
International Journal of Computer Applications (0975 – 8887)

Volume 118 – No.20, May 2015

37

Quantitative Analysis of Document Stored Databases

Pradeep Soni
(Research Scholar)

Department of Computer Science & Engineering
SBCET, Jaipur, Rajasthan, India

Narendra Singh Yadav, PhD
(Assoc. Prof. & Head)

Department of Computer Science & Engineering
SBCET, Jaipur, Rajasthan, India

ABSTRACT
So far relational databases are used for storing the data for the

applications but now there is need to store huge amount of

data to store and manage which cannot stored by relational

databases. NoSQL technology over comes this problem. This

research paper provides a brief introduction to NoSQL

database working and comparative study between MongodB

and Cassandra, Which are mostly used for big data

application. The operations are performed on Ubuntu system

to explore the results as distinguish between both NoSql

databases. This paper shows the performance of Mongodb

and Cassandra. Results proves that Cassandra is more

powerful than Mongodb to load and process on big data and

processing very fast as compare to Mongodb. This paper

describes the functionality of Mongodb and Cassandra over

the large dataset.

Index Terms— NoSql Databases, Mongodb,

Cassandra, Big Data.

1. INTRODUCTION

NoSql Technology: NoSQL stands for Not only SQL. It

provides the different kind of databases like document

databases, graph databases, key value databases which are

used for massive dataset such as big data applications. This

technology is very easy to use in conventional load balanced

clusters and persistent data. This is easy to scale at very

massive level to available memory. NoSQL does not have any

type of fixed schema and allows schema migration without

downtime. Relational databases are not able to scale at very

large scale as compare to NoSQL databases.

1.1 Document Database: Document Database objects

manage data types easily and can be embedded documents

and arrays to reduce need for joins. These databases use the

dynamic schema to make polymorphism easier. These

databases have the strength to perform on web application and

give the best results when the incomplete data is given.

1.1.1 Mongodb: it is a document database that provides high

performance, high availability, and easy scalability. Mongodb

database is easy to embed that makes reads and writes fast.

This database uses the indexes that include keys from

documents and arrays. This provides the high availability for

higher performance and very easy to scale and easy to manage

the operations.

MongoDB stores the data into documents and collections

instead of storing data in table as rows and columns.

Collections allow representation of complex relationships

easily. Is has the capability to handle the large volume of data

and can load data across a cluster. It can perform many

operations which relational database cannot do.

There are some following features of MongoDB

 Map reduce and Aggregation Tools are supported

by Mongo DB.

 Java Scripts can be used instead of Procedures

 Mongo DB is a schema less Document based

database.

 Mongo DB provide the facility to use secondary

indexes and geospatial indexes.

 Easy to handle the Mongo DB in cases of failures

 Mongo DB designed to provide High Performance

 MongoDB stores files of any size without down to

failure of memory.

1.1.2 Apache Cassandra: Cassandra a type of NoSQL

database which is massively scalable. As technical aspects

Cassandra can be found at companies recognized for their

ability to manage big data effectively –Amazon, Google and

Facebook.

In today’s environment Cassandra is used for modern

businesses to handle their critical data infrastructure, and

known for being the solution for the technical professionals

when they require a NoSQL database that gives high

performance at massive scale, that never degrades the

performance of operations. Cassandra is used for unstructured

data as big data application, which are mostly used across

nearly every industry.

This model is a partitioned in row store with consistency. [2]

These are arranged into tables, primary key is assigned always

as first component and rows are clustered in the remaining

fields of the key. [3] Columns are indexed through primary

key. [4]

Tables may be structured, deleted, and modified at runtime

without blocking updates and queries. [5]

Joins and sub queries are not supported by the Cassandra

except for batch analysis via Hadoop, rather it performs

denormalization through features like collections. [6]

Features:

Decentralized

Data are distributed across the cluster and each node contains

different data so there is no single point of failure.

Supports for replication and multi data center replication

These strategies can be configurable. [7] Cassandra is

designed as a distributed system, for deployment of large

numbers of nodes across multiple data centers.

