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ABSTRACT
Big Data has an increasing impact on the use of bioinformatics
software. One way to deal with this challenge is through parallel
computing. Using the program Structure as a case study, this pa-
per investigates ways in which to counteract the challenges created
by the growing datasets. This paper proposes an OpenMP-MPI hy-
brid parallelization of the MCMC steps, which are an integral part
of Structure, and analyses the performance under various scenar-
ios. The results indicate that the parallelization produce significant
speedups over the serial version in all scenarios tested. This al-
lows for the use of the hardware in a more efficient manner, by
adapting the program to the parallel architecture. This is important
because not only does it reduce the time required to perform exist-
ing analyses, but also opens the door to the analysis of previously
impractically large datasets.
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1. INTRODUCTION
Since the development of Structure over a decade ago [1], the size of
datasets analyzed have been steadily increasing. This has occurred
for two reasons: the rapid increase in the genetic sequencing speeds
[2] [3] [4] [5], and the increase in processing power, making larger
problems solvable in a more reasonable length of time. Thus, paral-
lelizing Structure may lead to a significant decrease the time needed
to perform the analyses, and so in the same amount of time, more
genetic data may be analysed (or the same amount of data may be
analysed more thoroughly). It may even open the door to new tech-
niques, which simply were impossible with present computational
power.

2. STRUCTURE DESCRIPTION
Structure was created to explore how a given group of organisms is
structured [1]. It can answer questions such as: What are the distinct
populations in a given group? Which individuals belong to which
populations? What are the hybrid zones and their characteristics?
It can also provide insight into which individuals are the migrants
or are admixed (containing mixed ancestral origin), as well as their
allele population frequencies (the rates at which different forms of
genes or genetic locus tend to manifest in different populations)
[1]. Structure works by estimating the likely characteristics of the

populations given the genetic data provided with the help of the
Markov Chain Monte Carlo algorithm (MCMC). MCMC generates
a large number of samples from a probability distribution forming a
Markov chain, which has the desired distribution as its equilibrium
distribution.
In Structure, the algorithm generates a specified number of samples
from the likely population structures and summarizes the samples to
infer the actual structure. Structure’s computational side is written
in C. The program is open source, and there is a dedicated Google
Group which provides additional support for the users. Structure
was originally developed in 2000, with a number of iterations and
updates that followed. The version of Structure used in this article
for the implementation of parallelization is the original version from
2000. It does not include some of the additional functionality, but
the fundamental function of the MCMC simulation to explore the
structure of the populations is the same. The 2000 version was used
because it shortened the code base and did not include some un-
used options, making decoding of the code base and parallelization
design more straightforward. The parallelisation techniques are not
in conflict with the differences, and the parallelization potential is
expected to be comparable if adapted to the latest version.
The program reads the genetic data of the individuals, initializes the
membership of individuals based on prior information or randomly
if no such information is available, and initializes other parameters.
After initialization, the program starts the MCMC process, perform-
ing the main loop as many times as specified by the burnin plus the
post burnin steps. For each of the repetition, the program updates the
P, Q and Z parameters, discussed in more detail later. The program
then updates the α parameter and frequency priors. If the given rep-
etition is a burnin step, the program starts the next repetition. For the
steps after the burnin period, the application also collects all the data
and compiles it to produce summary statistics. The program does
not collect the summary statistics for the burnin period, since these
steps are unreliable. After finishing the MCMC phase, the software
performs finalizing steps, stores the results and closes.

3. PARALLELIZATION OPPORTUNITIES FOR
THE MCMC METHOD

3.1 Embarrassingly Parallel Approaches
There are various approaches for parallelizing MCMC. The easiest
and most straightforward is the embarrassingly parallel approach,
for which independent instances of Structure may be run at the same
time with different parameters. For example, on CPUs 1 to 10, the
same simulation can be performed with the exception for the param-
eter identifying the number of expected populations. The results can
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then be used to infer which result is most likely. This type of paral-
lelization offers linear speedup but of course, it is limited in the types
of analyses for which it applies. Conveniently, a limited version of
such embarrassingly parallel approach is already available on sites
such as www.bioportal.uio.no [6], and a threaded embarrassingly
parallel version has been developed [7]. The embarrassingly paral-
lel version does not speed up a single analysis but it simply speeds
up certain experiments by not having to wait before the next ex-
periment is performed. In order to speed up a single analysis, more
complicated parallelization attempts are necessary as described in
the following section.

