
International Journal of Computer Applications (0975 – 8887)

Volume 117 – No. 8, May 2015

33

Parallelization of Graph Isomorphism using OpenMP

Vijaya Balpande
Research Scholar
GHRCE, Nagpur

Priyadarshini J L College of Engineering, Nagpur

Anjali Mahajan
Professor

Priyadarshini Institute of Engineering and
Technology, Nagpur

ABSTRACT

Advancement in computer architecture leads to parallelize the

sequential algorithm to exploit the concurrency provided by

multiple core on single chip. Sequential programs do not gain

performance from multicore. For multicore architectures,

OPENMP and MPI are application programming interfaces.

They can be used for parallelization of codes. For shared

memory architecture OPENMP is used, whereas for

distributed memory architecture MPI is used .In this paper,

analysis of the performance of parallel algorithm over

sequential algorithm is done. In particular, Graph

Isomorphism problem based on vertex invariants is

considered and parallelized using OpenMP. We demonstrate

the performance of Graph Isomorphism using variable size

graphs and parallelize it using vertical tiling technique on

multicore architecture. Our previous work shows, sequential

implementation of modified algorithm based on vertex

invariants using Euclidian vector performs better than existing

algorithm of Graph Isomorphism based on vertex invariants.

To analyze the performance of parallel implementation, we

present practical experiments with randomly generated

graphs.

Keywords

Graph Isomorphism, Vertex Invariant, Euclidean vector,

OpenMP, MPI.

1. INTRODUCTION
In shared memory architecture, system has more than one

processor on a single chip. With the advancement in

technology of processor architecture and due to advent of

multicore architecture many researchers from various fields

are concentrating in this area.

In distributed memory architecture, each processor has its

own memory. Message Passing Interface (MPI) [2][3] is an

API which allows distributed processors to communicate

message with each other. MPI provides functions for

programmers to distribute data, synchronize and create virtual

topologies for communication among processes.

OpenMP and MPI are the two programming paradigms for

parallelization. Both of them provide high performance with

different approaches. OpenMP is used for shared memory

architecture whereas MPI is used for distributed memory

systems. OpenMP has simple interface which can be used to

parallelize the loops. OpenMP [1] is an application program

interface for shared memory programming model. Generally

OpenMP directives are easy to use for converting sequential

code to parallel code. In shared memory model, most of the

thread handling is done by compiler which reduces the code

complexity. Programmer has flexibility of declaring the

variable as private or shared and which part of sequential code

to be parallelized. Due to this OpenMP is widely used for

parallelizing the sequential code for shared memory

architecture.

 Graph isomorphism is a way of matching the two graphs

whether they are equivalent or not. There is complete

structural equivalence between the two graphs. They differ

only in the names of vertices and edges. In Graph

Isomorphism there is one to one mapping of vertices and

edges of two graphs. It is highly studied problem in research

field and graph theory. Graphs are widely used in real life

applications to represent the structure of objects, e.g.

applications like molecules, images, networks. Graph

isomorphism problem is extensively applied in many

applications in various fields such as data mining [4], pattern

recognition [5], information retrieval [6], chemistry [7].Most

researchers believe that GI problem is not NP-complete. As

there is no polynomial solution for GI it is not known to be in

P or to be NP- complete.

 Graph matching can be done in two ways. In the first case

given two graphs, graph matching is done for isomorphism or

to find if one graph is subgraph of the other graph. Another

method is, given a database of graph called model graph, an

input graph is matched against it to detect the graph or

subgraph isomorphism.

Graphs are generally representing information using vertices

and edges. Graph consisting of thousands of nodes and

vertices requires large processing time. Sequential processing

of larger graph is very time consuming [8][5] and matching of

two graphs is computationally expensive process .Therefore,

there is a need of methodology that could reduce the

computational time while matching the graph. In this paper,

parallelization of sequential graph isomorphism algorithm [8]

which is referred as Algorithm A1 is compared with modified

algorithm which is referred as Algorithm A2. Specifically, an

evaluation of sequential and parallel implementation of

existing algorithm A1 and algorithm A2 is provided in terms

of execution time.

In the remaining paper, section II describes the basic

definitions and notations. Section III describes the basic idea

of the algorithm A1. In section IV parallelization of algorithm

A1 and modified algorithm A2 is described. In Section V

experimental results were given. Section VI specifies the

conclusion.

2. BASIC DEFINITIONS

2.1 Definition1
In[8],the graph isomorphism is expressed as: Given two

graphs G1=(V1,E1) and G2=(V2,E2) ,if there exist 1 to 1

mapping function f from V1to V2 such that (i, j) ∈ E1, if and

only if (f(i) ,f(j)) ∈ E2.The function f is called an isomorphism

from G1 to G2. If the two graphs isomorphic to each other, it

is denoted by G1 ≅ G2.

