
International Journal of Computer Applications (0975 – 8887)  

Volume 118– No.12, May 2015 

21 

Secure Android-based Mobile Banking Scheme 

Hisham Sarhan 
Al-Azhar University 

Cairo, Egypt. 

Ahmed A. Hafez 
Military Technical College 

Cairo, Egypt. 

Ahmed Safwat 
Al-Azhar University 

Cairo, Egypt. 

 
A.A. Hegazy 

Arab Academy ( AAST ) 
Cairo, Egypt 

 

ABSTRACT 

Smartphones and other mobile computing devices are being 

widely adopted globally [1].The increasing popularity of 

smart devices has led users to perform all their day to day 

activities using these devices [2]. Hence, M-banking has 

become more convenient, effective and reliable [3]. It is 

extremely necessary to provide the security services 

including; confidentiality, integrity, and authentication 

between the financial institutions‟ servers and the mobile 

device used by the customer, as their communications are 

through unsecured networks such as the Internet [4].Users‟ 

confidential information may be at risk due to fixed values-

based security schemes, one level authentication, separate 

hard token-based authentication, hardware stealing, and 

Android-Based attacks. This paper specifies a comprehensive 

sought of how M-banking schemes can be assessed. Also it 

introduces a solution to mitigate most of these risks. 

General Terms 

Mobile Security, Digital Signature, Authentication, Android 

Operating System Security. 

Keywords 

Dynamic Initialization vector, Overlaid AES modes, Multi-

Layer Authentication, Variable keys 

1. INTRODUCTION 
As smartphones started to replace the computer-based 

business applications and transactions, which marks the 

presence of confidential information, it becomes more 

vulnerable to cybercrimes. Mobile banking is the service that 

allows a mobile client to freely use his bank account for 

different services [5]. The main success factors of mobile 

banking are its convenience, ease of use, ubiquity and 

reliability. Our work, as described in this paper, enhancing the 

trials to keep private and sensitive information on modern 

Android devices, and communicate confidential information 

with a remote client in a security level compared to wired 

communication in spite of reported risks and threats to which 

the Android platform is exposed. The remainder of the paper 

is structured in the following way: Section 2 introduces 

background and related work, while Section 3 describes M-

Banking security and capability considerations. Section 4 

describes the solution we propose. And Section 5, finally, 

concludes the paper and indicates future work. 
 

2. BACKGROUND AND RELATED 

WORK 
The following subsections are brief background of 

technologies used in the proposal. 

2.1 Wireless Public Key Infrastructure (W-

PKI) 
As the number of mobile users increases, the need of 

providing mobile phones with wireless internet services 

increases as well. The Security supporting wireless internet 

must be kept at same level as the wired internet security. But 

PKI (Public Key infrastructure) which is used for the security 

of E-Commerce in wired internet is not suitable for the mobile 

phone platform because of the fundamental limitations of 

performance such as limited memory size and limited 

computational capabilities. The security goals of PKI are 

authentication, Integrity, Confidentiality, and Non-

Repudiation. A PKI binds public keys to entities, enables 

other entities to verify public key bindings, and provides the 

services of key management. The PKI relies on the following 

Components [6] 

1- Certification Authority ( CA )  

2- Registration Authority ( RA ) 

3- Certificate Distribution system or Repository 

4- Certificate revocation list ( CRL ) 

5- X.509 Public key Certificate. 
 

2.2 Android Operating System 
Mobile devices most commonly used and recent operating 

systems are Android, iOS, and Windows8. Through use of 

these operating systems, Android continuously and rapidly 

increases its popularity and market share. Based on the 

information provided by Google in March 2015, Google has 

shipped 1 billion Android-Based smart phones in 2014. In 

addition, the open-source nature of the Android platform, the 

ease of application development and submission process with 

the Play Store have made Android platform more attractive. 