3.2 Parallel Chain Approaches
Perhaps the most intuitive approach is to run a separate MCMC
chain on each CPU, combining the results. The typical solution in
this scenario would be to initialize each chain at a random point and
run the burnin period until the chains group together. The maximum
speedup in such a setup would be related to the relative size of burnin
[8]:

Speedup(N) =
b+ n

b+ n
N

N −→
∞

b+ n

b
(1)

where b is the burnin, n is the post burnin chain and N is the number
of processors. With burnin equal to post burnin period, which is a
common ratio used in Structure [1] [9] [10] [11], the result is:

Speedup(N) =
2

1 + 1
N

N −→
∞

2 (2)

which grows as the relative size of burnin is decreased and offers
enough speedup to be worthy of pursuit on a small number of CPUs.
Unfortunately, there is a complication in the way Structure infers
the populations, which makes it difficult to combine the results of
the simulations. The problem is rooted in symmetry of the inferred
membership of individuals. For example, when dealing with two
evenly divided populations, the optimal answer for Q of Popula-
tion 1 can gravitate to (1,0) for the two possibilities or (0,1) with
equal probability [1]. With a serial version of the program, this is
not an issue, since results (or their inverted versions) are equally in-
terpretable by the user. The problem arises when an attempt is made
to combine separate chains; it is difficult to ensure that all chains
follow the same symmetry.

3.3 Single Chain Parallelization
As an alternative to using multiple chains as the method of paral-
lelization, one could attempt to parallelize a single chain. There are
various possibilities in parallelizing a single chain. One is through
using prefetching [12] in an MCMC algorithm. Since the next step
in the chain in Metropolis-Hastings program is determined from
a prior step and accepted with probability, which ensures detailed
balance, it could be beneficial to prefetch the next proposals in the
situation in which a number of initial propositions are rejected. This
could give notable improvements in the run time. However, Struc-
ture does not follow a strict Metropolis-Hastings pattern, and only
one of the possible updates of the Q parameter uses the Metropolis
step, which is set to occur every user-specified number of MCMC
steps. As a result, the speedup potential resulting from prefetching
the proposals in this specific application would be quite limited.
Due to the unique nature of this MCMC application, Structure
does offer some additional opportunities. A unique characteristic
of Structure is the use of large arrays of parameters that are in-
ferred at every step of the chain. These parameters are updated at

Fig. 1: Parallelizing P, Q, Z and Summary Statistics. Each green bubble
represents a single MCMC step. Inside each step, it is possible to par-
allelize each of the parameter sets, as well as the Summary Statistics.
With chain length of thousands of steps, the initial setup and the final
output would take a trivial amount of time.

each MCMC step, and have the potential of being divided and com-
puted by separate processes. These key parameters include P - the
estimated allele frequencies of the populations, Q - a fraction of
estimated membership of an individual to each population, and Z
- the unknown populations of the individuals. P is given by a list
of real numbers with cardinality equal to the number of loci per
individual, multiplied with the number of assumed populations and
the maximum number of unique alleles possible. Q is a list of real
numbers equal to the number of individuals analyzed multiplied by
the number of possible populations. Z is a list of integers, where
size is equal to the number of individuals multiplied by the ploidy
of the data (number of sets of data for each individual for each
chromosome) and the number of alleles.
It is not surprising, considering the structure of these parameter ma-
trices, that as the size of the dataset used grows, the size of the arrays
and therefore the amount of computation required grows rapidly.
These parameter arrays depend on each other to be calculated, but
they do allow for the division of the currently computed array to be
computed in parallel.
In essence, the program run time consists of the initial setup, fol-
lowed by a number of burnin and post burnin MCMC steps and
then a final output and terminating processes. The work performed
outside of the MCMC steps themselves is quite trivial, considering
that an MCMC chain typically has no fewer than 10 000 iterations.
In the article, these processes are referred to simply as other compu-
tation. Inside a single MCMC step, the following are the parameter
updating methods performed in the given order: P, Q, Z, α and Fre-
quency Priors. At the end, a procedure of collecting and generating
summary statistics is initiated. In this article, this collection and
generation of summary statistics is referred to as summary statistics
computation.
For the Structure runs described in this article, the following op-
tions were used: α, the admixture parameter was inferred. Allele
frequencies were correlated among populations. The probability of
data under the model was computed. An admixture model was run
in both burnin and post burnin phase. Prior population information
was not used to improve the prediction of population membership.
The program tested for immigrant ancestry back to grandparents.
The prior probability that an individual is a migrant was set to 0.01.
Uniform instead of gamma prior was used for α parameter. The
maximum value for α parameter was set to 20. A randomized seed
was used for each run. The frequency of using the Metropolis step
to update Q under admixture model was set to 10.
As suggested in Figure 1, at each MCMC step, a set of parallel tasks
can be performed and combined for each P, Q and Z parameter ma-
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Fig. 2: The change in run time as the software assumes different number
of populations. A desktop PC with Intel Core i7-3770 CPU was used.
The dataset consisted of 19200 individuals with of 96 loci per individual.
10 000 MCMC steps were used.