2.2 Definition2
The identity matrix M of order n x n is represented as

 mij = 1, if i = j

 0, otherwise (1)

Where, m is an element of M on the ith row and jth column.

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No. 8, May 2015

34

2.3 Definition3
A permutation matrix is obtained from the identity matrix by

any row and column permutation. If M1 and M2 are the two

matrices of graph G1 and G2 respectively M1 is said to be

isomorphic to M2 if there exists 1 to 1 mapping of function f

from the rows of M1 to rows of M2 and from column of M1

to column of M2. The function f is called an isomorphism

from M1 to M2. In other words, M1 is isomorphic to M2 if

and only if there exists the permutation matrices P1 and P2

satisfying the following relation

 M1= P1 M2 P2 (2)

3. EXISTING ALGORITHM
In [8], vertex invariant property is used to test graph

isomorphism. The vertex invariant property is described with

the help of number of vertices, labels of vertices, label of

edges and degree of vertices. Vertices having same label and

same degree are grouped together and they form one group.

Based on these groups, graph matrices are created. Using

these matrices permutation operation is performed.

Permutation is carried out to change the position of vertices

and edges in graph. After performing permutation operation,

the structure of original graph should match with permuted

graph to detect graph isomorphism. For example, graph G1

has five vertices with each vertex having vertex label and

degree. Vertex v1 has label a and degree 2 which can be

represented as v1{a,2}.Similarly other nodes can be

represented as v2{b,3},v3{a,2},v4{a,2} and v5{b,3}.By

applying vertex invariant property for graph G1, vertices can

be grouped together as group g1{v1,v3,v4} and g2{v2,v5}.

Graph G1 has 5 vertices and total number of permutation

matrices required to be computed are 5! = 120. By using

permutation matrices, graph is represented as a decision tree.

As size of decision tree is directly proportional to permutation

matrices, it requires large amount of storage. The vertex

invariant property of graph is used to group the vertices of

graph so as to reduce the size of decision tree as compared to

[9]. Based on vertex invariant property, Graph G1 requires 3!

X 2! = 12 permutation matrices that reduces the size of the

decision tree. The technique is similar to breadth pruning

technique which reduces the size of decision tree remarkably

by maintaining the time complexity as almost equivalent.

Decision tree is the most widely used method for inductive

conclusion and simple method for knowledge representation.

The basic idea [9] of the isomorphism algorithm is that all

possible permutation of adjacency matrix of each of the model

graph was computed offline and the permutation matrices

were represented as decision tree. The matrix of input graph is

matched to those of adjacency matrices in the decision tree

which are identical to it. At run time, permutation matrices of

the input graph are matched with the preprocessed matrices of

model graph to detect the graph or subgraph isomorphism.

Decision tree is represented by using the row-column element

of each permutation matrix of the model graph [8][9]. A row-

column element xi of n x n matrix is a vector and is

represented as xi = (y1i, y2i … yii, yi (i-1) …... yi1). The

representation of an adjacency matrix A by its row–column

element is illustrated in figure 2. The x1, x2 … are the row

column element of matrix x. A root node is present at the top

of decision tree. At each level of the decision tree the

classification is done by comparing the row column element

of permutation matrix. In the starting, the classification is

done by comparing the first row-column element of the input

graph by the first row-column element xi of each permutation

matrix. At the nth level of decision tree the classification is

carried out by comparing the row-column element xn of the

permutation matrices. Graph G3 has 3 vertices and therefore it

has 3! = 6 permutation matrices. The row column element of

the 6 permutation matrices are then organized as a decision

tree [8].

 Graph G1 Graph G2

Figure 1: Graph G1 and Graph G2

The decision tree formed is of exponential size depending on

the number of vertices and requires huge amount of storage if

the number of vertices increases. A graph with n vertices has

n! permutation matrices. A row-column element at level n of

decision tree would be n! at the worst case. Existing algorithm

A1 based on decision tree under the constraint of vertex

invariant needed to compute permutation matrices of input

graph and compared with the preprocessed permutation

matrices of the model graph. The comparison is carried out

element by element. Time required for comparing the

matrices is more as it needs to compare n x n elements of

permutation matrices.

In the proposed algorithm A2 we are using the vertex

invariant property like the existing algorithm to find the count

of permutation matrices. In our approach instead of

computing the permutation matrices for the entire graph we

compute the count of permutation matrix. Based on the count

of permutation matrices we are computing only one sequence

of permutation matrix. For this matrix, compute the Euclidian

vector of the input graph and the model graph. If the Euclidian

vector of the input graph matches with the Euclidian vector of

the model graph, graph isomorphism is detected and the two

graphs are said to be isomorphic to each other. Thus by

comparing Euclidian vector of matrices we are reducing the

time complexity as compared to existing algorithm.

