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ABSTRACT 
Urodynamic test is a method that assesses how 

the bladder and urethra are performing their functions of 

storing and releasing of the urine. The aim of this paper is to 

develop an approach for classifying of Urodynamic result to 

normal and abnormal value using adaptive neuro fuzzy 

inference system. The data of Urodynamic were obtained 

from the Institute of Experimental Clinical Research.  Eight 

Urodynamic Components are used as input for the  prediction 

model.  Simulations were run in Matlab.  The simulation 

results demonstrate that the model successfully to classify the 

Urodynamic Components to normal and abnormal values with 

an accuracy rate of 97.30%.  

Keywords: Adaptive neuro-fuzzy inference system 

(ANFIS),  ANFIS Classifier , Urodynamic testing  (UDS). 

1. INTRODUCTION 
Urodynamic testing or Urodynamics is a study that assesses 

how the bladder and urethra are performing their functions of 

storing and releasing urine [1]. Therefore, urodynamic tests 

can help explain symptoms such as: incontinence, frequent 

urination, problems associated with emptying the bladder.  

The term Urodynamics was first used by Davis in 1954 [2] as 

the study of the storage and evacuation by the bladder UDS 

evaluate bladder function (capacity, sensation, 

accommodation, and contractility) [3] to confirm a 

physician’s differential diagnosis. Urodynamic tests include 

uroflowmetry, post void residual measurement, cystometric 

test, leak point pressure measurement, pressure flow study and 

electromyography[4]. 

Uroflowmetry is the measurement of urine speed and volume 

.Post void residual measures the amount of urine left in the 

bladder after urination.  A cystometric test measures how 

much urine the bladder can hold, how much pressure builds 

up inside the bladder as it stores urine, and how full it is when 

the urge to urinate begins. leak point pressure   measures 

pressure at the point of leakage during a cystometric test. 

A pressure flow study measures the bladder pressure required 

to urinate and the flow rate a given pressure generates. 

Electromyography uses special sensors to measure the 

electrical activity of the muscles and nerves in and around the 

bladder and the sphincters. 

In this study we had applied the parameters that were taken 

from practical urodynamics  according to Institute of 

Experimental Clinical Research  [5] [6] [7], which are :   

maximum  detrusor pressure, opening pressure, detrusor 

pressure at maximum  flow rate , volume of urine 

voided/micturition  , maximum  urine flow rate , maximum  

bladder contractility, micturition frequency and number of 

micturitions .The physician decides  if  urodynamics  result  is  

normal or not by  minimum and maximum  rang value for 

each component  .  

The aim of this study is developed to a new approach based 

on adaptive neuro fuzzy inference system (ANFIS) for rapid 

decide on the urodynamic test as normal or not with a high 

accuracy rate. Adaptive neuro-fuzzy inference system was 

presented for classification of the urodynamic testing. 

Adaptive network-based fuzzy inference system (ANFIS) is a 

kind of artificial neural network that is based on Takagi–

Sugeno fuzzy inference system. Adaptive Neuro-Fuzzy 

Inference System (ANFIS) is one of the most successful 

schemes which combine the benefits of these two powerful 

paradigms into a single capsule [8] [9].  An  ANFIS  works  

by  applying  neural  learning  rules  to  identify  and  tune  the 

parameters and structure of a Fuzzy Inference System (FIS). 

There are several features of the ANFIS which enable it to 

achieve great success in a wide range of scientific 

applications. The attractive features of an ANFIS include: 

easy to implement, fast and accurate learning, strong 

generalization abilities, excellent explanation facilities 

through fuzzy rules, and easy to incorporate both linguistic 

and numeric knowledge for problem solving [10] [11] [12].  

This paper is organized as follows: The theoretical 

background of urodynamic testing  is demonstrated in the 

introduction section. Section 2 presents review about the 

adaptive neuro fuzzy inference scheme used in the design of 

the classifier. The structural information of the dataset is 

presented in section 3. System validation and discussions on 

it, is given in section 4. This is followed by the conclusions in 

the concluding section, and references. 

2. ADAPTIVE-NEURO-FUZZY 

INFERENCE SYSTEM (ANFIS) 

OVERVIEW 
The technique was developed in the early 1990s.  According 

to  the  neuro-fuzzy  approach,  a  neural  network  is proposed 

to implement the fuzzy system, so that the structure and 

parameter identification of the fuzzy rule base are 

accomplished by defining, adapting and optimizing the 

topology and the parameters of the corresponding neuro-fuzzy 

network, based only on the available data. The network can be 

regarded both as an adaptive fuzzy inference system with the 

capability of learning fuzzy rules from data, and as a 

connectionist architecture provided with linguistic meaning. 
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2.1 The ANFIS Architecture 
 A typical architecture of an ANFIS, in which a circle 

indicates a fixed node, whereas a square indicates an adaptive 

node, is shown in Fig. 1.  

