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ABSTRACT 

An investigation is performed for natural convection of air in 

a three dimensional inclined annulus enclosure. The annulus 

material is made of silica aerogel/glass fiber composite 

materials. The annulus enclosure is filled with silica sand 

between two inclined concentric cylinders with fins attached 

to the inner cylinder. Constant walls temperature boundary 

conditions are considered under steady state condition. The 

parameters affected on the system are modified Rayleigh 

number (10 ≤Ra*≤ 500) and the annulus inclination angle δ 

(0o, 30o, 45o, 60o and 90o).  The effect of fibres filler in 

composite material is investigated and two values of effective 

thermal conductivity are performed: the minimum and the 

maximum values considering the fiber alignment effect. The 

results showed insignificant effect of the inclination angle on 

the average Nusselt number for the low values of Ra*. The 

average Nu number increases with an increase in modified 

Rayleigh number and decrease with the increase of δ for high 

values of Ra*. The deviation between the average Nu for the 

maximization and minimization of the thermal conductivity is 

equal to 2.26% for δ=90o (horizontal annulus) and 0.46% for 

δ=0o (vertical annulus). A correlation for the average Nusselt 

number in terms of Ra* and δ, has been developed for the 

outer cold cylinder and for the two cases of maximization and 

minimization of thermal conductivity. 

General Terms 

Cp: Specific heat at constant pressure (kJ/kg o C), g: 

Acceleration due to gravity (m/s2),     Hf : Fin length (m), H1 : 

Dimensionless fin length ( Hf/ rout), kfin: Fin thermal 

conductivity (W/m K), kf: Thermal conductivity of the fluid 

(W/m K), keff: Effective thermal conductivity of the porous 

media (W/m K),  K: Permeability (m2), l: Cylinder length (m), 

L:Dimensionless cylinder length, Nu1: Local Nusselt number 

on the inner cylinder, Nu2: Local Nusselt number on the outer 

cylinder, Nuin: Average Nusselt number on the inner cylinder, 

Nuout: Average Nusselt number on the outer cylinder             

p: Pressure (N/m2), q Local heat flux (W/m2),  rin: Radius of 

the inner cylinder (m), rout: Radius of the outer cylinder (m), 

R: Dimensionless radial coordinate, Ra*: Modified Rayleigh 

number, Rr: radius ratio, S: Fin pitch (m), S1 and S2: 

Dimensionless fin spacing, T: Temperature (K), , u, v and w: 

velocity components in r, ϕ and z - direction (m/s), U, V, W: 

Dimensionless velocity component in R, ϕ and Z direction, x, 

y, z: Cartesian coordinate system (m), Z: Dimensionless axial 

coordinate, eff: Effective thermal diffusivity (m2/s), m: 

Medium thermal diffusivity(m2/s), : Volumetric thermal 

expansion coefficient (1//K), δ: Angle of inclination (degree), 

θ: Dimensionless temperature,   

Keywords 
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1. INTRODUCTION 
In many applications a material of high corrosion resistance, 