V1(a)

V3(a)

V4(a)

V2(b)

V5(b)

V2(a)

V1(a)

V4(a)

V3(b)

V5(b)

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No. 8, May 2015

35

 a3

 1

 0

 0 1 c

 Graph G3

a1= (a)

a2 = (1, b, 0)

a3 = (1, 0, c, 1, 0)

Figure 2: Graph G3 Row-column element

4. PARALLELIZATION OF GRAPH

ISOMORPHISM
Parallelization can be implemented as task parallelism or data

parallelism. In order to parallelize the sequential algorithm,

either task or data can be divided between processors. Task

parallelization is carried out by breaking the job and assigning

different part of job to specific processor whereas in data

parallelization all processor performs same job on different

portions of data. Based on type of algorithm and requirement,

task decomposition or data decomposition can be applied.

For parallelization of existing algorithm A1 and our algorithm

A2, data decomposition parallelization is applied using

OpenMP implementation. Here data is divided using vertical

tiling mechanism.

Algorithmic process is dependent on the values of Euclidean

vectors which in turn dependent on the values of adjacency

atrix. For n number of nodes in a graph, the size of adjacency

matrix is n*n and the size of Euclidean vector is only n. The

size of adjacency matrix increases with the increase in number

of nodes. For example: for n=1000 (number of nodes), Size of

A1*A2 = 1000 * 1000 i.e. Memory for 1000000 elements are

required to store all the elements of adjacency matrix whereas

only 1000 elements are required for a Euclidean vector. Huge

memory is required to hold all elements of adjacency matrix.

To avoid this problem of memory, tiling mechanism is used.

In this mechanism instead of holding all the elements of

adjacency matrix in memory it divides the adjacency matrix in

a tiled format and calculates each tile one by one.

Algorithm A2:

Input: Graph G1, G2

Output: To check G1 and G2 are isomorphic or not.

Basic Steps:

1. Calculate Adjacency Matrix A1 and A2 of Graph

G1 and G2 respectively.

2. Calculate the values of Euclidean Vector E1 and E2

of graph G1 and G2 respectively.

3. Sort the Euclidean values E1 and E2.

4. Compare both values E1 and E2.

5. Graphs are isomorphic, if values of E1 and E2 are

equal.

For parallelization of algorithm, in tiling mechanism we

divide adjacency matrix into vertical tiled format as shown in

figure 3.

Instead of calculating complete adjacency matrix at a

time, the matrix is divided into different vertical tiles as

shown in Figure 3, where T0, T1 ….T4 are vertical tiles. In

sequential execution, calculation of Euclidean value of each

tile is done one by one. In parallel execution by using

OpenMP, outer loop is dynamically scheduled with n threads.

Iteration of outer loop performs execution in different thread

and once the execution of one thread is completed it will

dynamically jump to another iteration on which no thread is

assigned. For example, if there are 4 threads then calculation

of 4 tiles are performed in parallel with these threads.

 1 2 3

1 a 1 1

2 0 b 0

3 0 1 c

 a2

 1

0 b

a1

a

b

a

c

2 3

1

1

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No. 8, May 2015

36

v1 v2 v3 v4 v5

v1 x 1 0 0 0

v2 1 x 1 0 1

v3 0 1 x 1 0

v4 0 0 1 x 1

v5 1 1 0 1 x

T0 T1 T2 T3 T4

Figure 3: Vertical Tiling

5. EXPERIMENTAL RESULTS
Experiments were carried out for both directed and undirected

randomly generated graph .The experiment environment is:

Intel(R) Core(TM) i3 CPU 540 @ 3.07GHz, Speed: 1,995.00

MHz, Cores: 4, 1.8 GB RAM, Free memory: 426.4 MB (+

759.7 MB Caches) Free swap: 1.8 GB with Linux (open suse

11.3) OS.

The algorithm is implemented in c++ language. For each

experiment we generated one or more model graph.

Experimental results were obtained for both labeled and

unlabeled graph.

We examine the time complexity experimentally; the time

required for graph isomorphism detection using vertex
invariant in the existing algorithm A1 is more as compared to

our algorithm A2 which is implemented using vertex invariant

and Euclidean vector.

For the directed labeled graph, when the number of vertices

more than 500, the existing algorithm fails to perform the

number of permutations and unable to detect graph

isomorphism. In our proposed algorithm A2, Euclidean vector

is computed and it is able to detect graph isomorphism for the

graph having vertices more than 1000.

Experimental result for the undirected labeled and unlabelled

graph also gives better result than the existing algorithm. The

existing algorithm fails to compute permutations and unable

to detect graph isomorphism for the graph having vertices

more than 30 in undirected labeled graph and more than 20 in

unlabelled graph.