Scalability

It provides the reads and writes on the large dataset with no

downtime to applications.

International Journal of Computer Applications (0975 – 8887)

Volume 118 – No.20, May 2015

38

Fault-tolerant

In Cassandra data is replicated to multiple nodes

automatically that make it faul-taulerance. Replication across

multiple data centers is supported.

MapReduce support

MapReduce can be perform on Cassandra also support for

Apache Pig and Apache Hive.

1.2 JSON: JSON stands for JavaScript Object Notation. It is

extended from the JavaScript scripting language. It is very

easy to read and write.it is lightweight text based

interchangeable format. This is Language independent. It is

used as document file for Mongodb database.

{

cust_id:"001",

cust_name:"Mukul",

price:200,

status:"1"

}

{

cust_id:"002",

cust_name:"Pradeep",

price:256,

status:"1"

}.

1.3 MapReduce: MapReduce is a framework for effectively

processing the analysis of big data on several servers. It was

developed by the Google for the back end of Google’s search

engine to enable a large number of commodity servers to

efficiently process the analysis of huge numbers of webpages

collected from all over the world. Apache developed a project

to implement MapReduce, which was published as open

source software (OSS), this enabled many organizations, such

as businesses and universities, to tackle big data analysis.

It was originally developed by Google and built on well-

known principles in parallel and distributed processing. Since

then Map Reduce was extensively adopted for analyzing large

data sets in its open source flavor Hadoop.

MapReduce [8] is a simple programming model for

processing huge data sets in parallel. MapReduce have

master/slave architecture. The basic notion of MapReduce is

to divide a task into subtasks, handle the sub-tasks in parallel,

and aggregate the results of the subtasks to form the final

output.

Figure 1: MapReduce Architecture

In most computation related to high data volumes, it is

observed that two main phases are commonly used in most

data processing components this is shown in above figure 3.

Map Reduce created an abstraction phases of Map Reduce

model called 'mappers' and 'reducers' (Original idea was
inspired from programming languages such as Lisp).

1.3.1 MapReduce using MongoDB

Consider the following document structure storing customer

information. The document stores cust_id, price and status of

the customer.

{

cust_id:"002",

cust_name:"Pradeep",

price:256,

status:"1"

}

Now, we will perform a mapReduce function on data

collection to select all the active status, group them on the

basis of cust_id and then find the sum of price of data by each

user using the following code:

db.data.mapReduce

(

 function()

 {

 emit (this.cust_id, this.price);

 },

 function(key, values) {return Array.sum(values)},

 {

 query: { status:"1"},

 out:"total"

 }

)

This operation shows the following output.

Figure 2: Output Screen of MapReduce Operation

2. LITERATURE SURVEY

In 2012, University of Toronto researchers studying NoSQL

systems concluded that Cassandra is most powerful in terms

of scalability throughout the experiments. It achieves the

maximum throughput for the number of nodes. "It comes at

the price of high write and read latencies.[1]" Mongodb

database stores the large amount of data in JSON format and

performs the operations that will give results quickly.

International Journal of Computer Applications (0975 – 8887)

Volume 118 – No.20, May 2015

39

3. PROPOSED APPROACH

Mongodb and Cassandra both are NoSQL databases which

are used when data is huge. Here JSON file is used to store

large amount of data. On which Mongodb operations are

performed such as MapReduce, Insertion, Deletion and

Updation.

In case of Cassandra there is database created by using the

CQL (Cassandra Query Language). This database contains the

same data as JSON file has.

There are for collections created in Mongodb. First collection

contains 50k records, second collection contains 100k

records, third collection contains 500k reocrds and fourth

collection contains the 1000k records in it.

Cassandra follows the same scenario that uses four tables and

having same amount of records as Mongodb has.

Open Source (Ubuntu) platform is used to perform the

operations on Mongodb and Cassandra. These databases

provide the high speed and high throughput as compare to

relational databases.

