
International Journal of Computer Applications (0975 – 8887)

Volume 119 – No.14, June 2015

33

Model Transformation: Concept, Current Trends

and Challenges

Pallavi Kalyanasundaram
K.K.W.I.E.E.R., Nasik

Maharashtra, India

Sunita P. Ugale
K.K.W.I.E.E.R., Nasik

Maharashtra, India

ABSTRACT

Model Driven Engineering (MDE) is gaining popularity as an

alternative to the code-centric software development

approach. Model Transformation (MT) is one of the main

components of MDE. MT can be visualized as a program with

models as inputs. Model evaluation and processing is

automated by a Model Transformation tool. In this paper, we

walk through the terminologies involved in MT and elaborate

the benefits of MT with practical usage scenarios. The paper

highlights the most recent challenges faced in the process to

make model transformation more sophisticated. The intent of

the paper is to portray a complete picture of model

transformation in a way to relate the practical

implementations with respect to the theoretical aspects of MT.

The paper concludes by putting lights on some of the current

trends in the field and the areas in model transformation

where significant contribution is the needed.

General Terms

Modeling and Simulation, Software Development, Software

Design Methodologies.

Keywords

Model Driven Engineering, Model Transformation, Model

Transformation languages.

1. INTRODUCTION
The concept of software abstraction persists from the time

when researchers felt the need to abstract/transform

binary/machine language to a higher level language for their

better visualization and understanding. Today, replicating the

real world scenarios in terms of models is becoming popular

as it gives a better conceptual view of the undertaken

application specific problem thereby increasing the level of

abstraction. These models are further processed or

information is extracted from these models for application

development. This software engineering methodology is

known as Model Driven Engineering (MDE).

Model-driven engineering technologies offer a promising

approach to address the inability of third-generation languages

to alleviate the complexity of platforms and express domain

concepts effectively [1]. MDE promises gains in productivity,

interoperability, maintainability and portability [2]. The

underlying concepts in MDE include 1) Domain Specific

Modeling 2) Modeling Language 3) Meta-Modeling 4) Model

Transformations 5) Code generation. A conceptual overview

of MDE is shown in Fig 1.

As highlighted in Fig 1, the gist of MDE is the transformation

of input model into output model or code depending upon the

application. MDE is attracting more and more users as it

automates the process of software development to a great

extent by using model transformation tools. The automation

part of MDE lies inside the transformation block. As seen

from Fig 1, models are represented by using a modeling

language, example, Universal Modeling Language (UML).

The modeling languages can be domain specific like

MATLAB Simulink. Every ML is defined using a metamodel.

A metamodel can be considered as the grammar of a ML.

The transformation of models is performed using a

transformation language. Examples of transformation

languages include: ATL (ATLAS Transformation Language),

QVT (Query/View/Transformation) etc. The transformation

description is specified by the metamodel. The transformation

rules map the input metamodel to the output metamodel. The

transformation rules are specified in the transformation

language. Code can also be considered as a special type of

model. The auto-generated code after transformation may be

platform specific or generic as per requirement. Embedded

Coder tool from MathWorks automatically generates C/C++

codes optimized for embedded processors and various other

platforms [3].

Section 2 discusses the model transformation process in detail

with the help of a block diagram. It specifies the

terminologies which are frequently used while dealing with

model transformations. It also describes the uses of model

transformation along with one practical usage scenario for

each. This is followed by a review of some current work

related to model transformations with respect to the need for

implementation, contribution and further challenges.

2. MODEL TRANSFORMATION (MT)
Model transformation is the heart of Model Driven

Engineering. Model transformation tools automate the process

of transformation of input models to desired output models.

[4] Talks about the practices followed in the MDE industry

which includes some survey results after interviewing many

experts in the fields. The results demonstrate that 72%

respondents use model to model transformation and 88 %

incorporate automatic code generation in the application

development process. These statistics state the significance of

model transformation.

Model Transformation has its roots in compiler designing. [5]

Mentions that an MDE developer needs to have both compiler

development as well as abstraction skills. The terminologies

that a designer should be well-versed while developing a

model transformation tool is described in detail in this section.

2.1 Concept and Terminologies
Fig 2 explains the model transformation process. The flow of

the whole process is indicated by arrows in Fig 2. The

significance of each block in Fig 2 is described next. This

section tries to cover the common terminologies and concepts

around which model transformation revolves.

International Journal of Computer Applications (0975 – 8887)

Volume 119 – No.14, June 2015

34

Modeling Language: It is the language in which models are

represented. Modeling languages can be domain specific.

They formalize the structure, behavior and requirements of a

particular domain [1]. Examples include: UML [6], MATLAB

Simulink [7], SysML[6], CPN (Colored Petri nets) [8] etc.

