
International Journal of Computer Applications (0975 – 8887) 

Volume 118 – No.20, May 2015 

15 

Performance Comparison of different Congestion 

Control Protocols in Hybrid Network 

 
Mehta Ishani 

PG Student 
Gardi Vidyapith 

Rajkot 

 

Udit Narayan Kar 
Research Scholar 

Saurastra University 
Rajkot 

 

Atul Gonsai, PhD 
Associate Professor 
Saurastra University 

Rajkot 

 

 

ABSTRACT 

Widely implemented topology in Internet is Heterogeneous 

networks which are a combination of wired and wireless 

networks. Due to high bandwidth availability at wired links 

and high delayed products at wireless links, bottleneck 

situation is generated at Access Point and it has to face severe 

Congestion consequences.  Some of the most known and 

recent protocols developed to provide faster and lighter 

congestion control are TCP (Transmission Control Protocol) 

and the Rate Control Protocol (RCP). This paper provides 

performance comparison of TCP, RCP+ and our proposed 

algorithm RCP++ in hybrid network. 

General Terms 

TCP- Transmission Control Protocol, RCP – Rate Control 

Protocol, 

Keywords 

TCP, RCP, RCP+, RCP++, Congestion. Hybrid 

1. INTRODUCTION 
TCP is the most widely used congestion control protocol in 

the today's Internet scenario [1]. However,  TCP has 

limitations such as not providing good bandwidth utilizations 

especially  in high bandwidth-delay product networks, 

introducing high network load and  excessive overhead over 

the network, whereas, RCP is not flexible enough to co-exist 

with dynamic hybrid networking scenario where multiple 

protocols co-exist [8]. RCP involves complex computations at 

routers and have risk of buffer overflow [5, 6, and 7].  In this 

experiment we have analyzed the performance of TCP, RCP+ 

and our proposed model RCP++. This experiment aims at 

studying the effects of hybrid (wired and wireless) networks 

on TCP, RCP+ and RCP++ by the researchers of this 

experiment in presence of heterogeneous network 

configurations. The simulation results obtained of these 

protocols in heterogeneous scenario; show that RCP++ is able 

to significantly increase the efficiency of congestion control 

mechanisms.  This experiment covers maximum of the 

performance parameters like Throughput, Dropped Packet, 

End to End Delay, Packet Delivery Ratio and Network 

Routing Load. The study is made in dynamic networking 

scenario so that bandwidth capacity evaluation is near to 

practical approach in hybrid networks. 

2. LITERATURE SURVEY 

2.1 TCP 
Congestion control mechanism given in [1, 5] is shown in Fig 

1. Initial congestion window size for each TCP connection is 

4 Maximum Segment Size (MSS). It uses slow start procedure 

to acquire the available bandwidth. The Slow-Start procedure 

keep a new sender from overflowing network buffers, while at 

the same time increase the congestion window fast enough 

and avoid performance loss while the connection is operating 

with a small window. Slow-Start additively increases the 

congestion window by one MSS for each new 

acknowledgment received, which results in the window 

doubling after each window’s worth of data is acknowledged.  

 

Figure 1: TCP’s congestion control mechanism [5] 

A connection enters Slow-Start at initial or on experiencing a 

packet retransmission timeout, and exits Slow-Start when it 

detects a packet loss or when the congestion window has 

reached a dynamically computed threshold, ssthresh. More 

specifically, ssthresh is set to half of the current congestion 

window when packet loss was detected. TCP exits Slow-Start 

and enter the Congestion Avoidance phase, where it continues 

to probe for available bandwidth, but more cautiously than in 

Slow-Start. During periods when no packet losses are 

observed, TCP performs an Additive Increase of the window 

size, by 1 MSS on receiving each acknowledgment packet. 

The equation can be given as:                  

Cwnd = cwnd +1                                                                   (1) 

And when Congestion occurs it decreases the window size by 

half as given in equation below: 

Cwnd = Cwnd * ½                                                                 (2) 

Thus this way TCP’s additive increase multiplicative decrease 

algorithm works [1]. 