high strength-to-density ratio, stiffness-to-density ratio, and 

plasticity is needed and the fiber reinforced multilayer 

composite materials is found to be very suitable for these 

applications as compared with most materials. Two properties 

cause the advantages of these materials, which are the fibers 

orientations in every layer; and having different physical, 

mechanical and thermal properties of various materials to 

meet the design requirements. The applications of these 

materials are in fluid reservoirs, pipes pressure vessels and 

aerospace and marine industries and it used in various designs 

to improve the characteristic of various constructions and 

reduce their weight. One of the factor that influences the 

resultant value of a property of a composite material (which is 

made of two or more materials) as a whole is its geometrical 

structure. The properties of these materials are commonly 

called effective properties of a composite.  [1] Examined the 

effect of multi fibres filler in composite materials on thermal 

conductivity. To find the optimal arrangement of fibres 

position in composite matrix, three types of optimization were 

performed in terms of effective thermal conductivity. Hybrid 

method combining optimization with genetic algorithm and 

differential equation solver by finite element method were 

used. [2] Presented a theoretical and experimental study on 

thermal conductivities of several silica aerogel composite 

insulation materials. The results show that the density of the 

silica is the key factor affecting the effective thermal 

conductivity of these composite insulation materials, and the 

density of aerogel has little influence. [3] Fabricated silica 

aerogel/glass fiber composites by press forming of silica 

aerogel powders and dispersed glass fibers. Due to the nano 

porous structure, silica aerogel showed low gas thermal 

conductivity and solid thermal conductivity. By adding the 

glass fibers, the strength of the composites was improved but 

the heat insulation property was deteriorated. The thermal 

conductivities of the composites with 20 wt.% glass fibers at 

300 °C and 600 °C were 0.025 W/(m K) and 0.030 W/(m K), 

respectively. The addition of TiO2 decreased the radiative 

thermal conductivity abruptly, especially at high temperatures. 

At 700 °C, it decreased from 0.041 W/(m K) to 0.030 W/(m 

K) after 20 wt.% TiO2 powders were added. [4] investigate 

the radiative properties and heat transfer in fiber-loaded silica 

aerogel composites using modified theory in a combined heat 

conduction and radiation model. To simulate a very realistic 

material structure, a randomly parameterized 2-D fiber 

distribution was generated. The finite volume method was 

used to solve a two flux radiation model and the steady-state 

energy equation to calculate the effective thermal conductivity 

of the composite. Theoretic guidelines for material designs 

with optimum parameters were obtained from the numerical 

results, such as the inclination angle, diameter and length-to-

diameter ratio of the fibers. It was found that the fiber 

extinction coefficient increases as the fiber length-to-diameter 

ratio is reduced or the fiber inclination angle is increased. 
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Reducing the fiber length-to diameter ratio and the inclination 

angle and increasing the fiber volume fraction cause the 

effective thermal conductivity of the fiber-loaded aerogel to 

be reduced. [5]By considering the heat conduction and 

thermal radiation simultaneously a complete computing 

procedure for calculating the thermal conductivities of silica 

aerogel composite insulating materials was obtained. A 

proposed of a sphere model was taken for the nano-porous 

silica aerogel in which the scale effect on gas conduction and 

solid-matrix conduction were both considered. Mie theory 

used to determine the radiative properties of additives 

(opacifier particles and fibers), which are needed for 

calculating the radiative conductivity in Rossland equation. 

The results show that the total conductivity decreases first and 

then increases as the mass fraction of additive increases.  [6] 

Investigated the thermal radiative transfer in silica aerogel and 

silica aerogel composite insulation materials. To determine 

the specific spectral extinction coefficient and the specific 

Rosseland mean extinction coefficient of each sample, the 

spectral transmittances were used. The results show that the 

spectral extinction coefficients of the samples are strongly 

dependent on the wavelength, particularly in the short 

wavelength regime. Increasing the temperature cause to 

decrease the total Rosseland means extinction coefficients of 

all the samples. As sample densities increase, the radiative 

conductivities which are almost proportional to the cube of 

the temperature decreased. 

In the present research the natural convection heat transfer is 

investigated in an inclined annulus enclosure used as heat 

exchanger. The material taken for the annulus was based on 

previous experimental work which used silica aerogel/glass 

fiber composite material. The ranges of the parameters 

affected on the study are modified Rayleigh number            

(10 ≤Ra*≤ 500) and the annulus inclination angle δ (0, 30, 45, 

60 and 90). Two values of effective thermal conductivity will 

be performed as the minimum and the maximum values 

depending on the fiber alignment where the Silica 

aerogel/glass fiber composite material has a thermal 

conductivity in parallel direction of fibers equal 0.15 W/m K 

and in perpendicular direction of fibers of  0.08 W/m K [5]. 