However, the security risks and threats have increased and 

continue to increase more than for other mobile platforms as 

they are not open-source operating systems, such as Apple's 

iOS. Android is an open-source operating system that is built 

on a Linux kernel. It was developed under the leadership of 

the Open Handset Alliance (OHA) and Google. In this 

section, an Android OS overview is introduced.Fig.1 

demonstrates the Android layered architecture which consists 

of 5 basic layers, and each layer has different program sets. 

Layers are Application, Application Framework, Library, 

Runtime, and Linux layers [3, 7]. The Android operating 

system has a basic security architecture that tries to secure 

user information and applications. The architecture provides a 

security model that adopts security in each layer and 

maintains flexibility in its design because of its open-source 

nature [2]. 

 



International Journal of Computer Applications (0975 – 8887)  

Volume 118– No.12, May 2015 

22 

 

Fig 1: Android OS Basic Architecture 

To achieve this goal, it supplies the following security 
features: 

1- Powerful security mechanism on the Linux Kernel 
Level.  

2- Sandboxing which means isolation of each 
application 

3- Secure inter-process communication  
4- Digital signature of applications  
5- User approved and application specific 

permissions.  
6- Approval for application stores 

Android applications are generally coded in the Java 
programming language, and they run on DVM (Dalvik Virtual 
Machine). In addition, compilation from C/C++ language is 
available. Applications are installed from a single file with 
.apk extension. The basic structure of an Android application 
includes the following: 

1- Android Manifest File  
2- Activities 
3- Services 
4- Broadcast Receivers 

As a default setting, applications have access to limited 
system resources. The permission mechanism handles this 
access management and checks whether these access 
processes are properly performed and do not behave 
maliciously. Restrictions are developed by using different 
techniques. In some cases, storage isolation is chosen for 
protection; in other cases, restrictions are performed based on 
the Permission List mechanism that secures sensitive APIs. A 
few of these protected APIs include Camera, Location (GPS), 
Bluetooth, Phone, Mic, SMS/MMS, and Network/Data 
(GSM/WCDMA/LTE and Wi-Fi) [8] [9]. Each API call in 
the Android operating system corresponds to permission in 
the manifest file (AndroidManifest.xml) that contains the list 
of permissions. When a user tries to install an Android 
application, the list of permissions that are mentioned in 
AndroidManifest.xml of the application is presented to the 
user. If user accepts this permission request, API calls 
become active. However, users can only allow or reject all of 
the permissions and do not have the power to select certain 
permissions. Allowing much unnecessary permission may 

cause security and privacy risks. Once the permissions are 
granted at the installation time, there is no way of changing 
these permissions. Furthermore, the permission model of 
Android OS does not support dynamic permission 
assignment. Establishing a secure communication link 
between Android-Based mobile phone and bank servers 
involving bank cloud faces some risks arising from attacking 
Android Operating System, Mobile phone platform or both. 
With regard to android operating system, Android‟s security 
mechanisms (both Android-specific and Linux-inherited) are 
insufficient and too coarse-grained to tackle this security 
issue. For example, an application granted Android 
application-level INTERNET permissions can listen on any 
port, create any type of socket, communicate with all 
protocols, and more. The file-permission mechanism protects 
files, but not from a root user [10]. Android platform 
application layer threats lie in the misuse of the permission 
model. Malwares are built on the poor technical background 
of most of android users, which makes no immunity against 
attacks. In [11] more than 1000 Android-Based applications 
were studied and authors tried to introduce the methodology 
by which developers use permissions in the Android OS. 
Based on study results, little number of permissions are used. 
They also found that the INTERNET permission was 
frequently used and suggested that a mechanism to control 
the usage of permissions need to be developed. According to 
their results, 60% of the applications only use the 
INTERNET permission. Some of recent related works that 
tried to mitigate the Android OS-related threats effects is well 
summarized in [2] which classified them as follows:  
1- Operating System-Based solutions  

