
International Journal of Computer Applications (0975 – 8887)

Volume 119 – No.16, June 2015

21

An Approach for Query Optimization by using Schema

Object Base View

Dhaval Patel
Research Scholar, CSE Department

Parul Institute of Technolody,
Limda, Vadodara, India.

Pratik Patel
Asst. Prof., CSE Department
Parul Institute of Technolody,

Limda, Vadodara, India.

ABSTRACT

Mining of Data is the extraction of hidden prognosticative

information from large databases or set of data, is a strong

new technology with great prospective to help companies

focus on the most important information in their data base.

Query optimization is a purpose of many relational database

management systems. The query optimizer experiments to

dictate the most efficient way to implement a given query by

examining the possible query plans. There are different

techniques is given for optimizing query using schema based

and materialized views in data base namely- Query Graph,

Tableaus, Optimization of Queries having Aggregates. In this

paper we are using Different query optimization parameter

and create an effective approach by using this approach we

are reduce query execution cost, query space and more

effectible for the query.

The complexity of Queries severely increase the execution

cost of the queries and have a critical effect on performance

and productivity of decision support systems. It is required to

perform expensive join and aggregation operations frequently

on the databases. Now if they are not pre calculated in

advanced then it leads to reduce query performance. Schema

object improve query performance by pre calculating

expensive join and aggregation operations on the database

prior to execution and storing the results in the database.

Schema object define not only relationships, but also allow

you to recompute expensive joins and aggregations which

lead to optimized query performance in possible ways.

Schema object leads to the decrease Query processing cost

and Query Maintenance cost in terms of Time factor. Schema

object improve query performance by pre calculating

expensive join and aggregation operations on the database

prior to execution and storing the results in the database. The

big advantage of a Schema object based views is extremely

fast retrieval of aggregate data, since it is precomputed and

stored, at the expense of insert/update/delete so that it increase

query performance than the ordinary view and table. Schema

object based view is also called Materialized view.

Keywords

Query optimization, materialized view, Schema object base

view

1. INTRODUCTION
Predict future trends and behaviors, allowing businesses to

make proactive, knowledge-driven decisions is tooled by Data

mining[1]. The automated, potential inspects recommended

by data mining move beyond the analyses of past occurrences

provided by backward-looking tools typical of decision

support systems. Massive quantities of data already are

collected and refined by most companies. Data mining

techniques can be implemented promptly on existing software

and hardware platforms to strengthen the value of existing

information resources, and can be integrated with new

products and systems as they are brought on-line.

Query optimization is a consequence of many relational

database administration organizations. Query Optimization is

the procedure of choosing the most systematic technique to

accomplish a SQL statement. When the cost-based optimizer

was provided for the first time with Oracle7, Oracle supported

only standard relational data[2]. The introduction of objects

enlarged the maintained data types and functions. The aim is

to attempt them all out, but it requires deciding in what order.

What interchange of tastes will maximize the comprehensive

fulfillment of palate? Although much less pleasurable and

instinctive, that is the type of problem that query optimizers

are called to interpret. Given a query, there are many

programs that a database management system (DBMS) can

track to procedure it and manufacture its answer. All

programs are identical in terminology of their final output but

different in their value, i.e., the amount of time that they

require to pass.

2. QUERY FLOW
The first step in processing a query submitted to a DBMS is to

convert the query into a form usable by the query processing

engine. High- level query languages such as SQL represent a

query as a string, or sequence, of characters. Certain

sequences of characters represent different types of tokens

such as keywords, operators, operands, literal strings,

etc[1][2].

The primary job of the parser is to extract the tokens from the

raw string of characters and translate them into the

corresponding internal data elements for example relational

algebra operations and operands and structures for example

query tree, query graph. The last job of the parser is to check

the validity and syntax of the actual query string[3].

In second stage, the query processor applies instructions to the

internal data structures of the query to convert these structures

into complement, but more efficient representations. The rules

can be based upon mathematical models of the relational

algebra expression and heuristics, upon cost approximates of

different algorithms or techniques applied to operations or

upon the semantics within the query and the relations it

necessitates[4][5]. Selecting the absolute rules to apply, when

to apply them and how they are applied is the function of the

query optimization engine.

International Journal of Computer Applications (0975 – 8887)

Volume 119 – No.16, June 2015

22

Figure 1: Steps in query processing

The final step in processing a query is the evaluation phase.

