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ABSTRACT 

Hidden Markov Models are widely used for modeling and 

predicting label sequences in ASR. In this paper, a game-

theoretic approach for Hidden Markov Model training that is 

superior in terms of time-complexity over Baum-Welch 

algorithm is introduced. Furthermore, accuracy of recognition 

using proposed algorithm is comparable with that of Baum-

Welch algorithm.  
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1. INTRODUCTION 
The speech signal is a sequence of acoustic observation 

vectors, and learning from observation sequences is a 

fundamental problem in Automatic Speech Recognition 

(ASR) systems. It comprises two problems, namely 

segmenting observation sequences and annotating observation 

sequences. The most prevalent formalism for modeling and 

predicting label sequences in ASR systems is based on 

Hidden Markov Models (HMMs) and their variants. HMMs 

can be considered as a generalization of finite-state automata, 

where both the transitions between states and the generation 

of output symbols are dependent on probability distribution 

([1],[2]). Learning from the sample data in HMM means 

estimating the transition probability matrix of the hidden 

states and emission probabilities of an observed sequence of 

data. Baum-Welch algorithm is one of the widely used 

algorithms to estimate these parameters. It uses dynamic 

programming to find the Maximum Likelihood (ML) estimate 

of the HMM parameters [3].  

Dynamic programming structures the optimization problems 

into multiple stages, which are resolved in sequence, one 

stage at a time [4]. The solution of each one-stage problem 

aids in solving the next one-stage problem in the sequence. 

The states related to each stage of the optimization problem 

are the states of the process, and reflect the information 

required to gauge completely the consequences that the 

current decision has upon the future actions. Another 

characteristic of the dynamic programming is the recursive 

formulation of the problem. Despite the suitability of the 

dynamic programming in solving optimization problems, it 

becomes prohibitively expensive when there are more than 

two or three states in the model formulation limiting its 

applicability in practice.  

Unlike Baum-Welch algorithm that uses the dynamic 

programming’ formulation, an alternate method based on 

game theory is proposed. The proposed method estimates 

HMM parameters based on game theory which eliminates the 

need for exhaustive state space search. While HMMs are used 

to detect strategies in games [5], the proposed method uses 

games to train HMMs.  

Experiments are conducted to evaluate the proposed algorithm 

against Baum-Welch algorithm on TIMIT database [6]. The 

results demonstrate the superiority of the proposed algorithm 

over Baum-Welch algorithm in terms of computational 

complexity. Furthermore, the accuracy of the recognition 

using the proposed algorithm is comparable with that of 

Baum-Welch algorithm. 

In Section 2, some background on HMMs and Baum-Welch 

re-estimation of parameters is presented. Game theory and 

Nash equilibrium concepts are discussed in Section 3. Section 

4 describes the game-theoretic formulation for HMM training. 

Experiments and results are demonstrated in Section 5 and 

Section 6 presents conclusions.  

2. HIDDEN MARKOV MODELS 
The notations used in this paper follow the conventions used 

in the HTK book [7]. In HMMs, the sequential dependencies 

among the observation vectors are modeled as a Markov 

chain. A Markov model is a finite state automaton and makes 

transitions from some state   i to another state   j every time 

unit with probability   
ij

a as shown in Figure 1. At each time 

 t that a state   j is entered, it generates a speech vector 
t

o  

with the probability distribution  )(
tj

ob . The joint probability 

that the observation sequence ),,,,(
321 TooooO   is 

generated by the model M  progressing across the state 

sequence ))(,),2(),1(),0(( TxxxxX   is computed as the 

product of the transition probabilities and the output 

probabilities given as follows 

   )()()|,( 2)2()2()1(1)1()1()0( obaobaMXOP xxxxxx  (1) 

However, in HMMs, the observation sequence O  is known 

while the underlying sequence of states X is hidden. Since X

is hidden, the likelihood of observing sequence O  can be 

approximated by considering the most likely state sequence 

calculated as follows  

  })({max)|(
1

)1()()()1()0(





T

t
txtxttxxxx

aobaMOP  (2) 

Generally, the output distributions are a Gaussian Mixtures, 

generated with probability )(
tj

ob given as follows 

  ),;()(  oob
tj

Ν  (3) 

where ),(.; Ν is a multivariate Gaussian with mean vector 

j  and covariance matrix j  given as follows 
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where n  is the dimensionality of O . 

Given an observation sequence O , training an HMM of N  

states, involves determining the transition probabilities 
ij

a and 

the emission probabilities )(
tj

ob NjNi  1 ,1 allfor (  

and )1 Tt  that maximizes the likelihood of )|( MOP . 

Determining the parameters of HMM is not trivial and there is 

no way to analytically solve for the values that maximizes the 

likelihood of (2). The common method is to train the HMM 

with the sample data by some iterative procedure until a local 

maximum is reached. Initially a rough guess of the parameters 

is done, then a set of re-estimation formula are applied 

iteratively, until the likelihood of the observation sequence is 

maximized.  

