
International Journal of Computer Applications (0975 – 8887)

Volume 118 – No. 3, May 2015

25

Dynamic Random Number Generator based on User

Seed(s)

Saleh N. Abdullah, Ph.D
Assistant Prof., Khawlan College, Sana'a University,

Yemen.

Sharaf A. Alhomdy , Ph.D
Assistant Prof. & Vice-Dean, Faculty of Computer

and Information Technology, Sana'a
University,Yemen.

ABSTRACT

Random number generators (RNGs) is an underlying technology to

accomplish highly secure systems. Therefore, for any security or

simulation, systems should be associated with RNGs. Many of

RNGs are currently in use, but the main defects in the available

RNGs are the short period of its repeat cycle length and the

predefined values of static factors as well. In this paper, we will try

to suggest a method to extend the periodic cycle of the repetition

and to use dynamic factors instead of static factors based on the

seed values for the sake of security enhancement.

Keywords
Seed, Period, Static Factors, Dynamic Factors, RNGs, Security,

Simulation, LCM, Linear Congruential, Uniformity, Independence.

1. INTRODUCTION
The random number generators (RNGs) are useful for a variety of

purposes, such as [1]:

a) Generating data encryption keys.

b) Simulating and modeling complex phenomena.

c) Selecting random samples from larger data sets.

d) Testing problem generation for the performance

evaluation of computer algorithms.

e) Statistically sampling, and so on.

Moreover, nowadays, many of daily activities in security need

RNGs to perform their tasks. For example, secret and public-key

generation and challenge-response authentication require

unpredictable random numbers. Therefore, despite the large

amount of theoretical research already done on this subject, many

of the generators currently in use, for example the RNGs are an

underlying technology to accomplish highly secure systems. But

the main defects in the available RNGs are [1, 2]:

 The short periods of its repeat cycle length.

1) Sometimes such available RNGs do not satisfy the desire

needs for specific applications.

2) The predefined values of static factors may reduce the

associated security.

In this paper, we will try to suggest a new method to extend the

periods of repeat cycle length to generate random numbers. The

method can be used for the specific applications by determining the

number of digits. It also uses dynamic factors based on the seed

value(s) to enhance the associated security. The paper has been

organized in a flexible manner. Section II focuses on the

background related to the previous work. Section III explains a

proposal method to enhance the security produced. Section IV

discusses the analysis & complexity for the proposed method and

the experimental result shown in section IV. Conclusion & future

research assignments will be highlighted in section V.

2. BACKGROUND
Indeed, all RNGs are based upon specific mathematical

algorithms, which are repeatable and sequential. As such, it would

be satisfying to generate random numbers from a process that is

according to well-established understanding. So, to be useful in

simulation, a sequence of random numbers R1, R2 must have two

important properties: uniformity and independence. That is, each

random number Ri is an independent sample drawn from a

continuous uniform distribution between 0 and 1(mean 1/2,

standard deviation). Some consequences of the uniformity and

independence properties are as follows [2, 3]:

a) Uniformity: if the interval [0, 1] is divided into n sub-intervals

of equal length, the expected number of observations in each

interval N/n, where N is the total number of observations. The

distribution of numbers in the sequence should be uniform; that is

the frequency of occurrence of each number should be the same.

b) Independence: the probability of observing a value in a

particular interval is independent of the previous values drawn.

This means that no value in the sequence can be inferred from the

others.

Mainly there are many methods used to generate random

numbers. In the most methods the modulus (m) should be as large

as possible, because a small set of numbers make the outcome

easier to predict. We will mention some of them as follows. [2, 4,

5, 6]:

2.1 Linear Congruential Method (LCM)
This method is used to generate a sequence of integers X1,

X2,…Xn between 0 and m-1 followed by a recursive relationship

as in Eq. (1):

mcaXX ii mod)(1  
 (1)

Such that the parameters as:

 X0 =seed (or starting value)

 m =modulus(or divisor)

 a =multiplier

 c =increment

 Where m > 0 and a < m, c < m, X0< m

The selection of the values for a, c, m, and X0 drastically affects

the statistical properties and the cycle length. The random integers

Xi are being generated in the interval [0, m-1]. The random

numbers generated are then calculated as in Eq. (2):

kifor
m

X
R i

i ,....,2,1,  (2)

Therefore, the criteria of good RNG is to satisfy maximum

density and it leaves no large gaps on [0, m-1]. Such that

maximum density means that all numbers between [0, m-1]

International Journal of Computer Applications (0975 – 8887)

Volume 118 – No. 3, May 2015

26

should appear in predictable manner. According to [2] to achieve

the maximum density and avoid cycling we have to choose the

suitable values for the factors a, c, m and X0.

There are main deficiencies in the LCM, if an opponent knows that

LCM is being used and if the parameters are known, and once a

single number is discovered, then all subsequent numbers can be

easy to know. Even if the opponent knows only that LCM is being

used, then the knowledge of a small part of sequence is sufficient

to determine the parameters of the algorithm. Suppose that the

opponent is able to determine values for X0, X1, X2, and X3. Then

mcaXX mod)(01  (3)

mcaXX mod)(12  (4)

mcaXX mod)(23  (5)

Those equations (3), (4) and (5) can be solved to get the parameters

a, c, and m.

