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ABSTRACT 
The direct classic processing on the catadioptric images end in 

errors. The latter are related mainly to the difference in the 

resolution of the omnidirectional images that is raised up to the 

periphery and weak in the center of the image. In this paper, we 

propose a solution, based on a model of parametric active 

contour in Riemannian metric, which is adapted for the 

catadioptric images. This model of active contour is designed 

for the extraction of the free space, which will allow establishing 

a system of autonomous navigation of a mobile robot in real 

time. The approach adopted here is compared with methods of 

classic active contours. 

KEYWORDS 
Omnidirectional vision, active contours, free space, Riemannian 

metric. 

1. INTRODUCTION 
The omnidirectional vision [4] is the process of vision which 

supplies a sphere of worldview observed from its center. It has 

become essential for the navigation of the mobile robots, 

because it offers a large field of view and complete information 

about the world surrounding the robot that allows an 

autonomous and secure navigation. Numerous approaches have 

been proposed in the literature to detect free space, usually 

based on movement estimation. The works [10][7] have 

developed algorithms able to detect free space in an 

omnidirectional image sequence by estimating the optical flow. 

However, these methods require knowledge of the environment 

and assumptions made on the camera motion to correctly 

perform the extraction. Furthermore, the omnidirectional 

images contain important distortions due to the geometry of the 

mirror. These distortions have then significant repercussions on 

the possible processing and the direct application of 

conventional operators that cannot offer satisfactory results. 

Then, the methods of approximation of free space [4], cannot be 

directly used for the omnidirectional vision. In this regard, to 

have a system of detection of free space adapted for catadioptric 

images, the mirror geometry of the catadioptric sensor must be 

taken into account. 

In this paper we propose a solution based on a model of active 

outline parameterized in Riemannian metrics, adapted for the 

catadioptric images and which takes into account the geometry 

of mirror. This model is the adaptation of the initial model [4] 

for the catadioptric images. The metrics, which is used to 

deform artificially the image, is calculated so that the precision 

is highly possible in the central area of the image. This metrics is 

directly determined from the mirror geometry of the catadioptric 

sensor. The idea is to replace the Euclidian corresponding 

distance by a non-conforming metrics dependent on information 

presented in the image. This defines Riemannian metrics in the 

domain of the image domain, where the limits of the target 

objects to be detected appear as closed geodesic curves. 

Comparative results obtained from synthetic images and 

omnidirectional images in a real environment are taken to 

evaluate and validate our approach. 

This paper is structured around three main sections. In1st section, 

we define the model of active contour which is used to segment 

omnidirectional free space and present the chosen numerical 

approximations of its snake functional energies. The 2nd section 

is devoted to calculate the Riemannian metric which will be 

used to parameterize the model of active contour which we have 

chosen. The last section shows the comparative results between 

the parametric model and the classic model, by way of which 

this study will be brought to conclusion. 

2. ACTIVE CONTOUR MODEL 
The navigating environment of a robot in movement is typically 

a deformable space, where the use of the models of deformable 

contour was imperative. The original model of the active 

contour was proposed by Kass and al. [9] and consists of an 

intrinsically closed deformable model which evolves towards 

the borders of the desirable region. The deformation is 

established on a Lagrangian formulation of the energy 

minimization, referred to as the sum of a term attached to the 

image data and as a term of regularization. Many studies have 

been conducted to make the pursuit of a deformable object in an 

image sequence. All these studies differ in terms of the 

deformation model [8][13][14]. 

The functional which we try to minimize is the same one in the 

original model [12][11] which we are going to adapt in a 

Riemannian space. 

2.1 Parametric Active Contour 
Because the snake can form a made up graph, we can represent it 

in a parametric form [1] by: 

𝑣 ≔ [0,1] → 𝐼𝑅2 

The active contour can be described by a curve C, function of 

time t and of the curvilinear abscissa s as the following formula 

shows: 

𝐶 =  𝑣 𝑠, 𝑡 =  𝑥 𝑠, 𝑡 , 𝑦 𝑠, 𝑡   / 𝑠 ∈  𝑎, 𝑏 , 𝑡 ∈  0,1   

Where a and b represent the extremities of the snake (Figure 1) 
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Fig 1: Curve 𝐂 

The functional of energy of the snake with whose minimization 

will control the evolution of 𝑣(𝑠)is defined by: 

𝐸 𝑣 =  𝛼𝐸𝑐𝑜𝑛𝑡 (𝑣 𝑠 )+𝛽𝐸𝑐𝑢𝑟𝑣
1

0
(𝑣 𝑠 ) + 𝛾𝐸𝑔𝑟𝑎𝑑 (𝑣 𝑠 ) +

𝛿𝐸𝑏𝑎𝑙𝑙 (𝑣 𝑠 )𝑑𝑠    (1) 

By α, β, δ and γ are meant constant weighting parameters used to 

balance the relative influence of the local energies. The first 

three ones are positive and the last one is negative to allow a 

balance between the intrinsic geometrical data of the snake, and 

the extrinsic image data. 