In which the developers change the operating system 
architecture itself. In [12] researchers developed a system 
called (APEX) that allows user to choose some of or all 
permissions in the list. Researchers provided a user interface 
allowing the user to reject or allow any of the permissions 
listed on the interface during the application installation 
phase. This system achieves its goal by securing user from 
permission misus risks but it, extensively, requires a user with 
a good technical knowledge to decide which of those 
permissions are useful and which of them are harmful. 
2- Permission-Based Solutions 
These studies tried to provide statistical information by which 
user-developed applications can mitigate the harmful 
permission model usage in Android. In [13] Authors 
developed the VetDroid application that is able to analyze 
android applications, and give a report about permission 
model misuse. This doesn‟t propose a solution for preventing 
malware from permission misusing. While in [14] a new 
proposal has been developed. Authors developed two module- 
systems, first module is called Mr. Hide which can record 
interaction from user and then feed the second module, called 
Dr.Android, with decisions to rebuild the application 
considering first module output. For example, for INTERNET 
permission, it limits its use to limited URLs according to user 
feedback. However, the first module produces an extra 10-
50% overhead on the system, and the consumed time to 
rebuild the application takes about one minute. The developed 
system causes overload as it uses mobile processing capacity 

while running other applications (in background) to rebuild 
the applications. Applications rebuild may cause in many 
cases slowing down application running time. In [2] authors 
recommended that, this application should have been tried on 
a wider range of android applications to show its reliability. 

3- Source code-based solutions  
These solutions consider the byte-coded files of applications. 
In [15] Authors proposed APPGUARD application that 
decodes the byte-code files and inspects policies, then, it 
regenerates the byte-code files of the applications to cope with 
the new policies. Rebuild causes in system overloading as the 
application files are rebuilt on the device itself. For instance, 



International Journal of Computer Applications (0975 – 8887)  

Volume 118– No.12, May 2015 

23 

the time that is needed to rebuild the popular game of Angry 
Birds is 45 seconds, while Instagram requires 66 seconds and 
WhatsApp requires 57 seconds.  
As for relation to Mobile phone platform, it provides more 
security, as it secures the storage from unauthorized use. In 
financial transactions, more than android application security 
services are required as it is not sufficient to rely on android 
OS security alone. The following researches contributed 
securing mobile platform using different strategies. In [16] 
Authors proposed A common application (for many banks 
connected to same Data base). User levels of security lies in 
TPA (Third Party Agent)  which provides secret keys 
(passwords) of 6 digits to the user by sending it to the 
authorized email ,while Network level of security lies in using  
HTTPS which is used to connect the mobile data base to the 
server. However, Adding third Party is a cost inefficient and 
may cause security risks. Furthermore, TPA will send the 
secret password via email, which adds extra security risks. 
The Application doesn‟t offer the user to change his/her 
password, this may cause problem as the user needs to receive 

an email on a periodic basis to renew the password. 
Sometimes, the password may not become secret as well. In 
[17] Sangram Ray and G.P.Biswas introduced the MHA 
(Mobile Home Agent) which performs all cryptographic 
operations in favor of mobile phone. MHA has the full 
responsibility on behalf of mobile user to store all the 
cryptographic information of mobile phone and performs all 
the operations required to get a certificate from CA. MHA 
generates an ECC-based public-private key pair for the mobile 
phone and sends it to RA as a certificate request message 
along with other relevant information to get the public key 
certificate of mobile phone from CA. After receiving the 
request, RA authenticates MHA and verifies the PoP function 
to be sure that the user possesses a private key corresponding 
to public key for which a certificate being requested. If the 
verification succeeds, RA sends  the request to CA. CA 
checks whether the certificate request message is attested by 
RA , if so , CA creates the public key certificate, signs it , and 
publishes the certificate in its directory , and sends the URL to 
MHA , which in its turn , sends the URL to the Mobile user. 
However, adding a separate part “MHA“ may cause 
information leakage possibilities, adding a new part is more 
vulnerable to be stolen, lost or hacked, and even if the MHA 
is connected to the Mobile set , the mobile set itself may be 
stolen . Securing the mobile set with access control and 
encrypting the memory may reduce this risk. In case, the 
MHA is remotely connected, it will require additional 
authentication layer between mobile phone and MHA, which 
adds an additional throughput with additional time, and 
additional security risk as information leakage may be 
occurred. Furthermore, MHA is the main part of the 
transaction between mobile and the application server which 
may cause a bottleneck each time the mobile contacts the 
application server (or the bank). In [18] a one-time-password 
and a personal biometric have been combined with personal 
identification and password for verification while M-Banking. 
As the user presents the business transaction request, the 
server side will then generate an OTP and transfer to the 
default receiving equipment. If the input OTP (by the user) is 
correct, the user will be requested to capture fresh biometric 
data and upload it to the server side. Server side will compare 
and proceed if correct. Unfortunately, OTP transmission via 
internet makes it more vulnerable to risks as it may be 
intercepted or sent to a wrong recipient by the network 
operator by mistake. It may happen forcibly by DoS attacks 
that can congest all routes except the wrong maliciously 
intended route. And it may happen by mistake as well. Also, 
Biometric identification requires higher transmission rates, 