 

Figure 1. Illustration of Hidden Markov Model [12] 

2.1 Baum-Welch Re-estimation 

For K  states and T vectors in an observation sequence 
TK  

hidden state sequences need to be considered to find the 

Maximum Likelihood estimate of the parameters that 

maximize )|( MOP . For better understanding, Figure 2 

gives the visualization of state transitions unfold over time. In 

contrast, Baum-Welch algorithm calculates only intermediary 

forward and backward probabilities at each step as shown in 

Figure 3, making it cost-effective than the naïve method that 

calculates all possible probabilities at every step of the 

observation sequence.  

 

Figure 2. Visualization of State Transitions unfold over 

time [12]. 

The Baum-Welch algorithm employs Expectation 

Maximization (EM) algorithm to find the Maximum 

Likelihood estimate of the parameters of an HMM given a set 

of observed feature vectors. EM is an iterative method, 

alternating between two steps Expectation-Step (E-Step) and 

Maximization-Step (M-Step). The E-Step calculates expected 

likelihood of an observed sequence using current estimates of 

parameters and the M-Step computes new parameters 

maximizing the expected likelihood found in the E-Step. 

 

Figure 3. The illustration of the required forward and 

backward terms in order to compute the 

forward-backward variables for state 2 at time 

t [12]. 

 

Let the forward probability defined as 

)|)(,,,,()( 21 MjtxoooPt tj   , be the probability 

of observing observation sequence tooo ,,, 21   and being in 

state j  at time t . This can be calculated recursively as 

follows   

    )()1()(
1

1
tj

N

i
ijij obatt 







 




  (5) 

 1)1(1   (6) 

  Nj1for                )()1( 1  tjjj oba  (7) 

Similarly, let the backward probability be defined as 

),)(|,,()( 1 MjtxooPt Ttj    , and interpreted as 

the probability of observing observation sequence 

Tt oo ,,1   given state j  at the time t . This can also be 

calculated recursively as follows 

  





1

2j
1      )1()()(

N

jtjiji tobat   (8)  

  Ni1for             )(   iNi at  (9) 

Let )(tij  denote the probability of the HMM being in state 

i  at time t  and moving to state j  at the time 1t . Using 

Bayes law, it can be calculated as in (10).  

 

   
)|(

)1()
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),|)1(,)(()(

MOP

t
jt

o
j

b
ij

at
i

MOjtxitxPt
ij





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 (10) 

If )(tj  is the probability of being in state j  at time t , then 

it can be calculated as follows  
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 From )(t
ij
 and )( tj , 

ij
â can be calculated as given 

below 
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Finally, j  and j  in (4) can be calculated from )(tj  as 

follows 
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The Baum-Welch algorithm can now be summarized as 

follows. In the E-Step forward probabilities )(tj  and 

backward probabilities )(tj  are calculated for each state j  

at each time unit t  from the current estimates using equations 

(5) through (9). In the M-Step the values for )(t
ij
 ,

ij
â ,

)( tj , j̂  and j̂ are re-estimated using equations (10) 

through (14). The above steps are repeated until )|( MOP  

reaches a local maximum. The time complexity of Baum-

Welch algorithm is given by )( 2TINO  where I  is the 

number of iterations. Though this algorithm is more efficient 

than naïve method, it can substantially slow down and can 

even make HMMs impractical to use if the observation 

sequence is very large.  

3. GAME THEORY  
A game consists of a set of N  players, a set of possible 

strategies iS  for each player i   and a payoff function 

RSSu Ni 1:  for each player i .  

One of the cornerstones of the game theory is the solution 

concept called Nash equilibrium [8]. Let ii Ss   be the 

strategy taken by a player i  and is  denote the )1( n  

dimensional vector of the strategies taken by all other players. 

Nash equilibrium is a choice of strategies taken by the players 

such that the strategy of each player is the best response to the 

strategy of all other players. Mathematically, a joint strategy 

profile Ns
i

s ,,  is a Nash equilibrium if for all players 

Ni  

 ),'(),(
i

s
i

s
i

u
i

s
i

s
i

u





 (15) 

In other words, no player can increase his payoff by changing 

his own strategy.  

4. GAME THEORETICAL HMM 

TRAINING 
Training of an HMM can be thought of as T coordinating 

agents trying to maximize a joint reward function.  Therefore, 

HMM training can be mapped to a game and in this section a 

game-theoretic formulation for HMM training is presented.   