Source model and target model are represented using

modeling languages.

Fig 1: Model Driven Engineering - Conceptual Overview

Metamodel: As stated in Section 1, a metamodel can be

considered as the grammar of a modeling language.

Metamodeling is an architectural abstraction that provides the

foundations for construction, manipulation and validation of

models [6]. [7] Shows an excerpt from the Simulink

metamodel which gives an idea to the Simulink users to

visualize a metamodel.

Model Transformation Rule: These rules define the relation

between the constructs in the source and target models which

varies depending on the application. These rules are written in

model transformation language. These rules specify “what”

needs to be transformed to “what”. [7] Uses graph

transformation rules to repair Simulink models.

Model Transformation Description: It specifies “how” the

transformation rules are executed to complete the

transformation process. It is the one of the main components

of the model transformation process as shown in Fig 2.

Platform Independent Model (PIM): The models which are

not intended for a specific platform. The information about

the platform in not present in the model.

Platform Specific Model (PSM): The models which are

intended for a specific platform. The information about the

platform is present in the model itself.

Model Driven Architecture (MDA): A software design

approach launched by Object Management Group. It is used

to transform the PIM to PSM.

Technical Space: Also known as technological space, it

represents the associated concepts, knowledge, tools and

required skills in the given context. Examples include: Model

Driven Architecture (MDA) or XML-based Languages.

Endogenous transformation: The transformation in which the

input and output modeling languages (more specifically

metamodels) are same. This transformation can also be

termed as rephrasing transformation [5].

Fig 2: Model Transformation Process

International Journal of Computer Applications (0975 – 8887)

Volume 119 – No.14, June 2015

35

Exogenous transformation: The transformation in which the

input and output modeling languages (more specifically

metamodels) are different. This transformation is also called

translational transformation [5].

Bidirectional Transformation: The transformation of source

model to target model and vice versa can be achieved.

Declarative MT Approach: They define the relation between

the source and target model. “What needs to be transformed

into what” [9].

Operational MT Approach: They specify how the

transformation has to be executed rather than the what aspect.

Rule scheduling and control: There may be more than one

transformation rule for a given transformation process. The

order in which the transformation rules are executed or

scheduled must also be defined. The schedule can be

controlled implicitly or explicitly.

Model Transformation Languages: Programming languages

can be used for performing model transformations. But a

dedicated domain-specific programming language would be

much preferable as the technical space would reduce. These

domain specific languages are nothing but model

transformation languages.

There are many popular model transformation languages. Few

of them are mentioned below: Atlas Transformation Language

(ATL)[10], Query/View/Transformation (QVT)[6], etc.

Eclipse Modeling Framework (EMF): It is a modeling

framework and provides code generation facility. A structured

data model aids to build the tools and applications.

2.2 Uses of Model Transformation

2.2.1 Automatic Code Generation from models:
One of the important uses of model transformation is to

autogenerate code from models. These tools are termed as

code generators. Most companies appear to experience

productivity increases of between 20-30% [4] by

incorporating automatic code generation from models in their

software development process. As mentioned in Section 1,

the Embedded Coder tool from Mathworks is a perfect

example in this context. Another example include an open

source code generator, Acceleo, which uses any EMF models

to auto-generate code like Java, PHP, Python etc. [8] uses

Acceleo tool to generate XML-like text document for colored

Petri nets (CPN) from UML behavioral State machine

diagrams (SMDs).

2.2.2 Improving Quality of Models:
Model transformations are used for improving the quality of

models. Here, the models are at same level of abstraction and

are modified for the non-functional properties. This can be

categorized as an example of Endogenous transformation. [7]

Proposes a tool which identifies and rectifies the MATLAB

Simulink models if they are not complaint with the MAAB

(MathWorks Automotive Advisory Board) standards. These

guidelines need to be followed so that the same standards are

followed across by all MATLAB Simulink users. Some

violations handled includes identifying and converting three

inputs to the Simulink product block into two cascaded

product blocks with two operators each. It also checks for the

line intersections which are corrected by changing the port

order of inputs/outputs.

2.2.3 Code to model conversion:

This is a reverse engineering concept where model is

generated from the code using some tools. Many companies

refrain to adopt the MDE practice because of the huge legacy

codes. [11] Has built a proof of concept of a tool which

converts the legacy C codes to MATLAB Simulink models.

C2M tool, as they mention, is a static C code analysis tool

which converts the C code to an intermediate XML

representation. The XML file is used to generate an m-script

(.m (MATLAB) file) which is executed on MATLAB to

generate Simulink models. The programming language ‘C’ is

used to handle all the transformations instead of a standard

model transformation language.