2. MATHEMATICAL MODEL All  

material on each page should fit within a rectangle of 18 x 

23.5 cm (7" x 9.25"), centered on the page, beginning 2.54 cm 

(1") from the top of the page and ending with 2.54 cm (1") 

from the bottom.  The right and left margins should be 1.9 cm 

(.75”). The text should be in two 8.45 cm (3.33") columns 

with a .83 cm (.33") gutter. The schematic drawing of the 

geometry and the Cartesian coordinate system employed in 

solving the problem is shown in Fig.1. The steady-state 

equations of the Darcy flow model, which are, the mass, the 

momentum (Darcy), the energy conservation laws and the 

Boussinesq's approximation are applied. [7] Gave the 

vectorial notation of these equations. 

 

 

Fig.1 Coordinates system and geometry 

3. GOVERNING EQUATIONS 
The conservation equations of mass, momentum and energy 

in steady state and the supplementary equation are as follow: 

  inin TT   1                                                          (1)            

Where: 

T


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1                                                                               (2)                        

β Is the thermal coefficient of the volume expansion, this 

constant is evaluated at Tin which is the temperature at the 

inner surface of the outer cylinder, ρin is the density at Tin and 

ρ is the density at T, [8]. This technique is called Boussinesq's 

approximation. 

3.1 Mass Conservation 
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3.2 Momentum Equations 
The volume average velocity through the porous material is 

proportional with the pressure gradient, so the Darcy’s model 

in three dimensional flows [9] is: 

3.2.1 Momentum Equation in Radial Direction 














 


coscosg

r

pK
u

f

                                       (4)                                                            

3.2.2 Momentum Equation in Angular Direction 
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3.2.3 Momentum Equation in Axial Direction 
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3.2.4 Energy Equation 
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 (7) 

Where   is viscous dissipation function 
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3.2.5 Fin Equation 
The energy equation of fins is given by [10]. Twelve fins are 

attached to the inner cylinder and the equation is as follow: 
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A vorticity vector Ω and a vector potential  with its 

components is as [11]: 

 ),, zr                             
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4. NON DIMENSIONAL VARIABLES  
For the present study, the characteristic length is taken as rout 

and the dimensionless magnitudes are defined as follow: 
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Substitute these dimensionless magnitudes in the governing 

equations. Alternative expressions of eq. (3) may be written in 

terms of  :, asand zr  
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To eliminate pressure terms, take curl of momentum 

equations and it will be: 
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The vector potential equation was obtained in the 

dimensionless form as  
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And the energy equation will be: 
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And fin equation will be: 
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4.1 Dimensionless Hydraulic Boundary 

Conditions 
For the vector potential field, the boundary conditions are 

given as: 
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And for the fin, the boundary conditions are given as: 
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On the fin faces which were located on the following planes  

(fin base)   

At   R = R1          for     = 0, π             
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As shown in Fig.2 

(fin tip) 

At    r = rin+Hf     for     = 0, π     

At   andranyforSandS 21
 

 

Fig. 2 fin boundary conditions 

4.2 Dimensionless Thermal Boundary 

Conditions 
For the temperature field, the dimensionless thermal boundary 

conditions are: 
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  fseff kkk   1                                                      (24)  

The fiber orientation influences the conduction heat 
transfer. Conduction heat transfer would get the minimum 

value when fiber axis is perpendicular to heat flux, and 

conductive conductivity calculated by series model would be 

the lowest. Conductive conductivity calculated by parallel 

model would be the largest when fiber axis is parallel to heat 

flux. The thermal conductivity of the silica aerogel/glass fiber 

composite laminate parallel to the fibers is greater than that 

perpendicular to the fibers. Silica aerogel/glass fiber 

composite material has a thermal conductivity in parallel 

direction of fibers of 0.15 W/m K and in perpendicular 

direction of fibers of   0.08 W/m K [5].  