Fig. 3: The change in run time as the number of MCMC steps is in-
creased. A desktop PC with Intel Core i7-3770 CPU was used. The
dataset consisted of 19200 individuals with of 96 loci per individual and
2 populations.

trices, followed by non-parallelizable instructions. Another section
of the program that offers potential parallelization, is the portion that
calculates the summary statistics at the end of each MCMC step.
In relation to the total run time, the length of each parallelizable
loop is quite trivial and the parallelization of these sections is very
fine-grained.
It is important to explore precisely what portion of the total run time
is spent on computing these parameter matrices and to calculate
the parallelization potential. The timing methods from the OpenMP
[13] package allows for profiling of the code. They are used to
measure the total time spent on computing: P Updates, Q Updates, Z
Updates,αUpdates, Frequency Priors Updates, Summary Statistics
and the remaining Other Computation. The data shown in Figures
2 and 3 depict the behaviour of run time as the number of assumed
populations and the number of MCMC steps increases. The run
time in relation to the growing number of loci and the number of
individuals also grows consistently.
The graphs show an average of ten runs, with the run time growing
linearly throughout the parameters that were explored. This includes
the data shown in Figure 3, where both the number of MCMC steps
and the run time are displayed on a logarithmic scale. The shape of
the MCMC graph (Figure 3) is perhaps the least surprising, consid-
ering that with each additional MCMC step, the update calculations

Fig. 4: The percentage of total execution time spent on different sections
of the program as the number of assumed populations increases. Results
generated from the runs featured in Figure 2.

Fig. 5: The percentage of total execution time spent on different sec-
tions of the program as the number of MCMC steps increases. Results
generated from the runs featured in Figure 3.

repeat. This suggests that any parallelization obtained is likely to be
consistent across different parameters and datasets, as opposed to
being specialized to a particular subset of analyses. Datasets do not
usually exceed two thousand individuals [1] [9] [10] [11], but it is
important to anticipate big datasets in the future. With the exponen-
tial rate at which Big Data is produced [14], obtaining a dataset with
more than ten thousand individuals to study the population structure
is possible. It is also interesting to note how increasing the assumed
number of populations (as seen in Figure 2) also increases the run
time linearly despite the fact that the data size remains the same. The
calculations made necessary by populations accumulates with each
additional population. This implies that it is generally a good idea
to avoid overestimating the assumed number of populations. If an
exploratory analysis is performed, where at the same time multiple
runs with different assumed number of populations is performed,
the analyses will finish at a corresponding range of times. Yet, in
order to obtain the results, it is necessary to wait until the simulation
with the largest number of assumed populations is complete. With
a parallelized alternative it might be optimal to run the longest jobs
with the help of multiple CPUs, while run the shortest ones on a
single core.

The new set of graphs (Figures 4 and 5) explore how the proportions
of the total computational time changes as the length of the MCMC
chain grows. There are different tendencies that can be observed
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Fig. 6: The serial and parallel fractions of total computation time of a
run over increasingly large problem size (number of individuals). As the
problem size grows, the parallel portion of the program grows as well.