The best estimation plan candidate generated by the

optimization engine is chose and then accomplished. Besides

processing a query in a simple sequential manner, some of a

query’s individual operations can be processed in parallel

either as unconventional procedures or as interdependent

pipelines of procedures or threads[6].

3. PROBLEM STATEMENT
With the dincreasing complexity of queries severely increase

the execution cost of the queries and have a critical effect on

performance and productivity of decision support systems ,

which increases time factor for database scanning as well time

factor for execution of it which degrades the performance of

queries.

In order to overcome these limitations it must require a

schema object based view as our proposed approach for

extremely fast retrieval of aggregate data, since it is

precomputed and stored, at the expense of insert/update/delete

so that it increase query performance than the ordinary view

and table.

ANALYSE AN APPROACH BY

EXAMPLE:

Figure 2: Analyse an Approach By Example[8]

We consider the following OLAP query Q1, which asks for

the total sales of the stores in the USA or Canada from 1996

to 1999 by state and year.

Q1: SELECT state, year, SUM(sa1es-dollar)

 FROM Sales, Store, Time

 WHERE Sales.storeid = Store.storeid AND

 Sales.timeid = Time.timeid

 AND (Store.nation = 'USA' OR Store.nation =

 'Canada') AND Time.year 2 1996 AND

 Time.year <= 1999 GROUP BY state ,Year

rw[Q1] has three query blocks, whose results are combined by

union. Each query block contains a different MV and

computes a part of the aggregate groups of Q1.

Specifically, the first query block computes from MVl the

total sales of the stores in the USA or Canada from 1997 to

1999 by state and year. The second and the third one use MV2

and MV3 respectively to compute the total sales of the stores

in the USA and Canada in 1996 by state. Since the three sets

of groups are disjoint and the union of them is equal to the set

of groups computed by Q1, we can obtain the same result of

Q1 by taking the union of them as in rw[Q1].[9][10]

The above query Q1 leads to the following drawbacks :

• It directly uses on Fact Table Sales which contains a

large amount of data in a complex structure so it

required more time for database scanning

• It will not support recomputation of join and

aggregation efficiently in order to get data with

multi dimensional

• Using of Fact table decreases the performance of

OLAP query.

4. WORKFLOW OF APPROACH
In order to achieve our goal of Optimizing performance of

queries, OLAP queries must be rewritten using Materialized

view and Dimension Hierarchies Lattice. This chapter focuses

proposed work and Implementation strategies.

Generate

database

Processing

Query Using

Non

Materialized

View

Query

Rewriting

Using Schema

Object Base

View

Result Analysis

Figure 3: Work flow Approach

1. Creating Database

2. Processing Query Using Non Materialized View and

Results analysis.

Create

databas

e

Data base

Apply the

query

 Results

Apply

Query

rewrite

algo.

Apply

Materi

alized

view

Apply

Query

Aggreg

ation

Algo.

Analysis of

Result

 Query to other

source

Store result

International Journal of Computer Applications (0975 – 8887)

Volume 119 – No.16, June 2015

23

3. Apply The Query Rewriting Method

using Materialized view to optimize

query

4. Result Analysis after Applying Materialized view

5. IMPLEMANTATION AND RESULT
We are using different parameter for query optimization like

as CPU cost, Input Output cost, Elimination of duplication

data. We are work in cluster index by using this cluster index

we are create Normal view and we are execute the query after

execution we are analysis the query execution cost and its

input and output cost. We are also analysis the query

performance and query execution estimation cost. By using

non schema object base view here is the different result for

the query optimization.

5.1 Approx. CPU cost of Non-Schema

object based view

Table 1: CPU cost

No. of Records Non materialized View

10000 5

20000 8

50000 10

100000 20

In cluster index we are creating a database. We are using non-

materialize view (Non schema object base view) and fire the

query and analysis the estimation for this query. We are also

analysis the CPU estimation cost.

In this table we are enter the 10000, 20000, 50000 and 100000

records then its estimation cost is 5, 8, 10 and 12.It is the

approx. CPU cost of non schema object base view.

5.1.1 Performance analysis of Non-

Materialized view & Expected Materialized

View in terms of CPU cost

Here display the query performance in graph .In this graph we

are display the without using materialize view query

performance graph. We are using non- materialize view and

analysis the result then performance graph is increase and I

expect we are using materialize view then query performance

graph is decrees.