2.2 Combined Linear Congruential

Generators
This method obtains the longer period generator because it

combines two or more multiplicative congruential generators [2,

7].

 Let Xi,1, Xi,2, …, Xi,k be the ith output from k different

multiplicative congruential generators.

 The jth generator X0,j:


iiiiji mcXaX mod)(,1 

 (6)

 Such that mj is a prime modulus, aj is multiplier, and mj -1

is a period.

 Produces integers Xi,j approximate ~ Uniform in [0, mj –

1].


1,,  jiji XW approximate ~ Uniform on integers in [0,

mj - 2].

1mod)1(,

1

1





















 iji

jk

j

i mXX (7)

Then the maximum possible period shown in Eq (8) as follows:

1

21

2

)1)...(1)(1(





k

kmmm
P (8).

2.3 RNG using Cipher Text
This method uses any cipher text to generate random numbers by

converting the cipher text to binary digits and selects suitable

numbers of binary digits to be converted to decimal digits. But the

main defects are that it needs more calculation [3].

3. PROPOSED METHOD
The main idea of the suggested method is to use combined linear

congruential generators based on generating the parameters ai, ci,

and mi dynamically depending on the user seed(s) named as (X0,j).

It also uses the concatenation of several generators numbers

dynamically (CONCATENAT (Xi) such that i=1,..k). Hence,

started point i changes periodically.

 The algorithm becomes as follows:

1- Select seeds (X0,j) such that j=1 to k.

2- Compute

 aj = geta (X0,j + n)

 where n is the number required & aj is prime

 number ≈=1+4k, and k is an integer.

3- Compute the

 cj = prime (aj)

4- Compute

 mj = getm (aj+ n) , mj =2b

 such that b is integer number.

5- For j= 1 to k,

jjjijj mcXaX mod)(, 

jji XX  ,1

 where i = 0 to n, and k is an integer number

 depends on security required.

6- Compute

 Xi+1 = CONCATENATE (X j) for k's values,

 such that j position change dynamically.

7- Set i= i+1

8- If i<=n go to step 5.

9- Stop.

4. ANALYSIS AND COMPLEXITY STUDY
In linear congruential method, the Eq. (1) is used to generate the

RNGs. Thus the selection of the values for the parameters a, c,

and m drastically affect the statistical properties and the cycle

length.

Meanwhile, in combined linear congruential generators, using the

Eq. (6) with the same parameters a, c, and m which are used as a

partial part and the selection of the values for the parameters

drastically affects the statistical properties and the cycle length.

Whereas, the concatenation or addition of two or more random

numbers is a method to produce a new random number with the

same statistical properties and to increase the cycle length. The

time complexity to concatenate two or more random numbers

always less than the addition of the same numbers. Therefore, it

can be said that the time complexity is less than the current

combined method.

5. EXPERIMENTAL RESULTS
This section explains some examples for experimental results for

different essential seeds using our generated simulation software

according to the proposed algorithm mentioned in section III. As

a result, three different experiments have been done with different

user seeds, it gives different outputs. The result shows that, there

are no reputation value and the cycle period is better than the

other algorithms. Table (1) shows the result for 50 values using

four essential seeds (12, 129, 512, 985). Table (2) shows the

result for 50 values using four essential seeds (55, 278, 985,

1299); whereas, Table (3) shows the result for 50 values using

four essential seeds (980, 1200, 2440, 3600).

International Journal of Computer Applications (0975 – 8887)

Volume 118 – No. 3, May 2015

27

Table (1): Data Generated for 4 values of Essential Seeds (12,

129, 512, 985) & 50 Output

Generated value Generated value Generated value

9723257448 3223719403657 2910812053664

845710962745 5714411692272 4035713082345

53841741368 2836918082457 171846172048

4834918283081 7718816373216 10041600121

1053524493872 5621314521769 1014208934016

449715683929 651366653648 644611802505

12526815572768 116256161593 254812651376

7269601193 2124415813568 6033718401305

113882011152 806110921929 453489652320

4911443065 7325615692976 884371228617

696817573120 76655762777 334012732752

961734681353 9342819091872 20505136441

1214641361480 10429386041 11740414212672

923051872153 815041833256 112285356777

135082931424 3648916881913 411606412080

12014910043561 372285732224 1083316321625

145618811856 37011777342051

Table (2): Data Generated for 4 values of Essential Seeds (55,

278, 985, 1299) & 50 Output.