2.2.4 Model to Model Transformation:

This process involves the conversion from one modeling

language to another depending upon the application. The

model transformation here means the mapping of the two

metamodels (input and output models) based on the

transformation rules. Example: [6] converts models

represented in SysML to UML. It illustrates a methodological

template for Model Driven System Engineering (MDSE) for

the development of a software-intensive system in the naval

electronic warfare domain. The input model is represented

using SysML modeling language which is converted to UML

with the help of transformation rules specified using QVT

transformation language. Another example can be Simulink to

UML transformation for embedded control software

application [13].

2.2.5 Model Merging:

Input to the transformation tool can be two or more

metamodels represented using same or different modeling

languages. The tool combines these metamodels to form one

metamodel. Model merging is used in aspect oriented

modeling or aspect weaving [5].

2.3 Current Trends and Challenges in

Model Transformation
The applications mentioned below are the recent contributions

made by different researchers in the field of MDE related to

model transformation. The applications are reviewed in a way

that the terms used in model transformations are highlighted

so as to bridge the gap between the theoretical and practical

aspects of MT. The challenges faced previously, work done in

the direction to overcome those challenges and the future

challenges that need to be addressed are also mentioned.

As mentioned in Section 2.2.3 Automatic code generation in

MDE seems to increase productivity. However, modifications

made to the auto-generated code are not reflected in models

unless done manually. Moreover, extensive manual effort and

time is needed to convert the legacy application codes to

models. The above challenges are results of survey conducted

by [2]. Proceeding towards overcoming these challenges, [12]

have developed a proof of concept of tool which can

automatically convert code to model. C2M tool description

was elaborated in section 2.2.3. The model generated by C2M

tool needs manual verification which can become tedious if

models are huge. The further challenge in this direction could

possibly include reducing the complexity of huge models.

For the application mentioned in Section 2.2.4 proposed by

[6] elaborates the transformation of PIM represented using

SysML to PSM which is represented using UML. The

transformation approach is operational and implemented using

International Journal of Computer Applications (0975 – 8887)

Volume 119 – No.14, June 2015

36

QVT. The need is for analysis and production of complex

system for which the template is proposed. To blend model

checking and validation with the template would be a

challenging task ahead.

[7] Corrects for MAAB guidelines violations of

MATLAB/Simulink models as briefed in 2.2.3. Graphical

transformation rules are used to complete the transformation.

The complexities of these rules are directly proportional to

models. They use declarative transformation approach.

An MDE ‘guru’ needs to have good abstraction, compiler

development and domain specific skills which follow huge

training cost. Hence, the MDE and domain experts work

together as a team which leads to the success of MDE practice

in an organization. [14] Mentions that the domain experts

give transformation examples easily than complete and

consistent transformation rules. Model Transformation by

Example (MTBE) is performed wherein the domain experts

give the transformation examples from which transformation

rules are extracted automatically. Operational transformation

rules are generated but the limitation is that, MTBE approach

cannot perform transformations in which new values are

computed.

In order to trace the affected blocks in a complex model by

the change in some parameter of the system, [11] have

proposed automatic analysis of Simulink models. The affected

blocks can be visualized in Simulink or external graphical

editor. They compare two approaches for model analysis: 1)

model transformation approach using EMF and 2) database

method which uses database queries for model analysis. ATL

transformation language is used in model transformation

approach. They specify that hybrid approach of combining

both the database and MT approach is better in comparison to

model transformation alone.

3. CONCLUSION
Model driven engineering has potential features to replace the

traditional software development process. Therefore,

knowledge of Model Transformation becomes very essential.

A complete roadmap of model transformation is discussed

here. There are very few terminologies around which model

transformation revolves. These terminologies were defined

with some specific examples to get a clear understanding. The

use of model transformation along with its practical

implementation is also elaborated. It is observed that,

embedded software applications development is one of the

major application areas where model transformations play an

important role.

Various applications were studied with a few mentioned in

Section 2.3. Some of the most prominent challenges faced

today include model checking and validation of complex

models. It is observed that MATLAB Simulink is widely used

in the automotive industry. Lot of work related to reducing the

complexity of these models is being undertaken. Domain

specific modeling is a current trend generally optimized for a

particular application domain. Generalization of these models

across different domains is a great challenge ahead.

4. REFERENCES
[1] Schmidt, D. C. (2006). Guest editor's introduction:

Model-driven engineering. Computer, 39(2), 0025-31.

[2] Hutchinson, J., Whittle, J., & Rouncefield, M. (2014).

Model-driven engineering practices in industry: Social,

organizational and managerial factors that lead to success

or failure. Science of Computer Programming, 89, 144-

161.