5. COMPUTATIONAL TECHNIQUE 
Equations (16, 17, 18, 22 and 23) were transformed into the 

finite difference equations, where the upwind differential 

method in the left hand side of the energy eq.(22) and the 

centered – space differential method for the other terms were 

used, and solved by using (SOR) method [9]. To obtain the 

results of the problem a computer program was built using 

MATLAB-7 program. The value of the vector potential   

will be calculated at each node, in which the value of vector 

potential is unknown, the other node will appear in the right 

hand side of each equation. As an initial value of iteration, 

zero is chosen for the vector potential field, while a 

conduction solution is adopted for temperature field. The 

index (n) was used to represent the nth – approximation of 

temperature denoted by 
n  and substituted into the 

approximated equations, which were solved to obtain the nth 

approximation of vector potential , then   was substituted 

into eq. (22) to obtain
1n . The procedure is repeated until 

reach a convergence which is given by as 
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The number of grid points used was 21 grid points in the R – 

direction, 31 in the   – direction and 301 in the Z – direction 

which seems reasonable.  

6. CALCULATION OF LOCAL AND 

AVERAGE NUSSELT NUMBER  
Local Nusselt number is the dimensionless parameter 

indicative of the rate of energy convection from a surface and 

can be obtained as follows [8]: 
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The local Nusselt number Nu1 and Nu2 on the inner and the 

outer cylinders are written as [8]: 
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The average Nusselt number Nuin and Nuout on the inner and 

the outer cylinders are defined as: 
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7. RESULTS AND DISCUSSION 
Fig.3 to Fig. 6 show the variation in the average Nusselt 

number on the outer cold cylinder with the inclination angle 

for different values of Ra* and for the two cases of the 

minimum and maximum values of thermal conductivity 

respectively. It is clear that Nu decrease with the increase of δ 

where the zero degree inclination is for vertical cylinder and 

90o for horizontal cylinder. These figures also show that the 

average Nusselt number increase with the increase of Ra*.  



International Journal of Computer Applications (0975 – 8887)  

Volume 117 – No. 8, May 2015 

9 

 

Fig.3 Variation of Nu average with the inclination angle on 

the outer cold cylinder for k=0.08 W/m K 

 

Fig.4 Variation of Nu average with the inclination angle on 

the inner hot cylinder for k=0.08 W/m K 

 

Fig.5 Variation of Nu average with the inclination angle on 

the outer cold cylinder for k=0.15 W/m K 

 

Fig.6 Variation of Nu average with the inclination angle on 

the inner hot cylinder for k=0.15 W/m K 

 

Fig. 7 Variation of Nu average with Ra on   the outer cold 

cylinder for δ=0o 

 

Fig. 8 Variation of Nu average with Ra on   the outer cold 

cylinder for δ=90o 

The deviation between the average Nu in the two cases is 

clear in Fig.7 and Fig. 10 which is equal to 2.26% for δ=90o 

and 0.46% for δ=0o. For the inner hot cylinder the deviation 

between the two cases is not significant for δ=0o but it will be 

significant only for vertical annulus at Ra* =500 and equal to 

23.44%.  

 

Fig. 9 Variation of Nu average with Ra on   the inner hot 

cylinder for δ=0o 

 

Fig. 10 Variation of Nu average with Ra on   the inner hot 

cylinder for δ=90o 

 Distribution of local Nusselt number along the circumstance 

of the cold and hot cylinders is illustrated in Fig. 11 to Fig. 26 

respectively for the minimization and maximization of 

thermal conductivity and at three locations; located at the top 

of the cylinder, at the center of the cylinder and the third at the 

bottom of the cylinder. The local Nusselt number on the hot 

wall had a decreasing trend and there were three regions 

which could be distinguished. The first region, where the local 

Nusselt number approached to its maximum values this was 

due to the formation of plume in this region. Formation of the 

plume occurred where the two convective currents coming 

from the two annulus halves, impinging with each other and 

moving together upward without mixing, leaving a relatively 

stagnant region under impinging point. 
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Fig. 11 Variation of Nu Local in angular direction on the 

cold cylinder for Ra=10 k=0.08 W/m K δ=0o 

 

Fig. 12 Variation of Nu Local in angular direction on the hot 

cylinder for Ra=10 k=0.08 W/m K δ=0o 

 

Fig. 13 Variation of Nu Local in angular direction on the 

cold cylinder for Ra=10 k=0.15 W/m K δ=0o 

 

