will be presented a
novel dynamic linear filter which also can be used to estimate the
uncertainties. Thus, compared with NN control, the proposed con-
trol architecture is quite simple.

3. ROBUST OUTPUT FEEDBACK CONTROL
DESIGN

By adding and subtracting gu in the right-hand side of system (1),
feedback linearization is performed by

yk+n = guk + ∆k, (2)

where g > 0 is a design constant, and

∆k = f(xk, uk)− guk, (3)

which is the feedback linearization error. Let the control input be
determined as

uk =
1

g
(ud,k + u∆,k), (4)

where ud,k is a dynamic feedback controller designed to stabilize
linearized dynamics in (2) by assuming ∆k = 0; u∆,k is a filter-
based compensator designed to handle the effect of ∆k, i.e., given
a small parameter ε > 0, find a u∆,k such that

|u∆,k + ∆k| ≤ ε,∀k ≥ k0, (5)

where k0 ∈ Z+
0 .

Due to the bijection ψ : uk → f(·, uk), it is noted that the compen-
sator u∆,k is designed to deal with ∆k, whereas ∆k is a function
of u∆,k through f(·, uk) and uk. Like the result in the continuous
time [5, 17], the following lemma is introduced to guarantee the
existence and uniqueness of a solution of

h(xk, ud,k, u∆,k) = 0 (6)

where h(xk, ud,k, u∆,k) = u∆,k + ∆k.

LEMMA 2. [5, 17] Let constant g > 0 satisfies the following
inequalities

0 <
1

2

(
∂f

∂uk

)
< g,∀(x, uk) (7)

then (6) has a unique solution over the entire input domain of in-
terest.

3.1 Dynamic feedback controller design
Under the assumption that ∆k = 0, then we can let u∆,k = 0 and
design ud,k. System (2) reduce as

yk+n = ud,k (8)

which can be stabilized using classical linear control design, such
as the dynamic feedback control

ξk+1 = Adξk +Bdyk, (9a)

ud,k = CTd ξk + ddyk, (9b)

where Ad ∈ R(n−1)×(n−1), Bd, Cd ∈ Rn−1 and dd ∈ R
are appropriately chosen parameters such that matrix As =[
A+ ddBC

T BCTd
BdC

T Ad

]
is Schur, i.e., the spectral radius σ(As) <

1.
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It should be noticed that it is required dim ξk ≥ n − 1 due to the
dynamics in (8) having n poles at the origin [18]. Without lose of
generality, the minimum dimension is chosen in the sequel. And it
is the same reason for considering the dimension of a filter given in
the next subsection.

3.2 Compensator design
Substituting (4) and (9b) into (2), we have

yk+n = ud,k + u∆,k + ∆k, (10)

To compensate the effect of ∆k, we construct a filter by using the
available output

ŷk+n = −εdc(yk − ŷk)− CTc ηk + ud,k + u∆,k, (11a)

ε−1ηk+1 = Acηk + εBc(yk − ŷk), (11b)

where ηk ∈ Rn−1, u∆,k will be designed in (14) and ε is a small
parameter to be specified later. By introducing the variable

ỹk = ε(yk − ŷk), (12)

and from (10) and (11), we have

ε−1ỹk+n = dcỹk + CTc ηk + ∆k, (13a)

ε−1ηk+1 = Acηk +Bcỹk, (13b)

where Ac ∈ R(n−1)×(n−1), Bc, Cc ∈ Rn−1 and dc, ε ∈ R are
appropriately chosen parameters such that not only matrix Ass =[
A+ dcBC

T BCTc
BcC

T Ac

]
is Schur, but also ỹk converges in a faster

time scale than yk.

Observing (13a), the compensator is designed as

u∆,k = dcỹk + CTc ηk. (14)

from which and combining (13a) the left-hand side of (5) becomes

|u∆,k + ∆k|
=
∣∣dcỹk + CTc ηk + ∆k

∣∣ = ε−1 |ỹk+n| .
(15)

Theorem analysis in the next subsection will be shown that, under
the proposed controller (4), (9) and (14) and some conditions, the
output yk and ε−1ỹk+n converge to the origin and all the signals in
the closed-loop system remain bounded.

REMARK 4. In the literatures [4, 18], observers were con-
structed to estimate the unmeasurable states, then the NNs were
employed to approximate the uncertainties. The novel filter pro-
posed in this paper is built based on the available output informa-
tion and can be directly estimated the uncertainties without using
the NNs.

3.3 Stability analysis
For clarity, let

x̃k = [ỹk, ỹk+1, · · · , ỹk+n]T ,

Xk =
[
xTk , ξ

T
k

]T
, X̃k =

[
x̃Tk , η

T
k

]T
,

B̄ =

[
B
0

]
, Iε =

[
I(n−1)×(n−1) 0

0 εIn×n

]
,

σAs = σ(As), σAss = σ(Ass), σε = σ(Iε)

Fx,k(xk, uk) =
∂f(xk, uk)

∂xk
, fu,k(xk, uk) =

∂f(xk, uk)

∂uk

The compact form of system (13) can be written by

I−1
ε X̃k+1 = AssX̃k + B̄∆k (16)

Substituting (4), (9) and (14) into (2), the closed-loop takes the
compact form of

