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ABSTRACT 

Random number generators (RNGs) is an underlying technology to 

accomplish highly secure systems. Therefore, for any security or 

simulation, systems should be associated with RNGs. Many of 

RNGs are currently in use, but the main defects in the available 

RNGs are the short period of its repeat cycle length and the 

predefined values of static factors as well. In this paper, we will try 

to suggest a method to extend the periodic cycle of the repetition 

and to use dynamic factors instead of static factors based on the 

seed values for the sake of security enhancement.  
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1. INTRODUCTION 
The random number generators (RNGs) are useful for a variety of 

purposes, such as [1]:  

a) Generating data encryption keys. 

b) Simulating and modeling complex phenomena. 

c) Selecting random samples from larger data sets. 

d) Testing problem generation for the performance 

evaluation of computer algorithms. 

e) Statistically sampling, and so on.  

Moreover, nowadays, many of daily activities in security need 

RNGs to perform their tasks. For example, secret and public-key 

generation and challenge-response authentication require 

unpredictable random numbers. Therefore, despite the large 

amount of theoretical research already done on this subject, many 

of the generators currently in use, for example the RNGs are an 

underlying technology to accomplish highly secure systems. But 

the main defects in the available RNGs are [1, 2]: 

 The short periods of its repeat cycle length. 

1) Sometimes such available RNGs do not satisfy the desire 

needs for specific applications. 

2) The predefined values of static factors may reduce the 

associated security. 

In this paper, we will try to suggest a new method to extend the 

periods of repeat cycle length to generate random numbers. The 

method can be used for the specific applications by determining the 

number of digits. It also uses dynamic factors based on the seed 

value(s) to enhance the associated security. The paper has been 

organized in a flexible manner. Section II focuses on the 

background related to the previous work. Section III explains a 

proposal method to enhance the security produced. Section IV 

discusses the analysis & complexity for the proposed method and 

the experimental result shown in section IV. Conclusion & future 

research assignments will be highlighted in section V. 

 

2. BACKGROUND 
Indeed, all RNGs are based upon specific mathematical 

algorithms, which are repeatable and sequential. As such, it would 

be satisfying to generate random numbers from a process that is 

according to well-established understanding. So, to be useful in 

simulation, a sequence of random numbers R1, R2 must have two 

important properties: uniformity and independence. That is, each 

random number Ri is an independent sample drawn from a 

continuous uniform distribution between 0 and 1(mean 1/2, 

standard deviation). Some consequences of the uniformity and 

independence properties are as follows [2, 3]: 

a) Uniformity: if the interval [0, 1] is divided into n sub-intervals 

of equal length, the expected number of observations in each 

interval N/n, where N is the total number of observations. The 

distribution of numbers in the sequence should be uniform; that is 

the frequency of occurrence of each number should be the same. 

b) Independence: the probability of observing a value in a 

particular interval is independent of the previous values drawn. 

This means that no value in the sequence can be inferred from the 

others. 

Mainly there are many methods used to generate random 

numbers. In the most methods the modulus (m) should be as large 

as possible, because a small set of numbers make the outcome 

easier to predict. We will mention some of them as follows. [2, 4, 

5, 6]: 

2.1 Linear Congruential Method (LCM)   
This method is used to generate a sequence of integers X1, 

X2,…Xn between 0 and m-1 followed by a recursive relationship 

as in Eq. (1):  

mcaXX ii mod)( 1  
                            (1) 

Such that the parameters as: 

  X0 =seed (or starting value) 

  m  =modulus(or divisor) 

  a   =multiplier 

  c   =increment 

     Where m > 0 and a < m, c < m, X0< m 

The selection of the values for a, c, m, and X0 drastically affects 

the statistical properties and the cycle length. The random integers 

Xi are being generated in the interval [0, m-1]. The random 

numbers generated are then calculated as in Eq. (2): 

kifor
m

X
R i

i ,....,2,1,                   (2) 

Therefore, the criteria of good RNG is to satisfy maximum 

density and it leaves no large gaps on [0, m-1]. Such that 

maximum density means that all numbers between [0, m-1] 
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should appear in predictable manner. According to [2] to achieve 

the maximum density and avoid cycling we have to choose the 

suitable values for the factors a, c, m and X0. 