from the data shown in these graphs. With the growing number
of individuals, UpdateP takes an increasing fraction of time up to
60 percent for 19200 individuals. A similar effect occurs with the
growing number of loci. This suggests that UpdateP is the most sen-
sitive portion of the program when dealing with different data sizes.
Considering future Big Data, UpdateP could be the most important
part of the program from the perspective of parallelization. When
considering an increase in the number of assumed populations, the
UpdateQ method tends to dominate the total run time. Lastly, as the
number of MCMC steps increases, UpdateP, UpdateQ and UpdateZ
take over 90% of total execution time.
It’s not surprising that as the problem size grows, the sections of the
code that are not parallelizable in nature (such as the Initial Setup
Time and the Final Output) proportionally become smaller. A good
example is the Other category from Figure 5, which indicates that
a very small number of MCMC steps can take more than half of the
total computational time. As the number of steps grows to and then
beyond any likely values, the Other section drops to less than 1% of
total computational time. This is because as the number of MCMC
steps grows, the Other category (the initialization and termination
of the program) remains the same. All the other sections are re-run at
each additional MCMC step (except Summary Statistics, which are
not calculated for the initial burnin period). This type of pattern tends
to benefit most from parallelization. Since UpdateAlpha (α) and
UpdateFreqPriors tend to take an increasingly very small fraction of
time as the problem size grows, the OpenMP and MPI [15] overhead
may be larger than the benefits obtained from parallelization.
Assuming UpdateP, UpdateQ, UpdateZ and Summary Statistics
may be perfectly parallelized, then as the number of individuals
grows, this portion reaches 93.4% by the largest test as seen in Fig-
ure 6. Applying Amdahl’s law [16] for a run with 120 individuals
using 100 CPUs, the optimal speedup that may be expected equals
to:

Speedup100 = 1/(.535 + 0.465/100) = 1.85 (3)

For a very large run with 19200 individuals as opposed to only 120,
the Amdahl’s law suggests the following achievable speedup:

Speedup100 = 1/(0.066 + 0.934/100) = 13.27 (4)

This highlights the limit of parallelization defined by the serial por-
tions of the code. Conveniently, a large portion of Structure execu-
tion time does warrant an attempt to parallelize, even if there is a
relatively low limit on the number of CPUs that might be efficient to
use. Since the parallel portions of the program do in fact grow much

faster than the serial portions, then ignoring architectural concerns,
as the size of the problem increases, the maximum speedup also
increases with the same number of CPUs. It is reasonable then, to
explore how the software will perform in a parallel environment in
practice.

3.4 Data Generation
Before discussing the implementation and the results, it is important
to discuss the dataset used in this article. The output generated by
Structure does not produce definitive results. There are various ways
in which to infer the accuracy of the answer, but there is no deductive
certainty due to the stochastic aspect of the program. While certain
values can hint at the correct number of MCMC steps, the minimum
number of steps to guarantee the right answer is unknown. It is
always possible for the simulation to become trapped in a local
minima and as a result to be unable to explore the space sufficiently.
One of the ways to ensure the chain is long enough is to run multiple
chains until they all tend to give a similar solution. Nonetheless,
the precise expected population structure of real-life genetic data is
difficult to estimate.
An artificial dataset may solve these problems, by fully controlling
the nature of the population structure, and differentiating how long
the simulation should run before a correct answer is obtained. An ac-
curate answer could be one where the simulation correctly estimates
the population characteristics, such as the population membership.
The size of the dataset can also be easily defined. A Python script
was used to create such a dataset. The primary dataset generated
has 19200 diploid individuals with 96 loci (the data file consists
of 19200 individuals, each consisting of two lines of data). Each
line of data consists of 96 bits of genetic information that varies
at certain frequencies, depending on the population. The various
tests throughout this article range from 120 to 19200 individuals,
8 to 256 loci, and 2 to 18 assumed populations. The number of
MCMC steps range from 10 to 10 000. This range was chosen both
to investigate the behaviour of the serial portion, and the minimum
number of MCMC steps required to closely reflect the behaviour of
the program as the chain is increased. These numbers were selected
to produce a dataset divisible evenly among the processors with
even load balancing, to avoid producing misleading results (due to
affecting CPU utilization caused by distributing an uneven fraction
of work).
Two unique populations are randomly generated and each possesses
numerical representations of the genes that follow different nor-
mal distributions. The distribution overlap represents the overlap in
genes similarity, where the distance of the two distributions is related
to the difficulty in telling the two populations apart. The number of
individuals, loci, and populations, as well as the similarity between
the populations can be easily modified to accommodate any com-
parative tests that may be required by a given scenario. The run time
of the simulation with a given number of MCMC steps does not vary
greatly depending on the contents of the data, so the performance
improvements remain consistent, regardless of whether the dataset
is artificially generated or if it is based on real genetic data.