Xk+1 = AsXk + B̄B̄TΞk, (17)

where Ξk = AssX̃k + B̄∆k.
From the mean value theorem, there exists a θ ∈ (0, 1) such that

f(xk+1, uk+1)− f(0, 0) = F θx,k+1xk+1 + fθu,k+1uk+1 (18)

where F θx,k+1 = Fx,k+1(θxk+1, θuk+1), fθu,k+1 =

fu,k+1(θxk+1, θuk+1).
Combining (3), (16) and (18), we have

Ξk+1 = AssX̃k+1 + B̄∆k+1

= AssIεΞk + B̄[f(xk+1, uk+1)− guk+1]

= AssIεΞk + B̄[F θx,k+1xk+1 + (fθu,k+1 − g)uk+1]

= AssIεΞk + αXk+1 + βX̃k+1

= ĀssIεΞk + α[AsXk + B̄B̄TΞk] (19)

where

α = B̄

[
F θx,k+1 +

fθu,k+1−g
g

ddC
T ,

fθu,k+1−g
g

CTd

]
β =

fθu,k+1−g
g

B̄
[
dcC

T , CTc
]

Āss = Ass + β.

The following theorem shows that the proposed controller stabi-
lizes systems (1) under the assumption that the feedback lineariza-
tion error ∆k ≡ 0.

THEOREM 3. Under the assumption that ∆k ≡ 0, consider the
closed-loop consisting of system (1) satisfying Assumption 1, the
filter (11), and the controller (4), (9) and (14). Then, there exists
an ε∗ > 0 such that for all ε ∈ (0, ε∗), the closed-loop system is
globally exponential asymptotic stable.

PROOF. Combining (17) and (19), we have[
Xk+1

Ξk+1

]
= Φ1

[
Xk
Ξk

]
(20)

where Φ1 =

[
As B̄B̄T

0 AssIε

]
. From linear system theory, we know

that the dynamics (20) is stable if and only if σ(Φ1) < 1, i.e.,
σAsσAssσε < 1. It is easy to obtain that the system is globally
exponential asymptotic stable for all ε ∈ (0, ε∗1), where ε∗1 =
1/(σAsσAss).

Based on Assumption 1, the following theorem shows the proposed
controller stabilizes systems (1) despite the presence of ∆k.

THEOREM 4. Consider the closed-loop consisting of system
(1) satisfying Assumption 1, the filter (11), and the controller (4),
(9) and (14) and let ε∗ = 1/(σAsσAss). For all x(0) ∈ Ωx and all
ε ∈ (0, ε∗) which satisfies

σAs + σAssε+ c1c2 <
√

2 (21)
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then the system output yk converges to the origin and all signals
in the closed-loop system remain SGUUB, where c1 is an upper
boundedness of α, i.e., ‖α‖ ≤ c1 and c2 = ‖B̄B̄T ‖.

PROOF. Observing the matrix Āss defined in (19). Then there
exists a dialog matrix

M =

 I(n−1)×(n−1) 0 0

0
fθu,k+1

g
0

0 0 I(n−1)×(n−1)


such that

Āss = AssM. (22)

From Assumption 1, we have

0 <
fθu,k+1

g
<

1

2
.

Thus, σ(M) = 1. Moreover, since f is a continuously differe-
tiable with respect to all the arguments and Ωx is a compact set and
Assumption 1, then ∂F/∂xk and ∂f/∂uk are bounded. i.e., there
exist a constant c1 > 0 such that ‖α‖ ≤ c1.

Combining (17), (19) and (22), we have

‖Xk+1‖ ≤ σAs‖Xk‖+ c2‖Ξk‖ (23)
‖Ξk+1‖ ≤ (σAssσε + c1c2)‖Ξk‖+ c1σAs‖Xk‖ (24)

The compact form of (23) and (23) can be written by[
‖Xk+1‖
‖Ξk+1‖

]
≤ Φ2

[
‖Xk‖
‖Ξk‖

]
(25)

where Φ2 =

[
σAs c2
c1σAs σAssσε + c1c2

]
. If σ(Φ2) < 1, then the

dynamics (25) is stable. In what follows, we make analysis of the
matrix Φ2.

(i)If the design parameter 1 < ε < 1/(σAsσAss), then σε = ε and

Φ2 =

[
σAs c2
c1σAs σAssε+ c1c2

]
.

Furthermore

σ(Φ2) =
(σAs + σAssε+ c1c2)2

2
− σAsσAssε (26)

From (26), when ε satisfies (21) then σ(Φ2) < 1.

(ii)If ε ≤ 1, then σε = 1. Clearly, when

σAs + σAss + c1c2 <
√

2

we remain have σ(Φ2) < 1.

REMARK 5. Unlike the previous control approaches using NN
and/or fuzzy systems [4, 5, 17], the robust output tracking con-
troller proposed here is easy to implement due to its linear control
architecture. The parameters in the proposed control have clear
physical meanings and the desired dynamic performance can be
achieved by tuning the design parameters.

4. CONCLUSION
The main contribution of this paper has presented robust design for
a general class of nonlinear systems non-affine in control by output

feedback. A novel high-gain filter has been constructed to gener-
ate a fast time-scale signal to estimate the modeling errors with-
out using NNs and/or fuzzy systems. Compared with the previous
adaptive controllers, the proposed controller is of great significance
in engineering practice due to its linear control architecture, high
dynamic performance and clear physical meanings. In the future,
investigation on a general class of nonaffine nonlinear systems will
be interesting research topics in this field.
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