4.1 Proposed Algorithm  
Each agent corresponds to an observation vector Oot   and 

can be associated with any of the N states. The game is played 

sequentially, where each agent t  chooses to be associated 

with any of the N  states.  If the agent t  at time t  chooses to 

be associated with the state i , then 1)( ist . In other words, 

if 1)( ist , then HMM makes the transition to state i  at time 

t  generating observation vector to . The payoff agent t  

gains, is given as follows  

  
i

titxtxtt obaisu )()( )()1(  (16) 

Therefore, the strategy of any agent t  is governed by the 

probability distribution and is dependent on the choices made 

by the previous agents. The best strategy for the agent t  is the 

solution to the following optimization problem  

    max tu
i

 (17) 

subject to the constraints 

 N i Ttist  1and 1 allfor               }1,0{)(  (18) 

  1 allfor                1)(
1

Ttis
N

i
t  



 (19) 

The joint reward function of all agents )|( MOP  can be 

rewritten as follows 

  )ln()|(
11

t

T

t

T

t
t uuMOP 



 (20) 

Thus, maximizing each agent’s payoff maximizes joint reward

)|( MOP .  

Similar to the Baum-Welch algorithm, there are two steps in 

our algorithm. In the E-Step, the game is played by T agents 

using current estimates to find the hidden state sequence 

))(,),2(),1(),0(( TxxxxX   that maximizes each 

agent’s payoff tu , and the expected likelihood of the 

observed sequence )|( MOP  is calculated from (20). In the 

M-Step, the parameters are re-estimated/adjusted to maximize 

the expected likelihood found in the E-Step. The two steps are 

iterated until the Nash equilibrium is reached.   

4.2 Existence of the Nash Equilibrium  
Theorem 1 A game has a Nash equilibrium if for all ,Ii  

the set iS  are non-empty, convex and compact subset of 
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Euclidean space and the utility function iu  is continuous 

and quasiconcave in each iS [9]. 

In the context of the game theoretic HMM training discussed 

in Section 4.1, all the conditions for the existence of Nash 

equilibrium are satisfied. Therefore, Nash equilibrium exists 

for the problem.  

4.3 The Time Complexity of the Game 

Theoretical HMM Training  
Each agent T)t(1  t can be associated with any of the 

N  states. Therefore, the time complexity of game theoretical 

HMM Training is )(TNIO where I  is the number of 

iterations.  

5. EXPERIMENTS AND RESULTS  
Before discussing the results of the experiments, a brief 

introduction of data set and experimental setup are given first. 

5.1 Speech Database and Experimental 

Setup 
The TIMIT database [6] is used to evaluate the performance 

of the proposed game-theoretic approach for training HMM 

against Baum-Welch algorithm. The TIMIT is a phonetically 

transcribed corpus containing a total of 6300 sentences - 10 

sentences spoken by 630 speakers of different dialects of US 

divided into two sets for training and test consisting of 4620 

and 1680 sentences respectively. 

Experiments for phoneme recognition are conducted using 

proposed and Baum-Welch algorithm for HMM training. The 

original 61 TIMIT phonemes are mapped to 39 phonemes as 

in [10]. The Hidden Markov Model Tool Kit (HTK) is used in 

the experiments [11]. The HTK is a suite of tools used for 

ASR consisting of tools for data preparation, training, 

recognition and analysis. While in one set of experiments the 

available implementation of Baum-Welch algorithm provided 

with HTK training tools is used along with other tools, in 

another set of experiments the implementation of the proposed 

algorithm is integrated with HTKs tools of data preparation, 

recognition and analysis. 

5.2 Results  
The number of iterations for the convergence of the Baum-

Welch algorithm and the proposed algorithm are investigated 

to measure the performance of the algorithms. The effect of 

the data set size and the length of observation sequence on the 

convergence of algorithm are analyzed and presented in 

Figure 4 and Figure 5 respectively. While there is no relation 

between the data set size and convergence of algorithms, there 

is an increase in the number of iterations with the increase in 

the length of observation sequence. It can be seen that the 

relation between the number of iterations and the length of the 

observation sequence in game-theoretic approach for HMM 

training is clearly linear. While convergence is slow with the 

increase in the observation sequence length in Baum-Welch 

algorithm also, the explicit relation between the number of 

iterations and observation sequence length cannot be 

established. Irrespective of data set size and observation 

sequence length, convergence of the proposed algorithm is 

superior to the Baum-Welch algorithm. 

 

Figure 4. Data set size Vs. Number of iterations 

In order to evaluate the effectiveness of our training 

algorithm against the Baum-Welch algorithm accuracy of 

phoneme recognition is measured both on training and test 

set of TIMIT and the results are presented in Table 1. It can 

be seen that the accuracy of the phoneme recognition system 

with proposed training algorithm is comparable with that of 

BW algorithm.  

 

Figure 5. Average observation sequence length Vs. 

Number of Iterations 

Table 1. Comparison of the Accuracies 

 BAUM-WELCH GAME-THEORY 

TRAINING SET 92.51% 89.99% 

TEST SET 91.52% 89.72% 

6. CONCLUSIONS 
A game-theoretic method for estimation of HMM parameters 

is proposed. To verify the efficiency and effectiveness of the 

proposed method, experimental comparisons with Baum-

Welch algorithm are done for phoneme recognition. Results 

show that the proposed algorithm converges faster than 

Baum-Welch algorithm and the accuracy of recognition using 

the proposed training algorithm is comparable with that of the 

Baum-Welch algorithm. 
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