4. PARALLELIZATION RESULTS
4.1 OpenMP-MPI Hybrid Parallelization
An OpenMP-MPI hybrid parallelization allows the application to
take advantage of shared-memory and distributed memory sys-
tems as well as various the hybrid architectures, which share both
distributed and shared-memory characteristics. Such adaptability
would create possibilities for taking advantage of a much wider
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( . . . )
#pragma omp parallel for
for (v= 0; v<p_openmp; v++)

UpdateP(P, Epsilon , Correls ,NumAlleles,Geno,Z,
( int )( (NUMLOCI∗my_rank) / (p) + NUMLOCI/p/p_openmp∗v) ,
( int )( (NUMLOCI∗my_rank) / (p) + NUMLOCI/p/p_openmp∗v) +
NUMLOCI/p/p_openmp);

#pragma omp barrier

MPI_Allgather(&P[NUMLOCI∗MAXPOPS∗MAXALLELES/p∗my_rank] ,
NUMLOCI∗MAXPOPS∗MAXALLELES/p, MPI_DOUBLE, P,
NUMLOCI∗MAXPOPS∗MAXALLELES/p, MPI_DOUBLE,
MPI_COMM_WORLD);

( . . . )

Fig. 7: MPI-OpenMP Hybrid code modifications of UpdateP method.

( . . . )
#pragma omp parallel for
for (v= 0; v<p_openmp; v++)

UpdateQMetro(Geno,Q,P, alpha , rep , Individual ,
( int )( (NUMINDS∗my_rank) /p + NUMINDS/p/p_openmp∗v) ,
( int )( (NUMINDS∗my_rank/p +NUMINDS/p/p_openmp∗v) +
NUMINDS/p/p_openmp) ) ;

#pragma omp barrier

MPI_Allgather(&Q[NUMINDS∗MAXPOPS/p∗my_rank] ,
NUMINDS∗MAXPOPS/p,MPI_DOUBLE, Q,
NUMINDS∗MAXPOPS/p,MPI_DOUBLE, MPI_COMM_WORLD);

( . . . )
#pragma omp parallel for
for (v= 0; v<p_openmp; v++)

UpdateQAdmixture(Q,Z, alpha , Individual ,
( int )( (NUMINDS∗my_rank) /p + NUMINDS/p/p_openmp∗v) ,
( int )( (NUMINDS∗my_rank/p +NUMINDS/p/p_openmp∗v) +
NUMINDS/p/p_openmp) ) ;

#pragma omp barrier

MPI_Allgather(&Q[NUMINDS∗MAXPOPS/p∗my_rank] ,
NUMINDS∗MAXPOPS/p,MPI_DOUBLE, Q,
NUMINDS∗MAXPOPS/p,MPI_DOUBLE, MPI_COMM_WORLD);

( . . . )

Fig. 8: MPI-OpenMP Hybrid code modifications of UpdateQMetro and
UpdateQAdmixture methods.

range of high-performance computing systems. The following sec-
tions explore this option.
The hybrid parallelization using MPI and OpenMP is structured to
use both methods similarly. The SPRNG [17] library is used for ran-
dom number generation. The fundamental idea of the parallelization
is to split the work by splitting parameter updates and the summary
statistics at each MCMC step. The program divides the work by the
product of the number of MPI nodes and the number of OpenMP
threads held by each MPI node. The work is then distributed among
the nodes and threads. When completed, each node shares its re-
sults with all other nodes, so that all nodes contain the solution.
There is also additional communication that is made necessary by
the distributed-memory architecture.
The parallelized UpdateP method call can be seen in Figure 7. Up-
dateP passes a percentage of values of the loci that need to be pro-
cessed to each thread. Then Allgather method captures the appro-

( . . . )
#pragma omp parallel for
for (v= 0; v<p_openmp; v++)

UpdateZ(Z,Q,P,Geno,
( int ) ((NUMINDS∗my_rank) /p + NUMINDS/p/p_openmp∗v) ,
( int ) ((NUMINDS∗my_rank/p +NUMINDS/p/p_openmp∗v) +
NUMINDS/p/p_openmp) ) ;

#pragma omp barrier

MPI_Allgather(&Z[NUMINDS∗2∗NUMLOCI/p∗my_rank] ,
NUMINDS∗2∗NUMLOCI/p,MPI_INT, Z,
NUMINDS∗2∗NUMLOCI/p,MPI_INT, MPI_COMM_WORLD);

( . . . )

Fig. 9: MPI-OpenMP Hybrid code modifications of UpdateZ method.