Fig. 14 Variation of Nu Local in angular direction on the 

cold cylinder for Ra=10 k=0.15 W/m K δ=0o 

 

Fig. 15 Variation of Nu Local in angular direction on the 

cold cylinder for Ra=10 k=0.08 W/m K δ=90o 

 

Fig. 16 Variation of Nu Local in angular direction on the hot 

cylinder for Ra=10 k=0.08 W/m K δ=90o 

 

Fig. 17 Variation of Nu Local in angular direction on the 

cold cylinder for Ra=10 k=0.15 W/m K δ=90o 

 

Fig. 18 Variation of Nu Local in angular direction on the hot 

cylinder for Ra=10 k=0.15 W/m K δ=90o 
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Fig. 19 Variation of Nu Local in angular direction on the 

cold cylinder for Ra=500 k=0.08 W/m K δ=0o 

 

Fig. 20 Variation of Nu Local in angular direction on the hot 

cylinder for Ra=500 k=0.08 W/m K δ=0o 

 

Fig. 21 Variation of Nu Local in angular direction on the 

cold cylinder for Ra=500 k=0.15 W/m K δ=0o 

 

Fig. 22 Variation of Nu Local in angular direction on the hot 

cylinder for Ra=500 k=0.15 W/m K δ=0o 

The second region, where the local Nusselt number loosed the 

uniformity and a large gradient in its distribution could be 

observed and this is because the inner boundary layer got 

thicker in this region since heat removal by fluid decrease as 

the fluid ascend up. The third region, where the local Nusselt 

number is relatively constant since the inner boundary layer of 

relative uniform thickness and give a little variation in local 

Nusselt number distribution. This behavior is roughly similar 

for most of modified Rayleigh number whereas the behavior 

of the cold wall is to increase. As shown in these figures, the 

maximum value of the local Nusselt number at horizontal 

position (δ = 90˚) of the annulus. At high Ra* in Fig. 19 to 

Fig. 26 the local Nusselt number was high owing to the effect 

of convection mode of heat transfer, at low Ra* the mode of 

heat transfer is conduction and its value increase with the 

increase of Ra* and it is clear that the second region will be 

vanish or in other words the variation trend to be uniform.  

Fig. 23 to Fig. 26 for δ=90o, there is only two regions and the 

non uniformity of the local Nusselt number will be significant. 

 

Fig. 23 Variation of Nu Local in angular direction on the 

cold cylinder for Ra=500 k=0.08 W/m K δ=90o 
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Fig. 24 Variation of Nu Local in angular direction on the hot 

cylinder for Ra=500 k=0.08 W/m K δ=90o 

 

Fig. 25 Variation of Nu Local in angular direction on the 

cold cylinder for Ra=500 k=0.15 W/m K δ=90o 

 

Fig. 26 Variation of Nu Local in angular direction on the hot 

cylinder for Ra=500 k=0.15 W/m K δ=90o 

Correlations were deduced from the numerical data which are 

given as: 

For k=0.15 W/m K: 

𝑁𝑢𝑜𝑢𝑡 =
0.685 𝑅𝑎0.239

𝛿9.438   

For k=0.08 W/m K: 

𝑁𝑢𝑜𝑢𝑡 =
0.607 𝑅𝑎0.2585

𝛿1.034   

8. CONCLUSIONS 
The following conclusions can be obtained from the present 

study:  

1- The deviation between the average Nu for the 

maximization and minimization of the thermal 

conductivity is equal to 2.26% for δ=90o (horizontal 

annulus) and 0.46% for δ=0o (vertical annulus). 

2- Local Nu increases in the angular direction for the 

outer cold cylinder and has a trend to decrease on 

the inner hot cylinder. 

3- Results showed that the average Nu number 

increases with an increase in modified Rayleigh 

number and decrease with the increase of δ for high 

values of Ra*, but hardly affected by δ for low 

values of Ra*. 

4- It is recommended for future work to investigate the 

forced convection heat transfer in a pipe made of 

the same material (silica aerogel/glass fiber 

composite materials) and with different boundary 

conditions.   
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