higher accuracy, as a small error may cause money being 
stolen and higher cost. It, also, requires very large storage 
devices as it will store images, videos, or audio files which 
have higher sizes than text files. In fact, same idea was 
discussed in [7] as the proposed solution depicts the use of 
biometric (sensor-based) identification to drive access control 
mechanism. In [19] authors introduce a design and 
implementation of a secure mobile wallet. Mobile Wallet is an 
application stored in mobile phones providing to subscribers 
the possibility to perform various mobile financial 
transactions. It stores the mobile wallet on the Java SIM Card 
(UICC).The wallet contains some security functions collected 
in “integrated security platform“ with Application-level PINs, 
Data Encryption ,FIPS 201 PIV authentication module and 
,Asymmetric and symmetric cryptography. Two keys are 
generated, one is generated from the wallet called “Master 
Key “, another one is chosen by the user. The Master key is 
used for first key choice and reset. Master key is generated 
and transmitted by the Application issuer. The Encryption 
Key is generated by padding the 4 digits user key and hashing 

it, then combination with another padding, constant input, and 
constant Encryption key. However, this design uses 
Symmetric Techniques for signature, the symmetric algorithm 
has a fixed IV, and a full password text is used by the wallet 
to generate encryption keys which doesn‟t meet key diffusion 
requirement. Finally, using RSA in mobile applications 
overloads the mobile set as it has a very long key 1024 bits to 
achieve a suitable level of security for M-Banking. In [20] 
authors deploy the PDE (plausible Deniable Encryption) in 
the Mobile communication after using in the desktop 
environment. It‟s supposed that, the implementation of PDE is 
implicitly programmed into the android OS programming. 
Two types of PDE are exist, Stenographic PDE in which it 
encrypts files, but keeps them visible, and, Hidden Volume in 
which it encrypts files and hides them on the end of the 
storage. Less loss of data, less IO operations, faster, and 
higher security (not to reveal that, there are files the adversary 
cannot open it). Two modes of operations, Standard Mode in 
which it doesn‟t reveal any secrets, user can login using the 
password (decoy password), and PDE Mode in which it 
applies the PDE to the entered data, user can login by true 
password. The entire disk is encrypted with a decoy key and 
formatted for regular use  (the outer volume ), then an 
additional file system is created at an offset within the disk 
and encrypted with a different key ( true key ); this is referred 
to as the hidden volume (i.e. the hidden volume use 
camouflages amongst the random data). When the user is 
coerced, he/she can provide the decoy key and deny the 
existence of hidden data. The Encryption data is XTS-AES. 
However, the design relies on the user to choose strong 
passwords to protect their encryption keys which makes the 
system more vulnerable to “offline dictionary attack “. Also, 
the salt is found in the Android encryption footer. The salt is 
used with PBKDF2. The salt cannot be stored in the hidden 
volumes as it is used to calculate the offset.  Furthermore, 
after some statistical trials, it will be clear the regions with 
random data and ciphered (hidden) data, so the author solved 
it by using the encryption function (which depends on user-
chosen password) to generate a random number to fill in the 
outer volume. The Encryption algorithm is AES with fixed 
IV, while it needs to have dynamic IVs to make it as random 
as possible. 