( . . . )
∗like = CalcLike(Geno,Q,P) ;
double like2 =∗like ;

MPI_Allreduce(&like2 , &like2 , 1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);

∗sumlikes += like2 ;
∗sumsqlikes += ( like2 ) ∗ ( like2 ) ;
( . . . )
( Inside the CalcLike method)
#pragma omp parallel for firstprivate ( runningtotal , term,

allele , line , loc , pop) reduction(+ : loglike )
for ( ind=0; ind<NUMINDS; ind++)
{

for ( line=0; line <2; line++)
for ( loc=0; loc<NUMLOCI; loc++)
{
( . . . )
}
loglike += log( runningtotal ) ; runningtotal = 1;

}
return loglike ;
( . . . )

Fig. 10: MPI-OpenMP Hybrid code modifications of CalcLike method.

priate fraction for each MPI node and passes the calculated work
of each of its OpenMP threads to all other nodes. This update is
stored in the appropriate location of the P array. UpdateQMetro and
UpdateQAdmixture, the two versions of the method responsible for
updating Q parameters are modified, as seen in Figure 8. This is
a similar approach as used with UpdateP, except the work is di-
vided by the number of individuals, which tends to be larger than
the number of loci and thus is preferable. UpdateZ works in a sim-
ilar way to UpdateQ, by dividing by the number of individuals but
gathering sets of integers as opposed to doubles. The size of com-
municated fragments between the nodes is smaller for this method.
The parallelized version of UpdateZ can be seen in Figure 9. Lastly,
besides the OpenMP reduction, the Summary Statistics loop also
requires a reduction between all the nodes to add up the likelihood
values. The OpenMP reduction is performed inside CalcLike, and
an Allreduce call is made after calling the method to sum up and
then distribute the totals to all nodes. The already reduced likelihood
is then used for calculations of summary statistics. An overview of
this parallelization strategy is shown in Figure 10.
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Fig. 11: Run time over different number of threads per node for a various
number of nodes. Orca cluster was used. The dataset consisted of 2560
individuals with 256 loci per individual and 2 populations.

Fig. 12: Run time over growing number of nodes, each running with
a different number of threads per node. Orca cluster was used. The
dataset consisted of 2560 individuals with 256 loci per individual and 2
populations.

With these code modifications, the behaviour of the program should
be the same as the serial version. The new dimension introduced
is the possibility of using distributed-memory and shared-memory
architectures. Because of this, it is important to explore how the
behaviour of the program changes, as the balance between the two
changes. A system with few nodes but many threads per node may
behave very differently than a system with many nodes but with
each running only a few threads.

4.2 Overview of OpenMP-MPI Hybrid Results
The OpenMP-MPI hybrid code was run on the SHARCNET cluster
called Orca, which offers hundreds of nodes, each capable of running
up to 24 threads. This allowed for a thorough exploration of the
performance of the program under various ratios of MPI nodes to
OpenMP threads. Since every node has to receive the completed
results of all the other nodes, as the number of MPI nodes grows,
the percentage of total time spent on communication will grow. The
point at which this overhead will become prohibitive is unknown
a priori. On a dataset of 2560 individuals and 256 indels, various
combinations of runs ranging from 1 to 16 threads and with nodes
ranging from 1 to 256 were tested.
The first two graphs (Figures 11 and 12) explore the run times of
the program over different number of nodes and different number of

Fig. 13: The percentage of total execution time spent on different sections
of the program, as the number of CPUs increases (example: 4x2 - two
threads per each of the four nodes). 2560 individuals with of 256 loci
used.