In this graph blue line is display the using non- materialize

view Query performance CPU cost and red line is display

Expected Materialized View in terms of CPU cost.

5.2 Approx. IO cost of Non-Schema

object based view

Table 2: Input/output cost

No. of Records Non materialized View

10000 10.1

20000 20.4

50000 40.3

100000 85.73

In cluster index we are creating a database. We are using non-

materialize view (Non schema object base view) and fire the

query and analysis the estimation for this query. We are also

analysis the input / output cost.

In this table we are enter the 10000, 20000, 50000 and 100000

records then its estimation cost is 10.1, 20.4, 40.3 and 85.73.It

is the approx. Input / Output cost of non schema object base

view.

5.2.1 Performance analysis of Non-

Materialized view & Expected Materialized

View in terms of IO cost

Here display the query performance in graph .In this graph we

are display the without using materialize view query input /

output cost in graph. We are using non- materialize view and

analysis the result then performance graph is increase and I

expect we are using materialize view then query input output

cost is decrees.

In this graph blue line is display the using non- materialize

view Query performance input / output cost and red line is

display Expected Materialized View in terms of input / output

cost.

International Journal of Computer Applications (0975 – 8887)

Volume 119 – No.16, June 2015

24

6. CONCUSION AND FUTURE WORK
We proposed a new approach to rewrite a given query using

schema object based existing in databases. We presented

conditions for usability of MVs in rewriting queries and

proposed a rewriting algorithm consisting of three main steps.

In the first step, it selects MVs that will be used in rewriting

and determines query regions for them. Previous approaches

focus on optimization of query using aggregation and also

works on single block of query while here we present

usability of schema object as addition with existing work and

will also works on multi block query. In the second step, it

generates query blocks for the selected MVs using their query

regions. The last step integrates the query blocks into a final

rewritten query It utilizes a much broader class of MVs and

yields more general types of rewritings than other previous

approaches can do.

Future work involves the implementation of proposed

approach and analyze the comparisons with the existing work

.In this our future plans include extending the proposed

rewriting method to deal with more general and complex

queries and integrating the method with the process of query

Optimization.

7. REFERENCE
[1] Amol Deshpande, Lisa Hellerstein “Flow Algorithms for

Parallel Query Optimization” IEEE 2008.

[2] Joshi Janki, “An Analysis on Query Optimization in

Distributed Database” International Journal of Modern

Trends in Engineering and Research 2014.

[3] T.Nalini, Dr. A.Kumaravel, Dr.K.Rangarajan “A

comparative study analysis of materialized view for

selection cost” International Journal of Computer

Science & Engineering Survey (IJCSES) Vol.3,

No.1, February 2012.

[4] A. Lee, A. Nica, and E. Rundensteiner, “The EVE

approach view synchronization in dynamic distributed

environments”, In IEEE Transactions and Data

Engineering, 14, 2002.

[5] Garima Thakur, Anjana Gosain “ A Comprehensive

Analysis of Materialized Views in a Data Warehouse

Environment” (IJACSA) International Journal of

Advanced Computer Science and Applications, Vol. 2,

No. 5, 2011

[6] Deepika Kirti, Jaspreeti Singh “Assortment of

Materialized View: A Comparative Survey in Data

Warehouse Environment”International Journal of

Computer Applications (0975 – 8887) Volume 96– No.7,

June 2014

[7] Ravindra N. Jogekar, Ashish Mohod “Design and

Implementation of Algorithmsfor Materialized View

Selection and Maintenance in Data Warehousing

Environment” International Journal of Emerging

Technology and Advanced Engineering Volume 3, Issue

9, September 2013

[8] S. Chen, X. Zhang, and E. Rundensteiner, “A

compensation based approach for view maintenance in

distributed environments”, In IEEE transactions and data

engineering, 18, 2006.

[9] Madhu Bhan, T.V.Suresh Kumar, K.Rajanikanth

“Materialized view size estimation using sampling”

IEEE International Conference on Computational

Intelligence and Computing Research 2013 IEEE

[10] Lijuan Zhou1,Min Xu ,Qian Shi ,Zhongxiao Hao ,

”Research on Materialized Views Technology in

DataWarehouse” Beijing Educational Committee science

and technology development plan project 2010.

IJCATM : www.ijcaonline.org