3. M-BANKING SECURITY AND 

CAPABILITY CONSIDERATIONS 
From section 2, and after induction, it is settled in mind that, 
M-Banking scheme should have : lower key sizes, lower 
processing and time requirements, higher data encryption 



International Journal of Computer Applications (0975 – 8887)  

Volume 118– No.12, May 2015 

24 

level, higher data signature level, highly sophisticated 
authentication process, ease of use ( i.e. it doesn‟t require any 
user‟s technical background), end-to-end security, need of 
communication through emails elimination, mitigation of the 
impact of viruses and malwares, withstand against attempted 
theft or loss, higher level of randomness and dynamicity, 
input-to-output diffusion, and withstand against most common 
attacks such as reply, dictionary, and search trial attacks. 
 

4. PROBLEM DESCRIPTION AND 

PRPOSAL 
Our proposal targets applications that are run on a smartphone 
device and communicate with remote service providers. One 
example is when a smartphone user needs to check his bank 
account or make some transactions remotely. Such 
applications exchange secret data that might be used for 
authenticating the smartphone user with the service provider 
in case of remote access or other business logic between them. 
Any remote information will be stored in the mobile device 
storage, and the application transfers the information during 

the transaction to the remote service provider. Keeping such 
data private is a security key purpose for both user and service 
provider. The proposed system consists of three parties, 
Android-Based Mobile device, Bank Server with local 
Database and its own cloud that can analyze SW applications 
and communicate with antimalware providers, and Bank 
provided SD Card. The following scenario summarizes the 
process: 
User asks the bank to issue him a bank account. After 
completing the procedural requirements, user is asked for 
choosing some of Account privileges such as using M-
Banking, or just internet banking. For M-Banking, bank is 
responsible for digital certificate issuance taking in 
consideration, at the first time, mobile IMEI (International 
Mobile Equipment Identification). Then, user will receive the 
SD Card by a secure delivery mean. The SD card will be 
loaded with all required policies, algorithms, initial keys 
including IV ( AES Initialization vector ) set, user chosen first 
level authentication key (password), some Bank digital 
certificate fields and finally, user‟s digital certificate all 
encrypted with AES-256-Dynamic IV. User is, also, required 
to make the SD card his default memory. On receiving the SD 
card from Bank side, user is required to login to Bank Mobile 
Website, within a limited period to download Bank mobile 
Application from the cloud. Fig.2 shows that, Cloud searches 
for the user‟s digital certificate on the mobile default SD card, 
if Bank cloud finds the certificate, it confirms the certificate 
validation from its database (whether it is on the correct IMEI 
or not, and it is still not revoked). If digital certificate and 
IMEI meet the stored data, then cloud will scan the mobile 
phone (this scan process will be taken place periodically to 
ensure non-existence of data leakage means, such as 
malwares). Cloud will rely on two approaches for the malware 
detection process, first is its own experience lists of malwares, 
and second is worldwide providers of anti-malware removal 
tools. If a harmful malware (high risk) is found, user is asked 

to remove it; otherwise cloud will not install the application. 
Actually, bank cloud application unit will categorize 
malwares into two categories 
1- High risk Malware which has a direct limited less access 

permission to internet, SMS, location services, or any 
memory location 

2- Low risk malware which doesn‟t have the above 
permission 

Once malware clearance process is completed, bank cloud 
will allow mobile to download the mobile bank application 
which will carry out all bank-mobile interaction without extra 
technical requirements from the mobile user.