International Journal of Computer Applications (0975 – 8887) 

Volume 118 – No.20, May 2015 

16 

2.2 RCP 
Researchers [5, 6, 7, and 11] have proposed Rate Control 

Protocol (RCP). In RCP as the name suggest, a router assigns 

a single rate, R (t), for flow transmission. The basic idea is: If 

there is spare capacity available, then share it equally among 

all flows. If the link capacity is insufficient then a queue 

started building up, then and the flow rate is decreased evenly. 

The solution is, tried to minimize Flow completion time 

(FCT). FCT is time from when the first packet of a flow is 

sent (in TCP, this is the SYN packet) until the last packet is 

received [6]. To minimize FCT for each router a well-known 

method is to use processor-sharing (PS) i.e. a router divides 

outgoing link bandwidth equally among ongoing flows [7]. 

An equation to calculate rate is given below: 

R (t) = R (t - d0) + 
            

    

  
 

    
                                       (3) 

Where,  

d0 = a moving average of the RTT measured across all flows,  

R (t−d0) = last updated rate,  

C = link capacity,  

y(t) = measured input traffic rate during the last update 

interval (d0 in this case),  

q(t) = instantaneous queue size,  

N(t) = router’s estimate of the number of ongoing flows (i.e., 

number of flows actively sending traffic) at time t  

α, β = parameters chosen for stability and performance. 

 

Simulation results show that RCP performs better than TCP in 

terms of FCT and link utilization in wired network [9]. It is 

also taken account that RCP possess routing overhead on 

network also due to having complex computation and 

involving routers.  Researchers of paper [8] have introduced 

two limitations of RCP: (1) RCP will need to operate 

alongside existing non-RCP traffic, such as TCP and UDP, 

without adversely affecting or being affected by the other 

traffic; and (2) RCP will need to operate in a network where 

some routers are not RCP-enabled. 

2.3 RCP+ 
Authors [2, 3, and 4] described a simple congestion control 

algorithm called RCP+ which reduces flow completion time 

for diverse flow types to large extend for broad range of 

traffic conditions and network situations. In RCP+, unlike 

XCP, RCP they are not following feedback mechanism but 

they are adapting the ancient congestion window based 

congestion control mechanism. The reason behind sticking to 

the congestion window for congestion control is that, while 

each second new flow are entering and moving out of 

network, it is tough to obtain exact number of flows at 

particular RTT. This inspired us to stay with congestion 

window based mechanism instead of feedback based 

mechanism [3]. The equation of RCP+ can be given as: 

N(t) * R(t) = (α*C - α*y(t) – (β*q(t)/d))                                (4) 

Where, d is moving average of RTT per interval, R(t) is last 

updated rate, y(t) is  existing traffic observed in network, q(t) 

is the instantaneous queue size, C is link  capacity and N(t) is 

number of flows. α (alpha) is a stability parameter and β  

(beta) is a performance parameter to make the rate  stable and 

not aggressive. Thus, the equation gives us the desired 

aggregate rate change in presence of traffic in the next 

interval. Here, Rate is kept same for each flow. “Cwnd” 

congestion window value is having proportionate relationship 

with the rate and so, “cwnd” value is set on the bases of the 

Rate computed. The fundamental mechanism of congestion 

control in TCP is slow start and congestion avoidance. Based 

on that, authors [2] have developed mechanism that supports 

slow start and congestion avoidance. Connection generally 

initiates with congestion window set to MSS. Now once, each 

segment is acknowledged successfully, the congestion 

window is increased by one MSS. 

Cwnd = cwnd + MSS                                                            (5) 

Now, what is the maximum number of segments sent by 

RCP+ in one RTT? 

Cwnd = cwnd + MSS * (cwnd/MSS)                                    (6) 

I.e. cwnd = 2*cwnd                                                               (7) 

That means, for every RTT, there the congestion window 

increments by doubling the previous cwnd value. The 

congestion window keeps incrementing in multiple of two 

until it reaches to its maximum threshold, i.e. ssthresh. This 

threshold value is maintained based on window advertisement 

and updated based on response to congestion. RCP+ also uses 

congestion avoidance. How? 

Cwnd = cwnd + MSS * (MSS/cwnd)                                    (8) 

How does RCP+ perform loss detection and recovery 

functionality? All the packets that are not acknowledged are 

to be retransmitted by the RCP+ once the timer times out.  