4. EXPERIMENTAL SETUP

In this research, all the tests are performed under following

specifications:

1) Host System: Intel i5 processor with 6 GB RAM and

500 GB Hard disk.

2) Operating Environment: Ubuntu 14.10 LTS

3) Mongo DB

4) Cassandra

a) Execution Time: Execution time can be defined in

terms of time consumed by an algorithm in order to solve a

problem using processor p.

5. RESULTS AND ANALYSIS

Experiemnt-1: Performing mapReduce function on data

collection to retrieve all the active status, group as cust_id and

then calculate the sum of price of data by each user using the

following code:

db.data50k.mapReduce

(

 function()

 {

 emit (this.cust_id, this.price);

 },

 function(key, values) {return Array.sum(values)},

 {

 query: { status:"1"},

 out:"total"

 }

)

This operation can be perform in Cassandra as following query

Select cust_id, SUM(price) from data50k group by cust_id

Table: 1 Execution Time for MongoDB & Cassandra for

Data Retrieval

Records MongoDB Cassandra

50k 0.322 0.245

100k 0.915 0.469

500k 3.536 2.47

1000k 6.235 4.356

Figure 5.1: Execution Time for MongoDB & Cassandra

for Data Retrieval

From the figure 5.1 it is clear that execution time taken by

Cassandra is better than MongoDB for different numbers of

records. As the number of records increases performance of

Cassandra is also increased for the data retrieval operation in

comparison to MongoDB.

Experiment-2:- to perform the update operation in Mongodb,

the query is like to update the data50k collection where

cust_name is ‘pradeep’. So code as follows

db.data50k.update({‘title’:’pradeep’},{$set:{‘title’:’mukul’}},

{multi:true})

In Cassandra CQL code as follows

Update data50k set cust_name=”mukul” where

cust_name=”pradeep”

This code will changes the cust_name “pradeep” to “mukul”.

Table: 2 Execution Time for MongoDB & Cassandra for

Data Updation

Records MongoDB Cassandra

50k 0.253 0.214

100k 0.623 0.365

500k 0.899 0.478

1000k 1.785 0.898

Figure 5.2: Execution Time for MongoDB & Cassandra

for Data Updation

0

5

10

50k 100k 500k 1000k

Execution Time for MongoDB &
Cassandra for Data Retrieval

MongoDB Cassandra

0

1

2

50k 100k 500k 1000k

Execution Time for MongoDB &
Cassandra for Data Updation

MongoDB Cassandra

International Journal of Computer Applications (0975 – 8887)

Volume 118 – No.20, May 2015

40

From the figure 5.2 we can analysis that execution time taken

by Cassandra is better than MongoDB. As the number of

records increases performance of Cassandra is also increased

for the data updation operations in comparison to MongoDB.

Experiment-3:- the following code is used to delete the data

in Mongodb and cassandra databases.

 db.data50k.remove()

in Cassandra CQL code will be as

delete from data50k

this query will delete all the data from the data50k table.

Table: 3 Execution Time for MongoDB & Cassandra for

Data Deletion

Records MongoDB Cassandra

50k 0.144 0.124

100k 0.259 0.196

500k 0.596 0.248

1000k 1.235 0.685

Figure 5.3: Execution Time for MongoDB & Cassandra

for Data Deletion

From the figure 5.3 we can analysis that for less number of

records the execution time for Cassandra and MongoDB is

not very different but as the number of records increases

performance of Cassandra is also increased for the data

updation operations in comparison to MongoDB.

Experiment-4:- the following code is used to insert the data

in collection of Mongodb database.

 db.data50k.insert(

{

cust_id:"001",

cust_name:"Mukul",

price:200,

status:"1"

}

)

in Cassandra CQL code will be as

insert into data50k (cust_id, cust _name, price, status)

values(001,’mukul’, 200,’1’);

this query will insert the data into data50k table.

Table: 4 Execution Time for MongoDB & Cassandra for

Data Creation

Records MongoDB Cassandra

50k 0.175 0.136

100k 0.247 0.211

500k 0.356 0.314

1000k 0.869 0.742

Figure 5.4: Execution Time for MongoDB & Cassandra

for Data Creation

From the figure 5.4 we can analysis that execution time taken

by Cassandra and mongoDB is almost similar. As the number

of records increases performance of Cassandra is also

increased for the data creation operations in comparison to

MongoDB.