[3] Embedded Coder:

http://in.mathworks.com/products/datasheets/pdf/embedd

ed-coder.pdf

[4] Whittle, J., Hutchinson, J., & Rouncefield, M. (2014).

The state of practice in model-driven

engineering. Software, IEEE, 31(3), 79-85.

[5] Biehl, M. (2010). Literature study on model

transformations. Royal Institute of Technology, Tech.

Rep. ISRN/KTH/MMK.

[6] Bocciarelli, P., D’Ambrogio, A., Caponi, E., Giglio, A.,

& Paglia, E. (2014). A Methodological Template for

Model Driven Systems Engineering. In INCOSE Italia

Conference on Systems Engineering (CIISE 2014) (pp.

48-58).

[7] Stürmer, I., Dziobek, C., & Pohlheim, H. (2008, April).

Modeling Guidelines and Model Analysis Tools in

Embedded Automotive Software Development.

InMBEES (pp. 28-39).

[8] André, E., Benmoussa, M. M., & Choppy, C. (2014).

Translating UML state machines to coloured Petri nets

using Acceleo: A report. arXiv preprint

arXiv:1405.1112.

[9] Mens, T., & Van Gorp, P. (2006). A taxonomy of model

transformation.Electronic Notes in Theoretical Computer

Science, 152, 125-142.

[10] Jouault, F., Allilaire, F., Bézivin, J., & Kurtev, I. (2008).

ATL: A model transformation tool. Science of computer

programming, 72(1), 31-39.

[11] Merschen, D., Gleis, R., Pott, J., & Kowalewski, S.

(2013). Analysis of Simulink Models Using Databases

and Model Transformations. In Model-Based

Methodologies for Pervasive and Embedded

Software (pp. 69-84). Springer Berlin Heidelberg.

[12] Smitha, K. P., Ranadive, P., Boggarapu, N., & Rakesh,

A. (2015). Automatic C to Simulink Model Converter

(C2M) Tool (No. 2015-01-0164). SAE Technical Paper.

[13] Kamiyama, T., Soeda, T., Yoo, M., & Yokoyama, T.

(2010). A Simulink to UML Transformation Tool for

Embedded Control Software Design. In Proceedings of

2010 International Conference on Computer and

Software Modeling (pp. 93-97).

[14] Saada, H., Dolques, X., Huchard, M., Nebut, C., &

Sahraoui, H. (2012).Generation of operational

transformation rules from examples of model

transformations (pp. 546-561). Springer Berlin

Heidelberg.

[15] Stürmer, I., & Travkin, D. (2007). Automated

Transformation of MATLAB Simulink and Stateflow

Models. In Proc. of 4th Workshop on Object-oriented

Modeling of Embedded Real-time Systems (pp. 57-62).

[16] Silva, G. C., Rose, L., & Calinescu, R. (2014). A

Qualitative Study of Model Transformation

Development Approaches: Supporting Novice

Developers. InProceedings of the 1st International

Workshop in Model-Driven Development Processes and

Practices (MD2P2) (pp. 18-27).

International Journal of Computer Applications (0975 – 8887)

Volume 119 – No.14, June 2015

37

[17] France, R., & Rumpe, B. (2007, May). Model-driven

development of complex software: A research roadmap.

In 2007 Future of Software Engineering (pp. 37-54).

IEEE Computer Society.

[18] Tamura, M., Kamiyama, T., Soeda, T., Yoo, M., &

Yokoyama, T. (2012). A Model Transformation

Environment for Embedded Control Software Design

with Simulink Models and UML Models. In Proceedings

of the International MultiConference of Engineers and

Computer Scientists (Vol. 1).

[19] Zhang, L., Glab, M., Ballmann, N., & Teich, J. (2013,

September). Bridging algorithm and ESL design:

Matlab/Simulink model transformation and validation.

In Specification & Design Languages (FDL), 2013

Forum on (pp. 1-8). IEEE.

[20] Favre, J. M. (2004, October). Towards a basic theory to

model model driven engineering. In 3rd Workshop in

Software Model Engineering, WiSME (pp. 262-271).

[21] Niere, J., Schäfer, W., Wadsack, J. P., Wendehals, L., &

Welsh, J. (2002, May). Towards pattern-based design

recovery. In Proceedings of the 24th international

conference on Software engineering (pp. 338-348).

ACM.

[22] Giese, H., Meyer, M., & Wagner, R. (2006). A prototype

for guideline checking and model transformation in

Matlab/Simulink. In Proc. of the 4th International Fujaba

Days (pp.56-60).

IJCATM : www.ijcaonline.org