This timeout event is also known as retransmitting time out 

(RTO). RCP+ considers that all the packet loss is due to 

congestion and no other reason. Because of this, TCP sender 

reduces its transmission rate with guilt that reason is himself. 

Means, once the retransmission time out occurs; TCP sender 

resets its ssthresh value according to the equation: 

Ssthresh = Max (cwnd / 2, 2 * MSS)                                     (9) 

After retransmitting the lost packet, RCP+ sender used slow 

start and goes for rate  calculation again based on equation (4) 

of RCP+ and the calculated rate is given to  initial packet so 

that initial window is provided to the flow is better than the 

one applied  in TCP. When the receiver gets the packet that is 

not the original but the transmitted, it is obviously not 

ordered. In this situation, receiver provided with the ACK that 

identifies the first octet of missing data. After 3 

retransmission, and receiving 3 duplicate acknowledgements, 

without waiting for next timer to timeout, follows the 

mechanism of Fast Retransmission 

3. PROPOSED ALGORITHM – RCP++ 
Our proposed approach RCP++ is based Improved AIMD and 

RCP+ algorithm. In our proposed approach we use congestion 

window mechanism of Improved AIMD algorithm to use the 

spare capacity of congestion window after occurrence of 

congestion event.  

The limitation of improved AIMD is that the algorithm does 

not include the different arrival time of flows [1]. So we have 

used modified equation of RCP+ algorithm. 

RCP+ algorithm is implemented based on the theory of RCP. 

RCP+ is having the added advantage of coexistence with 

other wired and wireless TCP, XCP, RCP and DCCP 



International Journal of Computer Applications (0975 – 8887) 

Volume 118 – No.20, May 2015 

17 

protocols. RCP+ is flexible like TCP and so is expected to 

have wide implementation over current demands of Internet. 

[2] 

In the theory of RCP there is a concept of queue. RCP was 

originally implemented in wired network [5]. In wireless 

network the essential point is traffic is in bursty nature. Hence 

it is difficult to use queue concept while going to practical 

simulation. So we modified the equation of rate change.  

Here we come up with a new proposal of congestion control 

scheme enhanced RCP. Here we use Improved AIMD 

mechanism as well as modified rate change equation of 

RCP+. Our aim is to gain benefits of both schemes by 

eliminating each other’s demerits. 

Initially we defined congestion window size 4 MSS and start 

data transfer. If acknowledgment is received means no 

congestion and increase congestion windows size by +1 and 

transfer data  

If acknowledgment is not received then congestion would 

likely to be occurred then decrease congestion window size by 

equation: 

Cwnd = (cwnd *1/2) + K                                                     (10) 

Where K is the increment in congestion window size (w) in t 

cycles or epoch. Now calculate the rate by equation: 

Rate = (α*C - α*y(t) )/N(t)                                                  (11) 

Again checks if rate is greater than congestion window size 

then increase congestion window size otherwise transfer data.  

Below figure shows the flow chart for the same. 

Figure 2 Flow chart for RCP++ 

 

Algorithm 

1. Initially set congestion window size 4 MSS 

2. Data transfer 

3. If acknowledgement is received increase congestion 

window size by cwnd = cwnd +1 and repeat step 2 

4. Otherwise decrease congestion window size by 

equation Cwnd = (cwnd *1/2) + K 

5. Calculate the rate by equation  

Rate = (α*C - α*y(t) )/N(t) 

6. If rate > cwnd then go to step 2 

7. Otherwise transfer data 



International Journal of Computer Applications (0975 – 8887) 

Volume 118 – No.20, May 2015 

18 

4. IMPLEMENTATION DETAILS 

We have implemented RCP++ in NS-2 simulator and version 

is 2.35.  

4.1 Implementation Code 
Following are the steps for modification we have done in C++ 

file of TCP to implement RCP++ 

Step 1: Go to the location where tcp.cc is located. There, 

under the class definition of TCP agent, bind two variables for 

its usability under the procedure of bind. 