 
Fig.2 Android App. Installation process 

Now mobile banking application is installed and user can 
login using his user name and first authentication level 
password that will allow him to, just, open the application 
without having any level of access authorization to the SD 
card or financial transaction. After that, as shown in fig. 3, 
user will choose a second level password for partially 
privileged use of the SD card within 5 minutes after first login 
to the application to secure the conjunction between first and 
second passwords. The second password will open only one 
user-chosen directory from which the third authentication key 
can be copied and then pasted to its filed in the application 
activity. Bank server will generate an OTP called OTP_third 
and put it in the user-chosen memory location on the bank 
provided SD, user accesses the location and copy the 
OTP_third to the application to fully open the SD card for the 
application.  

 
Fig.3First login to Bank Webserver 

Up to now, Mobile phone user and Bank android application 
are well authenticated to each other. In case a transaction is 
being needed after user-application authentication process 
completion, the protocol diagram shown in Fig.4 is applied. In 
Fig.4, messages will be as following  
 



International Journal of Computer Applications (0975 – 8887)  

Volume 118– No.12, May 2015 

25 

 

Fig.4 Proposed protocol Diagram 

1- At bank, on reception of Message_1 [User name+ OTP (in 
fig.5) + user‟s digital signature + a randomly application 
chosen index n of the initialization vector all encrypted with 
bank‟s public key] It decrypts the message using its Kpr, then 
fetches the user information related to the given user name 
such as certificate and last transaction information, after that it 
calculates the user‟s expected OTP, and Message Digest from 
the signature by using his/her Kpub. Then bank asks for the 
user‟s certificate validation from CA through its cloud. This 
will be performed as the user certificate may be revoked 
during the period between application installation and first 
remote transaction due to security breakdown for example. 
Bank, then, compares the OTP and the digital signature to 
those sent from the user. If comparison succeeds, bank gets 
the user‟s IVn from the IV set stored in the Bank‟s database 
and prepares Message_2 as shown in fig.4. Else, if the 
comparison fails, then un-encrypted rejection message will be 
sent.  

2- At mobile phone, on reception of Message_2 [ bank digital 
certificate information+ transaction sequence number+ and 
account issuance date and branch all encrypted using AES 
with IVn where n is that one sent in message_1] application 
decrypts the whole Message by using the chosen IVn. Then it 
checks the bank certificate information and account 
information with reference to those stored in the bank 
provided SD card. After that, it extracts the message digest by 
using the bank Kpub, compares all previous results, and then 
prepares Message_3 as shown in fig.4  

3- At bank, on reception of Message_3 [Account numbersrc+ 
Account numberdest+ transaction type+ user‟s digital 
signature, all encrypted with AES using IVn] bank decrypts 
the Message by using IVn; Bank again confirms the user‟s 
signature. Then bank checks the transaction availability which 
includes (whether the required Service is in the bank portfolio 
and in the user basic list or not, Account has enough credit, 
and destination user account bank is in the network that the 
bank can transact with). If that above criteria is met, Bank 
prepares Message_4  

4- At mobile , on reception of Message_4 [ current account 
status+ expected account status after transaction completion+ 
bank‟s digital signature +availability of the process all 
encrypted using AES-IVn ] mobile confirms the bank again 
using the signature and by decrypting the message using the 
pre-agreed IVn. Then mobile user gives the confirmation. 

5- At bank , on reception of Message_5 [ confirmation from user 
+ user‟s digital signature all encrypted by AES-IVn] bank 

completes the transaction, then prepares Message_6  
6- At mobile, on reception of Message_6 [ack + current account 

status+ bank signature all encrypted with AES-IVn] mobile 
confirms the bank, and then stores the transaction information 
in the SD card. The current log and last transaction 
information will be used in the third level authentication by a 
mean of combination with random numbers to ensure 
randomness and diffusion as shown in fig.5.  