threads per node. As expected, the graphs indicate a tendency for the
run time to decrease as more threads and more nodes are used. Some
of the jobs also tend to lose efficiency particularly when using 34 to
256 nodes, to the point of taking slightly more time to complete with
more nodes used. This may be an anomaly, considering that often
the following points in the sequence return to lower run times. From
the data shown in Figures 11 and 12, it seems that that the best run
is obtained by using 16 nodes, each running 16 threads to the total
of 256 threads. This is to be expected, considering that it maximizes
the total number of CPUs used, while minimizing the distributed-
memory communication (only 16 nodes need to communicate with
each together).
While no more than 16 MPI nodes are used, the run times shown
in the first two graphs seem interchangeable. That is, for up to 16
nodes, the communication between processors does not affect the re-
sults. However, beyond 16 nodes the efficiency is reduced due to the
increasing serial portion of the program (as seen in Figures 13 and
14) and increased communication. Taking 128 nodes as the point at
which communication becomes prohibitive (since the results do not
reduce the run time beyond this number of CPUs), it would suggest
that roughly splitting to 20 individuals per node (2560/128) and 2
indels per node (256/128) is the granularity at which communication
becomes impractical. The run time decreases until 64 nodes, which
is the maximum recommended number of nodes with no OpenMP
threading. Not surprisingly, the best speedup occurs with the largest
number of threads per node, but this performance is decreased with
the addition of more nodes. These results suggest that while running
on shared-memory architectures is preferred, distributed-memory
architectures can produce significant speedups as well. With the per-
formance differences, it is interesting to see the way the run times
differ across the different number of nodes, as seen in Figure 13. The
percentages of execution time for the parameter updates and sum-
mary statistics tend to decrease. UpdateFreqPriors method tends
to grow, reaching up to 35%. Nonetheless, since the communica-
tion overhead between the updates is so high, the UpdateFreqPriors
method parallelization at best would have a very small window of
potential improvement. This suggests that OpenMP parallelization
may be justified for this part of the program, if dealing with very
large datasets.
Figure 14 illustrates another interesting difference when different
distributions of 256 CPUs compute the problem. Since the run times
become gradually worse when the 256 threads are spread over in-
creasingly larger number of nodes, this architectural change also

6



International Journal of Computer Applications (0975 – 8887)
Volume 118 - No. 11, May 2015

Fig. 14: The percentage of total execution time spent on different sections
of the program, as the distribution of the 256 CPUs changes (example:
64x4 - four threads per each of the sixty-four nodes). 2560 individuals
with of 256 loci used.

Table 1. : Complete speedup table from all 35 hybrid runs, each using
up to 256 total threads.

CPUs/thrds 1 2 4 8 16
1 1 2.21 2.76 3.88 6.51
2 1.86 3.41 4.49 6.93 8.43
4 3.15 5.07 7.56 8.83 9.96
8 5.28 6.85 7.83 9.16 11.80
16 7.45 7.52 9.24 10.82 12.78
32 10.10 6.88 6.35 6.87 -
64 11.71 10.83 7.15 - -
128 11.19 7.49 - - -
256 10.62 - - - -

Table 2. : KarpFlatt values in relation to the speedup and the number of
nodes using MPI.
n 2 4 8 16 32 64 128 256
speedup 1.70 2.76 4.34 6.15 7.06 8.78 5.90 0.35
e 0.18 0.15 0.12 0.11 0.11 0.10 0.16 2.90

changes the way in which computational time is spent on the pro-
gram. The communication overhead is the primary source of differ-
ence between the times in the six last graphs. A graph showing data
for 16 threads running on each of the 16 nodes suggests the program
spends a proportionally longer time on the serial portions and less
on parallel portions simply because it is more efficient.

Table 1 summarizes the full results. Particularly interesting is one
diagonal (256x1, 128x2, 64x4, 32x8, 16x16), which depicts the case
of using 256 threads with various numbers of separate nodes. The
best speedup (11.80) is achieved with the use of 16 nodes, each with
16 threads. Interestingly, a pure MPI run of 256 nodes performs
well, but the intermediate configurations (128 nodes with 2 threads
each, 64 nodes with 4 threads each and 32 nodes with 8 threads
each) have significantly lower speedups. A possibility for this may
be the combined overhead of MPI and OpenMP, without sufficient
number of threads to offset this overhead. Another interesting result
is at 32 and 64 nodes, with a single thread per node. These speedups
(10.10 and 11.71 respectively) are comparable to those obtained by
256 total threads, and in this scenario may be the best choice if the
number of CPUs used is of concern.
At this point, the Karp-Flatt metric [18] (e) may be used to confirm
the previous conclusion, looking at the MPI performance without

Fig. 15: Run time of a dataset of alpine Arabian burnet moth, over
growing number of nodes.

OpenMP threading. As in the previous section, Table 2 shows that
up until around 128 and 256 CPUs, e does not grow, indicating that
the primary reason for the limited speedup is the sequential part of
the program. The growth of e near the end indicates that the main
reason for poor speedup is the parallel overhead, whether due to the
amount of communication or architectural limits.