Bind ("bw_",& bw_); 

bind("flow_",&flow_); 

 

Step 2: Modify TcpAgent::window procedure 

If (frto_ == 2)  

{ 

Return (force_wnd(2) < wnd_? 

  force_wnd(2) : (int)wnd_+4); 

} 

 

Step 3: Modify TcpAgent::slowdown procedure 

Double win, halfwin, decreasewin, k; 

k = (windowd() / 2) -1; 

If (cwnd_ < ssthresh_)  

 slowstart = 1; 

     If (precision_reduce_)  

 { 

 halfwin = (windowd() / 2)+k; 

 } 

  Else   

 { 

 Int temp; 

 temp = (int)((window() / 2)+k); 

 halfwin = (double) temp; 

              } 

 

Step 4: Modify TcpAgent::processQuickStart procedure 

Define following variables 

Int app_rate, bw, flow; 

Float alpha,  yt; 

 

Step 5: Add following lines to the procedure of 

processQuickStart 

qs_requested_ = 0; 

qs_approved_ = 0; 

 

If (qsh->flag() == QS_RESPONSE && qsh->ttl() == ttl_diff_ 

&& qsh->rate() > 0)  

{ 

app_rate = (int) ((alpha * TcpAgent::bw_ - alpha * yt) / 

(TcpAgent::flow)); 

} 

Step 6: Give the computed rate to qs_cwnd defined under the 

procedure of processQuickStart 

If (app_rate > initial_window())  

{ 

qs_cwnd_ = app_rate; 

qs_approved_ = 1; 

} 

Else  

{ // Quick Start rejected 

} 

Step 7: Once the changes in tcp.cc are made, save and exit the 

editor. Next step is to open the terminal and under super user, 

type following commands one by one. 

./configure 

Make clean  

Make 

Make Install 

  

Once you have done this your TCP agent will become RCP 

enabled now run the TCL scripts and obtained the results. 

4.2 Hybrid Scenario 
We have created a scenario having 2 nodes with wired 

connection and connected them to wireless domain having 3 

nodes via a base station as shown in figure 3 

 

Figure 3 Hybrid Scenario 

Following table 1 present the configuration details of the 

simulation. 



International Journal of Computer Applications (0975 – 8887) 

Volume 118 – No.20, May 2015 

19 

Table 1. Configuration for RCP++ 

Layer Parameter Values 

Application  FTP FTP over TCP agent 

Configuration  No of nodes 2 wired and 3 

wireless 

Mobility Simulation time 250 s 

Traffic Type TCP/CBR 

Routing Protocol  DSDV 

MAC MAC 802_11 

PHY Propagation model Two ray ground 

 Antenna Omni 

System  OS  Ubuntu 12.04 

 Processor Intel (R) core(TM) i5 

 

4.3 Results and Graphs 
To measure the actual strength of the algorithm, different 

parameters considered here are Throughput, Packet Delivery 

Ratio and Delay. These are the key parameters that would 

help to evaluate TCP, RCP+ and RCP++ [12]. 

Throughput: It is the rate of successful message delivery 

over a communication channel. Throughput is measured in 

bits per second (bit/s or bps), and sometimes in data packets 

per second or data packets per time slot.  

Packet Delivery Ratio: It is ratio of the number of delivered 

data packet to the destination. ∑ Number of packet receive / ∑ 

Number of packet send.  

End-to-end Delay: It is the average time taken by a data 

packet to arrive in the destination. It also includes the delay 

caused by route discovery process and the queue in data 

packet transmission. Only the data packets that successfully 

delivered to destinations that counted. ∑ (arrive time – send 

time) / ∑ Number of connections. The lower value of end to 

end delay means the better performance of the protocol. 

The values and graphs of packet delivery ratio, throughput 

and average delay for RCP++ RCP+ and TCP are given in 

following figures 

Table 2 Statistics for RCP++, RCP+ and TCP 

Protocol 
Packet 

delivery ratio 
Throughput Delay 

RCP++ 0.9945 11075.05 21.6781 

RCP+ 0.9946 3348.71 38.3672 

TCP 0.9951 8831.66 58.9255 

 

 

Graph 1 Throughput graph 

 

 

 
Graph 2 Packet delivery ratio graph 

 

 

 
Graph 3 End to end delay graph 

 

Again RCP++ wins in hybrid scenario also 

http://en.wikipedia.org/wiki/Bits_per_second
http://en.wikipedia.org/wiki/Data_packets
http://en.wikipedia.org/wiki/Time-division_multiplexing


International Journal of Computer Applications (0975 – 8887) 

Volume 118 – No.20, May 2015 

20 

5. CONCLUSION 
Newly proposed protocol of RCP++ is tested on wide range of 

situations but, all upon simulation environment. The only 

limitation of this protocol observed on simulation 

environment is that it works for smaller no of nodes. If the 

number of nodes increases, its performance degrades to great 

extent. Thus, to make it work for more no of nodes, further 

improvements are necessary. Again, to increase the 

acceptance of the novel approach of RCP++, most of the 

simulation results must match with real time implementations. 