Algorithms and generators  
 

1- Encryption algorithm is chosen to be AES-256 in two 
modes of operations, first is AES-256-CBC with 
dynamic IVs under the policy ,that will be discussed in 
the upcoming subsection, to be used to encrypt and 
decrypt messages between Bank server and mobile 
device, and ,second is AES-256-XTS encrypt the bank-
provided SD-card. AES-XTS is designed for use in 
encrypting data stored on hard disks, and it works within 
the constraints imposed by disk hardware while keeping 
the security provided by the AES algorithm [21, 22]. 

2- Digital Signature algorithm is chosen to be ECDSA 
(Elliptic Curve Digital Signature Algorithm) as it 
emerges as an attractive public-key cryptosystem for 
mobile/wireless environments. ECC shows the same 
level of security with lower key sizes when it is 
compared to other algorithms such as RSA. It is worthy 
to note that a 160-bit ECC key has about the same level 
of security as a 1024-bit RSA key [17]. 

3- OTP generators is as shown in fig.5 
 OTP generator unit performs a random combination 
between the shown inputs and then hashing the output. 
The user chosen keys or passwords are not fully used to 
achieve diffusion as per fig.5 random digits selector 
randomly chooses four digits per time.  

IV generation and policy  
The IV set generation is performed at bank server, as the bank 
has higher storage capacity and processing capabilities than 
mobile equipment. The IV set is generated using a truly 
random generator to generate the first IV. Then other IVs are 
scrambled versions of the first IV. Each one IV set is valid for 
3 years, with one different IV for each transaction as AES size 
is 256 and IV size is 256 as well, set will contain about 255 
IVs assuming two transactions per week. While for a new 
certificate issuance or SD theft case a new IV set is delivered. 
After one IV set expiry, it will be reused considering the 
randomness basis. 

 



International Journal of Computer Applications (0975 – 8887)  

Volume 118– No.12, May 2015 

26 

 
Fig.5 OTP generator 

 

 

5. CONCLUSION AND FUTURE WORK 
Referring to section 3, the proposed solution theoretically 

covers most of those requirements and considerations. As it 

uses AES-256 with two modes of operation, AES-XTS for SD 

encryption, and AES-CBC with variable IV, it achieves a high 

level of data encryption. While ECDSA is used for Digital 

signature purposes which provide lower processing and key 

sizes. With respect to authentication, more than three levels of 

authentication are used as it asks for two user chosen 

passwords ( one is known to bank representative and the other 

is anonymous) and bank generated OTP_third. Authentication 

phases ensure the mutual authentication between user and the 

APP, then between the APP and bank server. Bank cloud 

scans the mobile platform to ensure elimination and 

mitigation of malwares impact. Dynamicity of values, 

diffusion, and sequence numbers overcome most common 

attacks such as reply, dictionary, and praut force attacks. No 

keys will be sent via emails. At last, dynamicity of values, 

levels of authentication, bank authentication involvement, and 

encryption helps against theft or loss. The upcoming efforts 

will be concentrated on implementing the proposed solution 

and proving the system performance regarding time, security, 

and traffic. 

6. ACKNOWLEDGEMENTS 
Special thanks to Electrical Engineering department of Al-

Azhar University for usual support during the research.  

7. REFERENCES 
[1] Adam Skillen and Mohammad Mannan “Mobiflage: 

Deniable Storage Encryption for Mobile Devices”, IEEE 
TRANSACTIONS ON DEPENDABLE AND SECURE 
COMPUTING, VOL. 11, NO. 3, MAY-JUNE 2014. 

[2] Yuksel, Zaim, and, Aydin, “A Comprehensive Analysis 
of Android Security and Proposed Solutions” I.J. 
Computer Network and Information Security, 2014, 12, 
9-20.   

[3] Chang and Deng, “Secure OTP and Biometric 
Verification Scheme for Mobile Banking”, 2012 Third 
FTRA International Conference on Mobile, Ubiquitous, 
and Intelligent Computing. 