There are main deficiencies in the LCM, if an opponent knows that 

LCM is being used and if the parameters are known, and once a 

single number is discovered, then all subsequent numbers can be 

easy to know. Even if the opponent knows only that LCM is being 

used, then the knowledge of a small part of sequence is sufficient 

to determine the parameters of the algorithm. Suppose that the 

opponent is able to determine values for X0, X1, X2, and X3. Then  

mcaXX mod)( 01                                           (3) 

mcaXX mod)( 12                                           (4) 

mcaXX mod)( 23                                           (5) 

Those equations (3), (4) and (5) can be solved to get the parameters 

a, c, and m. 

2.2 Combined Linear Congruential 

Generators 
This method obtains the longer period generator because it 

combines two or more multiplicative congruential generators [2, 

7]. 

 Let Xi,1, Xi,2, …, Xi,k be the ith output from k different 

multiplicative congruential generators. 

 The jth generator X0,j: 

 
iiiiji mcXaX mod)(,1 

                 (6) 

 Such that mj is a prime modulus, aj is multiplier, and mj -1 

is a period. 

 Produces integers Xi,j approximate ~ Uniform in [0, mj – 

1]. 

 
1,,  jiji XW approximate ~ Uniform on integers in [0, 

mj - 2]. 
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Then the maximum possible period shown in Eq (8) as follows: 
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2.3 RNG using Cipher Text 
This method uses any cipher text to generate random numbers by 

converting the cipher text to binary digits and selects suitable 

numbers of binary digits to be converted to decimal digits. But the 

main defects are that it needs more calculation [3]. 

3. PROPOSED METHOD 
The main idea of the suggested method is to use combined linear 

congruential generators based on generating the parameters ai, ci, 

and mi dynamically depending on the user seed(s) named  as (X0,j). 

It also uses the concatenation of several generators numbers 

dynamically (CONCATENAT (Xi) such that i=1,..k). Hence, 

started point i changes periodically. 

    The algorithm becomes as follows: 

1- Select seeds (X0,j) such that j=1 to k. 

2- Compute  

       aj = geta (X0,j + n)  

    where n is the number required & aj is prime  

     number ≈=1+4k, and k is an integer.  

3- Compute the  

       cj = prime (aj) 

4- Compute 

      mj = getm (aj+ n) , mj =2b 

      such that b is integer number. 

5- For j= 1 to k,  

        
jjjijj mcXaX mod)( ,   

         
jji XX  ,1  

     where i = 0  to n, and k is an integer number     

     depends on security required. 

6- Compute  

       Xi+1 = CONCATENATE (X j) for k's values, 

              such that j position change dynamically. 

7- Set i= i+1 

8- If  i<=n go to  step 5. 

9- Stop. 

4. ANALYSIS AND COMPLEXITY STUDY 
In linear congruential method, the Eq. (1) is used to generate the 

RNGs. Thus the selection of the values for the parameters a, c, 

and m drastically affect the statistical properties and the cycle 

length.  

Meanwhile, in combined linear congruential generators, using the 

Eq. (6) with the same parameters a, c, and m which are used as a 

partial part and the selection of the values for the parameters 

drastically affects the statistical properties and the cycle length. 

Whereas, the concatenation or addition of two or more random 

numbers is a method to produce a new random number with the 

same statistical properties and to increase the cycle length. The 

time complexity to concatenate two or more random numbers 

always less than the addition of the same numbers. Therefore, it 

can be said that the time complexity is less than the current 

combined method.   