6. CONCLUSION

As the number of records in database increases, the difference

between the execution time taken by Cassandra for the

computation of different database operations is better in

camparison to MongoDB.

For the data retrieval operation, the performance of Cassandra

is about 50% better in comparison with MongoDB, for the

different numbers of records.

For data updation operation as the number of records

increases the performance of cassandra is also increases in

comparison with MongoDB significantly. For data updation

cassandra is almost 70% faster than MongoDB.

For data deletion cassandra is almost 70% faster than

MongoDB for the different numbers of records.

While performing data creation operation cassandra is about

18% better than MongoDB, which is the least performance of

cassandra over MongoDB.

Collectively we can say that for all database operations

cassandra is much better than MongoDB, even the number of

records are less or large.

7. FUTURE SCOPE

The present and future of NoSQL technologies are bright, and

full of opportunities and great challenges as it processes big

data.

In future we can compare these two document based

databases for the different types of documents such as xml,

json and csv. We can also compare them with other NoSQL

document databases as couchDB and RavenDB.

0

1

2

50k 100k 500k 1000k

Execution Time for MongoDB &
Cassandra for Data Deletion

MongoDB Cassandra

0

0.5

1

50k 100k 500k 1000k

Execution Time for MongoDB &
Cassandra for Data Creation

MongoDB Cassandra

International Journal of Computer Applications (0975 – 8887)

Volume 118 – No.20, May 2015

41

8. REFERENCES

[1] Rabl, Tilmann; Sadoghi, Mohammad; Jacobsen, Hans-

Arno; Villamor, Sergio Gomez-; Mulero -, Victor

Muntes; Mankovskii, Serge (2012-08-27). "Solving Big

Data Challenges for Enterprise Application Performance

Management". VLDB. Retrieved 2013-07-25. In terms

of scalability, there is a clear winner throughout our

experiments. Cassandra achieves the highest throughput

for the maximum number of nodes in all experiments...

this comes at the price of high write and read latencies

[2] DataStax (2013-01-15). "About data consistency".

Retrieved 2013-07-25.

[3] Ellis, Jonathan (2012-02-15). "Schema in Cassandra

1.1". DataStax. Retrieved 2013-07-25.

[4] Ellis, Jonathan (2010-12-03). "What’s new in Cassandra

0.7: Secondary indexes". DataStax. Retrieved 2013-07-

25.

[5] Ellis, Jonathan (2012-03-02). "The Schema Management

Renaissance in Cassandra 1.1". DataStax. Retrieved

2013-07-25.

[6] Lebresne, Sylvain (2012-08-05). "Coming in 1.2:

Collections support in CQL3". DataStax. Retrieved

2013-07-25.

[7] "Deploying Cassandra across Multiple Data Centers".

DataStax. Retrieved 11 December 2014.

[8] J. Dean and S. Ghemawat, “Mapreduce: simplified data

processing on large clusters”, Commun. ACM,

Pages:107-113, 2008.

9. ABOUT AUTHORS

Mr. Pradeep Soni is a Microsoft Certified Technology

Specialist. He has 2.5+ years’ experience in development with

Microsoft Technologies. He is Pursuing his Master of

Technology Degree in Computer Science. His area of

research are Parallel Programming, Networking and DSA.

Dr. Narendra Singh Yadav received M.Tech. degree in

Computer Science from Birla Institute of Technology,

Ranchi, India in 2002 and completed Ph.D from Malaviya

National Institute of Technology, Jaipur, India in 2011. He is

an Associate Professor and Head of Department of Computer

Science & Engineering in SBCET, Jaipur. He is an active

member of various professional bodies. His research interests

include Clustering, Routing and Security in ad hoc wireless

networks, wireless sensor and wireless hybrid network.

IJCATM : www.ijcaonline.org