[4] Majda, and Eihab, “Enhanced Model for PKI Certificate 
Validation in the Mobile Banking”, 2013, international 
conference on Computing, Electrical and Electronic 

engineering (ICCEEE). 
[5] Narendiran, Rajendran and Albert, “PUBLIC KEY 

INFRASTRUCTURE FOR MOBILE BANKING 
SECURITY”. 

[6] Cooper, Santesson, Farrell, Boeyen, Housley, Polk 
.2008. “Internet X.509 Public Key Infrastructure 
Certificate and Certificate Revocation List (CRL) 
Profile” RFC 5280. 

[7] Miriam, Ben-Av, and, Gerdov, “StoreDroid: Sensor-
Based Data Protection Framework for Android”, 
Wireless Communications and Mobile Computing 
Conference (IWCMC), pages 511 – 517, Aug-2014.  

[8] https://source.android.com/devices/tech/security/index.ht
ml. 

[9] https://developer.android.com/reference/android/Manifes
t. 

[10] https://developer.android.com/reference/android/Manif
est. Permission.html.  

[11] A Shabtai, Fledel, and Elovici.,” Securing android-
powered mobile devices using selinux”, Ben-Gurion 
University. IEEE computer and reliability society, pages 
36–44, May 2010.  

[12]  Mohammad Nauman, Sohail Khan, and Xinwen 
Zhang, “Apex: Extending android permission model and 
enforcement with user-defined runtime constraints”, In 
Proceedings of the 5th ACM Symposium on Information, 
Computer and Communications Security, ASIACCS „10, 
pages 328–332, New York, NY, USA, 2010. 

[13] Analysis for Vetting Undesirable” IEEE 
TRANSACTIONS ON INFORMATION FORENSICS 
AND SECURITY, VOL. 9, NO. 11, NOVEMBER 2014. 

[14]  Jinseong, Micinski, Jeffrey, Nikhilesh, Foster, Fogel, 
and Millstein, “Dr. Android and Mr. Hide: Fine-grained 
Permissions in Android Applications”, SPSM‟12, 
October 19, 2012, Raleigh, North Carolina, USA. 

[15] Backes, Gerling Hammer, and Styp-Rekowsky, 
”AppGuard - Enforcing User Requirements on Android 
Apps A “Saarland University, Saarbrücken, Germany. 

[16] Amol Bhatnagar, Shekhar Tanwar, and R.Manjula, 
“Secure Multiple Bank Transaction Log”, Inter. Journal 
of Research in Eng. And Technology IJRET, Apr-2014. 

[17] Sangram Ray and G.P.Biswas, “Design of Mobile 
Public Key Infrastructure (M-PKI) using Elliptic Curve 
Cryptography”, Int. Journal on Crypt. And information 
security (IJCIS), Vol.3, No.1, March2013. 

[18] Chang-Lung Tsai Chun-Jung Chen and Deng-Jie 
Zhuang, “ Secure OTP and Biometric Verification 
Scheme for Mobile Banking”, Third FTRA international 
conference on mobile, Ubiquitous and intelligent 
computing,2012. 

[19]  Hao Zhao and Sead Muftic, “Design and 
Implementation of a Mobile Transactions Client System : 
Secure UICC Mobile Wallet”, IJISR, International 
Journal for information security research , Volume 1 , 
issue 3 , Sep.2011. 

[20] Adam Skillen and Mohamed Mannan, “Mobiflage: 
Deniable Storage Encryption for Mobile Devices”, IEEE, 
Transaction on dependable and secure computing, Vol11, 
No.3, May-June 2014. 

[21] Morris Dworkin, “Recommendation for Block Cipher 
Modes of Operation: The XTS-AES Mode for 
Confidentiality on Storage Devices“, NIST Special 
Publication 800-38E, January- 2010. 

[22] I.G.Torrego 2009 Study of the IEEE Standard 1619.1: 
Authenticated Encryption with Length Expansion for 
Storage Devices.  Master of Science in Communication 
Technology, Norwegian University of Science and 
Technology Department of Telematics. 

IJCATM : www.ijcaonline.org 

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6895209
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6895209