Experimental result for directed and undirected graph for

Algorithm A1 and Algorithm A2 are shown in figures.

Limitation of Algorithm A2 is it can detect only graph

isomorphism and fails to detect subgraph isomorphism.

6. CONCLUSION
We conclude that we have successfully parallelize an existing

algorithm A1 based on decision tree under the constraint of

vertex invariant with OpenMP and studied the performance

with respect to time for large size randomly generated graphs.

We could also parallelize modified algorithm A2 based on

Euclidean vector with OpenMP and studied the performance

with respect to time for large size randomly generated graphs.

A lot of experiments were performed using OpenMP on

algorithm A1 and A2 and we conclude that depending upon

size of graph, type of graph and using vertical tiling

mechanism on our architecture, algorithm A2 shows better

performance than algorithm A1.In future we are trying to

reduce the space complexity of parallel algorithm A2.

Figure 4: Time required for graph isomorphism detection for undirected labeled graph using sequential algorithm A1

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No. 8, May 2015

37

Figure 5: Time required for graph isomorphism detection for undirected labeled graph using parallel algorithm A1

Figure 6: Time required for graph isomorphism detection for undirected labeled graph using sequential algorithm A2

Figure 7: Time required for graph isomorphism detection for undirected labeled graph using parallel algorithm A2

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No. 8, May 2015

38

Figure 8: Performance comparison of sequential and parallel algorithm A1 and algorithm A2 for undirected labeled graph

Figure 9: Time required for graph isomorphism detection for undirected unlabeled graph using sequential algorithm A1.

Figure 10: Time required for graph isomorphism detection for undirected unlabeled graph using parallel algorithm A1.

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No. 8, May 2015

39

Figure 11: Time required for graph isomorphism detection for undirected unlabeled graph using sequential algorithm A2.

Figure 12: Time required for graph isomorphism detection for undirected unlabeled graph using parallel algorithm A2.

Figure 13: Performance comparison of sequential and parallel algorithm A1 and algorithm A2 for undirected unlabeled graph

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No. 8, May 2015

40

Figure 14: Time required for graph isomorphism detection for directed unlabeled graph using sequential algorithm A1.

Figure 15: Time required for graph isomorphism detection for directed unlabeled graph using parallel algorithm A1.

Figure 16: Time required for graph isomorphism detection for directed unlabeled graph using sequential algorithm A2.

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No. 8, May 2015

41

Figure 17: Time required for graph isomorphism detection for directed unlabeled graph using parallel algorithm A2.

Figure18: Performance comparison of sequential and parallel algorithm A1 and algorithm A2 for directed unlabeled graph

7. REFERENCES

[1] Alejandro Duran, Marc Gonzales, and Julita

Corbalán.Automatic Thread Distribution for Nested

Parallelism in OpenMP. In 19th ACM International

Conference on Supercomputing, pages 121–130,

Cambridge, MA, USA, June 2005

[2] The Message Passing Interface (MPI) Standard

http://wwwunix. mcs.anl.gov/mpi/ and http://www.mpi-

forum.org

[3] Anne C. Elster and David L. Presberg, “Setting

Standards for Parallel Computing: The High

Performance FORTRAN and Message Passing Interface

Efforts”, May 1993, Theory Center SMART NODE

Newsletter, Vol. 5, No.3. http://www.idi.ntnu.no/ elster

[4] T. Washio and H. Motoda. State of the art of graph-based

data mining. ACM SIGKDD Explorations Newsletter,

5(1):59–68,2003

[5] D. Conte and et al. Graph matching applications in

pattern recognition and image processing. In

International Conference on Image Processing, volume 2,

pages 21–24. IEEE, 2003.

[6] A. T. Berztiss. A backtrack procedure for isomorphism

of directed graphs. Journal of the ACM, 20(3):365–377,

1973.

[7] J. Braun and et al. Molgen-cid, a canonizer for molecules

and graphs accessible through the internet. Journal of

Chemical Information and Computer Sciences,

44(2):542–548, 2004.

[8] Ming Qiu , Haibin Hu, Qingshan Jiang and Hailong Hu :

A New Approach of Graph Isomorphism Detection

based on Decision Tree IEEE, Second International

workshop on Education Technology and Computer

Science,2010

[9] B.T.Messmer and H.Bunke: A decision tree approach to

graph and subgraph isomorphism detection Pattern

Recognition 32 (1999) 1979-1998

[10] B.T.Messmer and H.Bunke: Subgraph Isomorphism in

Polynomial Time. University of Bern, Institute of

Computer Science and Applied Mathematics, Bern,

Switzerland Technical Report IAM 1995-003, 1995

[11] Narsingh Deo: Graph Theory with Applications to

Engineering and Computer Science ,Prentice Hall,Inc,

1995

IJCATM : www.ijcaonline.org