Generated value Generated value Generated value

1061954483924 1873703657741 15095136642246

3175027452551 9877922723960 991382345585

2069593682922 1353262457987 21872320481180

1393430811709 1343273216782 11130121703

2102738723776 5158176917 1907940164018

21588639291699 7473936483556 9121025053701

1182152768342 19184615933975 668111376520

34901193473 17473535682042 3993413053435

18624311522860 4389819292621 1026152320926

15126306579 1785929762384 2114106171953

15887931201090 11947027772099 4225927523188

2515013532565 8650318722534 959424411303

348434801176 16384241361 14251126721162

1995181531787 154787256444 2037387773533

7090314241070 17522219133551 146912080992

11576235613889 12665522242258 235416252499

1080318562820 33136665364821

Table (3): Data Generated for 4 values of Essential Seeds

(980, 1200, 2440, 3600) & 50 Output.

Generated value Generated value Generated value

379762568013337 4060169224487676 781155722497981

3428362438641672 45392175532097 11321620544692

765102142814373 331654427285504 3765211367696873

3836321242722540 3309240547777805 644220072244856

1445215344493329 398032454402980 221366137373941

360424489685872 168530895931705 1564319640488156

3789274111613021 400433363446504 389287333934049

6841588967828 1725169352417093 1844281653524704

1653355346574217 1340164417768140 2221256577851821

1220293678006616 1381308143854257 353213168967044

118133096015637 2132164876882000 3669350525776217

3164265256482492 27011877734205 484100050165192

325277774253953 23636047840628 268531762017765

372304079765952 3637294525457705 2940212474727596

113367726011981 179616241842232 1317196143213137

308426045444964 214190956575285 66028966216176

155718734561489 75136665364812

6. CONCLUSION AND FUTURE WORK
This paper suggests Dynamic Random Number Generator Based

on User Seed(s). The suggested method uses the idea of combined

linear congruential generators based on generating the parameters

ai, ci, and mi dynamically depending on the user seed(s). It is

difficult to detect three factors used to generate random numbers

if the seeds change periodically, also it is difficult to detect the

next generated random number based on the first one. Using user

seeds to generate factors which are used to generate random

numbers will enhance the security and accuracy. The result shows

that there are no reputation value and the cycle period is better

than the other algorithms. In the future the method needs software

application can be compared with other methods, also we intend

to use this method in reducing the risk in key management

research.

7. REFERENCES
[1] William Stallings 2009. Cryptography and Network

Security: Principles and Practice. 3rd Ed. India Reprint.

Agrawal-M IETE-Technical-Review.

[2] Jerry Banks, etc. 2001. Discrete-Event System Simulation.

3rd Ed. Pearson Education. Singapore.

[3] Bruce Schneier 2010. Applied Cryptography. 3rd Ed. John

Wiley & Sons. (ASIA) Pvt. Ltd. 2 Clementi Loop # 02-01.

Singapore 129809.

[4] Borosh. S. and Niederreiter H. 1983. “Optimal

Multipliers For Pseudo-Random Number Generation By

The Linear Congruential Method", BIT 23,65-74.

International Journal of Computer Applications (0975 – 8887)

Volume 118 – No. 3, May 2015

28

[5] Figiel, K.D. and Sule. D.R. 1985. "New Lagged Product Test

for Random Number Generators", Comput. Ind. Eng. Vol.

9, 287-296.

[6] S. Japertas and et al. 2007. “Unpredictable Cryptographic

Pseudo-Random Number Generator based on Non-linear

Dynamic Chaotic System”, Electronics and Electrical

Engineering ISSN 1392 – 1215, pp 29 -32.

[7] P. L’Ecuyer 1988. “Efficient and Portable Combined Random

Number Generators”, Communications of the ACM 31 June

1988, Volume 31 No. 6, USA.

[8] Douglas W. Mitchell 1993. “A Nonlinear Random Number

Generator with Known, Long Cycle Length”, Cryptologia,

Volume 17 Issue 1, pp 55- 62, USA.

8. AUTHOR’s PROFILE
Dr. Saleh Noman Abdullah Alasaly, born in 1969, Gabel

Habashee, Taiz, Republic of Yemen. Ph.D. in Infromation

Securty, SRTMU, India, 2005. Assistant Prof., Khawlan College,

Sana'a University, Yemen.

E-mail: saleh.alasali97@yahoo.com

Dr. Sharaf A. Alhomdy, born in 20/01/1971, Alsena, Taiz,

Republic of Yemen. Ph.D. in Computer Scince, Pune University,

India, 2009. Asst. Prof. & Vice-Dean, Faculty of Computer and

Information Technology, Sana'a University, Yemen.

E-mail: sharafalhomdy@gmail.com.

IJCATM : www.ijcaonline.org

http://dl.acm.org/author_page.cfm?id=81100360177&coll=DL&dl=GUIDE&CFID=661152506&CFTOKEN=28146526
http://dl.acm.org/citation.cfm?id=172246.172257&coll=DL&dl=GUIDE&CFID=661152506&CFTOKEN=28146526
http://dl.acm.org/citation.cfm?id=172246.172257&coll=DL&dl=GUIDE&CFID=661152506&CFTOKEN=28146526
mailto:saleh.alasali97@yahoo.com
mailto:sharafalhomdy@gmail.com