 

Fig. 1: ANFIS architecture 

 

In this connectionist structure, there are input and output 

nodes, and in the hidden layers, there are nodes functioning as 

membership functions (MFs) and rules. This eliminates the 

disadvantage of a normal feed forward multilayer network, 

which is difficult for an observer to understand or to modify. 

For simplicity, we assume that the examined FIS has two 

inputs and one output. For a first-order Sugeno fuzzy model, a 

typical rule set with two fuzzy "if- then" rules can be 

expressed as follows: 

 

Rule 1: If x is A1 and y is B1, then f1 = p1 x + q1 y + r1 

Rule 2: If x is A2 and y is B2, then f2 = p1 x + q2 y + r2 

 

Where x and y are the two crisp inputs, and Ai  and Bi  are the 

linguistic labels associated with the node function. 

 

As indicated in Fig. 3, the system has a total of five layers. 

The functioning of each layer is described as follows [13] 

[14]. 

 

Input node (Layer 1): Nodes in this layer contains 

membership functions. Parameters in this layer are referred to 

as premise parameters. Every node i in this layer is a square 

and adaptive node with a node function:     

           
                                                       (1) 

Where x is the input to node i, and Ai  is the linguistic label 

(small , large, etc.) associated with this node function. In other 

words,       is the membership function of Ai and it specifies 

the degree to which the given x satisfies the quantifier Ai. 

Rule nodes (Layer 2): Every node in this layer is a circle 

node labeled II, whose output represents a firing strength of a 

rule. This layer chooses the minimum value of two input 

weights. In this layer, the AND/OR operator is applied to get 

one output that represents the results of the antecedent for a 

fuzzy rule, that is, firing strength. It means the degrees by 

which the antecedent part of the rule is satisfied and it 

indicates the shape of the output function for that rule. The 

node generates the output (firing strength) by cross 

multiplying all the incoming signals: 

              
            

                                (2) 

 

Average nodes (Layer 3): Every node in this layer is a circle 

node labeled N. The ith  node calculates the ratio between the 

ith rule's firing strength to the sum of all rules' firing strengths. 

Every node of these layers calculates the weight, which is 

normalized. For convenience, the outputs of this layer are 

called normalized firing strengths. 

             
  

      
                                   (3) 

                      

Consequent nodes (Layer 4): This layer includes linear 

functions, which are functions of the input signals. This 

means that the contribution of ith rule's towards the total 

output or the model output and/or the function defined is 

calculated. Every node i in this layer is a square node with a 

node function: 

                                   
            (4)                                    

Where          is the output of layer 3, and {pi, qi, ri} is the 

parameter set of this node. These parameters are referred to as 

consequent parameters 

Output node (Layer 5): The single node in this layer is a 

fixed node labeled ∑, which computes the overall output by 

summing all incoming signals: 

                 
     

  
   

                                            (5) 

2.2 ANFIS Learning process (Hybrid-

learning Algorithm)  
As mentioned earlier, both the premise (non-linear) and 

consequent (linear) parameters of the ANFIS should be tuned, 

utilizing the so-called learning process, to optimally represent 

the factual mathematical relationship between the input space 

and output space. Normally, as a first step, an approximate 

fuzzy model is initiated by the system and then improved 

through an iterative adaptive learning process. Basically, 

ANFIS takes the initial fuzzy model and tunes it by means of 

a hybrid technique combining gradient descent back 

propagation and mean least-squares optimization algorithms.  

At each epoch, an error measure, usually defined as the sum 

of the squared difference between actual and desired output, is 

reduced. Training stops when either the predefined epoch 

number or error rate is obtained.  

There are two passes in the hybrid learning procedure for 

ANFIS. In the forward pass of the hybrid learning algorithm, 

functional signals go forward till layer 4 and the consequent 

parameters are identified by the least squares estimate. In the 

backward pass, the error rates propagate backward and the 

premise parameters are updated by the gradient descent. 