4.3 Application using Real-World Data
An interesting test of the parallelization is to apply a real dataset, to
test the performance of the parallelization with a practical example.
For this, a dataset [19] of Arabian burnet moth Reissita simonyi
was used, including 784 individuals from 35 different populations.
Following the experimental design from the original article [19], 10
000 MCMC steps were used plus a burning of 1 000. Considering the
very large assumed population number (twice as large as the largest
tested in previous sections) and the fact that this parameter did not
increase speedups when increased, while at the same time keeping
the number of individuals relatively low in relation to the number
of populations (on average only 23 individuals per population to
differentiate between 35 populations), this experiment should test
the lower bound of the speedups that can be expected from the
parallelization. Figure 15 shows that the results are positive. The
run time continues to decline as more MPI nodes were used. The
speedup at 2 nodes equals to 1.75 and at 16 threads it equals to 3.78.
While the speedup is not as high as with the artificially created
dataset from earlier (resulting in the speedups of 1.86 at two nodes
and 7.45 at 16 nodes), it is still significant, even with a dataset which
does not take full advantage of the parallelization. Certainly, the
more individuals and loci per individual in the dataset, the better the
performance. If considering a dataset that is a matrix of vertically
listed individuals and their horizontally listed loci, then both the
number of individuals and the number of loci should not be exceeded
by the intended number of CPUs.

5. DISCUSSION
The results show that the parallelization of Structure by dividing
the parameter updates and summarizations into multiple processes,
both through MPI and through OpenMP, is a sound approach. The
speedups with a large number of threads available through SHAR-
CNET supercomputers increase consistently. While the speedups
eventually peak, datasets with over 64 loci per individual do occur,
and most parallel environments that would likely be used to per-
form the analysis would be able to produce benefits using all of the
CPUs. An important point to consider, is that since the time penalty
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of increasing the number of loci is reduced, especially if the number
of potential threads available is larger than the number of loci (the
bottleneck when computing the P parameter), this may motivate re-
searchers to increase the number of loci used in their analysis. All
other things being equal, increasing the number of loci can improve
the accuracy of the results. This may be particularly true for closely
related individuals or analyses where data from a large number of
individuals is unavailable.
The performance results presented in this article should be of as-
sistance to researchers when deciding what approach to take when
using a parallelized version of Structure. If multiple analyses need
to be performed, such as with different assumed number of pop-
ulations, the results indicate that it may be most efficient to run
separate jobs on each available node, with each node taking advan-
tage of OpenMP threading to whatever extent it can. On the other
hand, if the number of populations is known and only one large run
needs to be performed or if a preliminary test needs to be performed
before designing the experiment, then the results imply that using
all computational resources available is likely to be optimal. In ad-
dition, the parallelization allows for adjustment of the experiment
to maintain the run time, while increasing the data size or the num-
ber of MCMC steps, or to not modify the parameters and simply
generate the results quicker. Currently a large dataset analyzed may
have 1 000 individuals, and as seen in the profiling tests, the run
time increases linearly with the increase in the number of individ-
uals. This suggests that a test consisting of 1 000 individuals run
in a serial environment may take a similar amount of time as an
equivalent test with 10 000 individuals with as little as 16 threads,
using OpenMP or MPI. With the deluge of genetic data, there is
an opportunity for new experiments using this software that were
previously impractical to explore.

6. FUTURE WORK
With the results indicating that this parallelization is a success, there
are many opportunities to extend this work. Most beneficial would
be the adaptation of this parallelization to the latest version of Struc-
ture, to allow the analyses that depend on the latest extensions to
the program to benefit from the speedups. With this comes the po-
tential parallelization of additional loops that can follow the model
established in this article. While the latest version of the program
fundamentally performs similarly, there are more alternative ways
of updating parameters and more parameters to update. Structure
allows for a wide range of options and alternative ways to solve the
problem and to parallelize all possible paths may require signifi-
cant amount of work. For the smaller loops such as frequency priors
which might not lend themselves to MPI parallelization, OpenMP
exclusively may be used to generate additional speedup.
An important addition would be an implementation of intelligent
load balancing. The dataset may unevenly split among the CPUs
and safe checks are required to ensure that the program optimizes
the division of labour, by intelligently dividing the work among the
processors. Another unexplored aspect is the question of having
more CPUs than rows or columns of data. The easy answer might
simply be use an equal or fewer number of CPUs than the number
of individuals, due to the inevitable inefficiency. Conveniently, if
the number of CPUs is larger than the number of individuals, then
the analysis is unlikely to be particularly time consuming, while the
smaller number of loci than the number of CPUs only limits the
speedup achieved for the calculation of the P parameter.
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