For this, we must test it on emulation or real time situations. 

Without testing the protocol on live environment by 

implementing the code of RCP++ on real routers, popularity 

and acceptance of the protocol would remain limited. 

If deployed on live networks and in the real routers, RCP++ 

is likely to have a tremendous impact on applications 

including large number of users browsing web through 

802.11 standards, long file transfers like videos, gaming and 

at the end improving users’ experience. Now, when the 

impact is so huge, why isn’t it then already widely prevalent 

in today’s network? The biggest issue is implementation in 

real networks. Today’s corporate scenario does not allow 

new network technologies to be easily integrated and 

instantly implemented especially in live networks. The 

biggest challenge is not the algorithm testing but the 

deployment of algorithm over the real network routers and 

end host, which still remains as an open area for the 

researchers. 

6. ACKNOWLEDGMENTS 
We would like to thank University of Grant Commission 

(UGC) for providing us the infrastructure on which we 

implemented our experimental study. 

7. REFERENCES 
[1] S. Floyd, “High-speed TCP for Large Congestion 

Windows,” RFC 3649, 

http://www.icir.org/floyd/hstcp.html, December 2003. 

[2] Dr. Atul Gonsai, Bhargavi Goswami & Uditnarayan Kar, 

“Newly developed Algorithm RCP+ for Congestion 

Control on large scale Wireless Networks”, International 

Journal of Innovations & Advancement in Computer 

Science IJIACS ISSN 2347 – 8616 Volume 3, Issue 2 

April 2014 

[3] Dr. Atul Gonsai, Bhargavi Goswami, Uditnarayan Kar, 

“Design of Congestion Control Protocol for Wireless 

Networks with Small Flow Completion Time” 

Proceedings on National Conference on Emerging 

Trends in Information & Communication Technology. 

2013 

[4] Dr. Atul Gonsai, Bhargavi Goswami, Uditnarayan Kar, 

“Experimental Based Performance Testing of Different 

TCP Protocol Variants in comparison of RCP+ over 

Hybrid Network Scenario” International Journal of 

Innovations & Advancement in Computer Science 

IJIACS ISSN 2347 – 8616 Volume 3, Issue 2 April 2014 

[5] Nandita Dukkipati, “Rate Control Protocol (RCP): 

Congestion Control to make Flows Complete Quickly”, 

Ph.D. Thesis, Stanford University, Stanford, California. 

2007 

[6] Nandita Dukkipati & Nick McKeown, “Why Flow-

Completion Time is the Right Metric for Congestion 

Control and why this means we need New Algorithms”, 

ACM SIGCOMM Computer Communication Review, 

Volume 36, 2006 

[7] Nandita Dukkipati & Nick McKeown, “Processor 

Sharing Flows in the Internet”, Stanford HPNG 

Technical Report, Stanford University, Stanford, 

California. 2007. 

[8] Chia-Hui Tai, Jiang Zhu, Nandita Dukkipati, “Making 

large scale deployment of RCP practical for real 

networks” IEEE INFOCOM, 2008 

[9] Mehta Ishani, Uditnarayan Kar, Dr. Atul Gonsai, “Why 

RCP is better than TCP” International Journal for 

Scientific Research & Development (IJSRD),  Vol. 2, 

Issue 12, 2015 

[10] Book “Introduction to Network Simulator NS2” springer, 

2009 

[11] Rate Control Protocol (RCP) Home Page, URL: 

http://yuba.stanford.edu/rcp 

[12] Throughput, Packet delivery ratio, End to end delay, 

http://harrismare.net/2011/07/14/packet-delivery-ratio-

packet-lost-end-to-end-delay/ 

 

IJCATM : www.ijcaonline.org 