5. EXPERIMENTAL RESULTS 
This section explains some examples for experimental results for 

different essential seeds using our generated simulation software 

according to the proposed algorithm mentioned in section III. As 

a result, three different experiments have been done with different 

user seeds, it gives different outputs. The result shows that, there 

are no reputation value and the cycle period is better than the 

other algorithms. Table (1) shows the result for 50 values using 

four essential seeds (12, 129, 512, 985).  Table (2) shows the 

result for 50 values using four essential seeds (55, 278, 985, 

1299); whereas, Table (3) shows the result for 50 values using 

four essential seeds (980, 1200, 2440, 3600).  
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Table (1): Data Generated for 4 values of Essential Seeds (12, 

129, 512, 985) & 50 Output 

 

Generated value  Generated value  Generated value  

9723257448 3223719403657 2910812053664 

845710962745 5714411692272 4035713082345 

53841741368 2836918082457 171846172048 

4834918283081 7718816373216 10041600121 

1053524493872 5621314521769 1014208934016 

449715683929 651366653648 644611802505 

12526815572768 116256161593 254812651376 

7269601193 2124415813568 6033718401305 

113882011152 806110921929 453489652320 

4911443065 7325615692976 884371228617 

696817573120 76655762777 334012732752 

961734681353 9342819091872 20505136441 

1214641361480 10429386041 11740414212672 

923051872153 815041833256 112285356777 

135082931424 3648916881913 411606412080 

12014910043561 372285732224 1083316321625 

145618811856 37011777342051  

  

Table (2): Data Generated for 4 values of Essential Seeds (55, 

278, 985, 1299) & 50 Output. 

 

Generated value  Generated value  Generated value  

1061954483924 1873703657741 15095136642246 

3175027452551 9877922723960 991382345585 

2069593682922 1353262457987 21872320481180 

1393430811709 1343273216782 11130121703 

2102738723776 5158176917 1907940164018 

21588639291699 7473936483556 9121025053701 

1182152768342 19184615933975 668111376520 

34901193473 17473535682042 3993413053435 

18624311522860 4389819292621 1026152320926 

15126306579 1785929762384 2114106171953 

15887931201090 11947027772099 4225927523188 

2515013532565 8650318722534 959424411303 

348434801176 16384241361 14251126721162 

1995181531787 154787256444 2037387773533 

7090314241070 17522219133551 146912080992 

11576235613889 12665522242258 235416252499 

1080318562820 33136665364821  

 

Table (3): Data Generated for 4 values of Essential Seeds 

(980, 1200, 2440, 3600) & 50 Output. 

 

Generated value  Generated value  Generated value  

379762568013337 4060169224487676 781155722497981 

3428362438641672 45392175532097 11321620544692 

765102142814373 331654427285504 3765211367696873 

3836321242722540 3309240547777805 644220072244856 

1445215344493329 398032454402980 221366137373941 

360424489685872 168530895931705 1564319640488156 

3789274111613021 400433363446504 389287333934049 

6841588967828 1725169352417093 1844281653524704 

1653355346574217 1340164417768140 2221256577851821 

1220293678006616 1381308143854257 353213168967044 

118133096015637 2132164876882000 3669350525776217 

3164265256482492 27011877734205 484100050165192 

325277774253953 23636047840628 268531762017765 

372304079765952 3637294525457705 2940212474727596 

113367726011981 179616241842232 1317196143213137 

308426045444964 214190956575285 66028966216176 

155718734561489 75136665364812  

6. CONCLUSION AND FUTURE WORK 
This paper suggests Dynamic Random Number Generator Based 

on User Seed(s). The suggested method uses the idea of combined 

linear congruential generators based on generating the parameters 

ai, ci, and mi dynamically depending on the user seed(s). It is 

difficult to detect three factors used to generate random numbers 

if the seeds change periodically, also it is difficult to detect the 

next generated random number based on the first one. Using user 

seeds to generate factors which are used to generate random 

numbers will enhance the security and accuracy. The result shows 

that there are no reputation value and the cycle period is better 

than the other algorithms. In the future the method needs software 

application can be compared with other methods, also we intend 

to use this method in reducing the risk in key management 

research.  
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