When the values of the premise parameters are learned, the 

overall output (f) can be expressed as a linear combination of 

the consequent parameters [15] [16] [17]: 
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3. DEVELOPMENT OF ANFIS  

CLASSIFIER 
 

3.1 Data preparation (Urodynamic 

parameters extraction )  
 

The normal of urodynamic parameters dataset has been 

obtained from the Institute of Experimental Clinical Research. 

The dataset  consists of eight attributes as shown in the Table 

1,which are : maximum  detrusor pressure, opening pressure, 

detrusor pressure at maximum  flow rate , volume of urine 

voided/micturition  , maximum  urine flow rate , maximum  

bladder contractility, micturition frequency and number of 

micturitions . 

 

Table 1: Normal Urodynamic Parameters 

No Normal Urodynamic Parameters  Min Max 

1 Max.  Detrusor pressure (cm. H2O) 54.4 63.4 
2 Opening pressure (cm. H2O) 48 54.4 
3 Detrusor pressure at max.  flow rate (cm. 

H2O) 
45.6 50 

4 Vol. Voided/micturition  (ml.) 266 306 
5 Max.  Urine flow rate (ml./sec.) 23 25.8 
6 Max.  Contractility (w./m.

2
) 14 16.8 

7 Micturition frequency (hr.) 0.25 0.31 
8 No. Micturitions 5.4 6.2 

 

After the normal urodynamic parameters have been identified 

from the previous table, We can classify as shown in Fig. 2 

this data set  into  two  categorical groups, first category is 

normal values of urodynamic parameters , second category is 

values over or less  than normal value.  

 

Fig.2: Input/output of ANFIS classifier  model 

3.2 Determine the premise and consequent 

parameters 
In this stage we are training the ANFIS model based on prior 

urodynamic data to adjust premise and consequent parameters   

, so that it could take a decision and classify any inputs value 

into normal or abnormal value The Fuzzy Logic Toolbox of 

MATLAB provides us a simple way in developing the 

Adaptive-Network-based Fuzzy Inference System by the 

ANFIS Editor GUI. The steps required for the ANFIS training 

can be shown  as follows :   

I. Load inputs/outputs data 

 

In this step we introduce the previous inputs/outputs 

urodynamic date into ANFIS .The dataset consists of 300 

cases divided to 100 normal cases and 200 abnormal cases 

(over and less than normal urodynamic parameters). Fig.3 

shows input/output data set after  loading .  

 

Fig.3: Input/output data set will be used to train a ANFIS 

II. Generate an initial FIS structure  

We use two Gaussian membership functions as shown in 

Fig.4  for each input  to cover the full range of the respective 

inputs. Thus, we get 265 rules for the output function which is 

linear relation of the inputs.  

 

Fig.4: Gaussian membership functions for input 1  

III. Select the number of training epochs and the 

training error tolerance . 

The number of training epochs is set 100  and training error 

tolerance set to 0.02 . 

 

IV. Train the FIS model  

We used a hybrid learning algorithm for the training of the 

ANFIS network. The ANFIS model achieved Root Mean 

Squared Error (RMSE) values of 0.02 (error goal) as shown in 

Fig. 5 and Fig. 6 . 

 

Fig.5: Training error curve 

https://www.kaggle.com/wiki/RootMeanSquaredError
https://www.kaggle.com/wiki/RootMeanSquaredError
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Fig.6: Surface view after ANFIS Training 

We note  the classification of normal and abnormal cases were 

done with the accuracy of 97.3%, where ANFIS classifier  was 

able to correctly assign  the 292 cases which are satisfying. 

 

4. SYSTEM VALIDATION AND 

DISCUSSIONS  
We are generate random  300 case  study to test model  

performance , 100 Case normal , 100 case over normal value 

and 100 case  . To validate the ANFIS classifier we rewriting 

the equation no (4) after summation by premise and consequent 

parameters that obtained after ANFIS training and apply this 

case to ANFIS classifier   The results of the model's ability to 

classification are shown in Table 2.  

Table 2: Summary of ANFIS classifier results 

 
Number 

of case 

Correctly 

decision 

Incorrectly 

decision 

Normal 

value 

 

100 99 1 

Over  normal 

value 

 

100 97 3 

Less than  

normal value 
100 96 4 

 

 

5. CONCLUSION 
This thesis suggests a technique for classification of 

urodynamic testing   for rapid decide of  the urodynamic test as 

normal or not value with an accuracy rate of 97.3% by using 

Adaptive Neuro-Fuzzy Inference System (ANFIS) as 

classification system. In the future an attempt will add a new 

complex inputs parameters for ANFIS classifier  model .  
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