𝐸𝑐𝑜𝑛 𝑡 energy is the continuity term that controls the snake 

bending. It is expressed as a function of the first order derivative 

of v as to s, 𝐸𝑐𝑜𝑛𝑡 =  𝑣 ′(𝑠) 2 . 𝐸𝑐𝑢𝑟𝑣  energy is the curvature 

term that controls the snake rigidity. It is defined as a function of 

the second-order derivative of v according to s, 𝐸𝑐𝑢𝑟𝑣 =
 𝑣 ′′ (𝑠) 2 . 𝐸𝑏𝑎𝑙𝑙  energy expresses a pressure force and is 

defined as 𝐸𝑏𝑎𝑙𝑙 = 𝑛   where 𝑛   is the normal to the snake at a 

snake point. It allows the snake to overpass local minima as in 

the initial state or in homogeneous image gradient areas. Notice 

that, these three terms only take into account intrinsic 

characteristics of the contour. 

Finally,𝐸𝑔𝑟𝑎𝑑  represents the image forces. Given a gray level 

image 𝐼(𝑥, 𝑦) , viewed as a function of continuous position 

variables (x,y),the image force chosen to lead an active contour 

toward step edges is 𝐸𝑔𝑟𝑎𝑑 = − ∇𝐼 2 . The negative sign is 

important as it will ensure an equilibrium between intrinsic 

contour forces and the image ones, and thus converge the snake 

to salient image edges. 

The equation (1) could then be written as follows: 

𝐸 𝑣 =   𝛼 𝑣 ′(𝑠) 2 + 𝛽 𝑣 ′′ (𝑠) 2 − 𝛾 ∇𝐼 2 + 𝛿𝑛   
1

0
𝑑𝑠 (2) 

2.2 Formulation of the Energies  
The deformation of the active contour is made by an iterative 

plan using a discreet approximation of the functional of 

continuous energy (1). [6] proved that iterative methods are less 

time-consuming than other numerical approaches using 

dynamic programming or variational calculus. 

We denote 𝑉𝑘  the set of𝑛points which compose the active 

contour at the iteration𝑘. 𝑉𝑘(𝑖) is the 𝑖𝑡ℎ  point of the contour, 

and 𝑉𝑣
𝑘 𝑖 =   𝑉𝑗

𝑘 𝑖 , 𝑗 = 1 … 8  the eight-neighbor points of 

the snake point 𝑉𝑘 𝑖  in the domain image. 

We propose to approximate the continuity term 𝐸𝑐𝑜𝑛𝑡  and the 

curvature term 𝐸𝑐𝑢𝑟𝑣  expressed respectively by the first and the 

second-order contour derivatives in equation (2), using centered 

finite differences: 

𝐸𝑐𝑜𝑛𝑡 =  
𝜕𝑉𝑘(𝑖)

𝜕𝑠
 

2

≃
 𝑉𝑘 𝑖+1 −𝑉𝑘(𝑖−1) 

2

 ℎ 𝑖+1+ℎ 𝑖−1 
  (3) 

𝐸𝑐𝑢𝑟𝑣 =  
𝜕2𝑉𝑘(𝑖)

𝜕2𝑠
 

2

≃
 𝑉𝑘 𝑖+1 +𝑉𝑘 𝑖−1 −2𝑉𝑘 𝑖  

2

 ℎ 𝑖+1ℎ 𝑖−1 
 (4) 

Where ℎ𝑖+1  (respectively ℎ𝑖−1 ) is the distance between 

𝑉𝑘 𝑖 + 1  (respectively  𝑉𝑘 𝑖 − 1 ) and𝑉𝑘 𝑖  

The balloon energy 𝐸𝑏𝑎𝑙𝑙  is the normal to the curve 𝐶 at the 

snake point 𝑉𝑘 𝑖 . It is approximated locally using the 

coefficients of the line joining 𝑉𝑘 𝑖 + 1  and 𝑉𝑘 𝑖 − 1 . The 

image forces 𝐸𝑔𝑟𝑎𝑑 are computed in each pixel of the image 

using a Canny detector. 

The functional of the energy of the snake is evaluated at each 

snake point 𝑉𝑘 𝑖  and each of its eight neighbors. The location 

having the smallest energy value is chosen as a new position of 

𝑉𝑘 𝑖  The process is repeated until convergence, i.e, until the 

contour at iteration k+1 and k are the same to an epsilon. 

In the Riemannian variety, the equations of the energy must 

consider the metric. All the calculations are made by 

Riemannian measures. The model does not locally realize that it 

evolves in a deformed space. The Forces are thus adapted to the 

Riemannian measures. The elastic and rigidity forces are 

materialized by springs. The extension of springs is thus 

naturally measured with the Riemannian metrics. Also, the 

external forces are too renormalized to take into account the 

metric. 

3. RIEMANNIAN METRIC 
The distortion in the omnidirectional images caused by the 

mirror geometry raises the problem of irregularity of the 

distances between points in the images space, thus to apply a 

direct processing to this type of images it is necessary to define a 

new distance which takes into account the geometrical 

properties of the mirror surface. These properties are encoded in 

its induced Riemannian metric𝑔𝑖𝑗  : An application which is in 

any point (x, y) of the plan associated to a scalar product 𝑔(𝑥 ,𝑦) 

on ℝ2. This scalar product provides a way to measure vectors: 

length of a movement 𝑑𝑙    = (𝑑𝑥, 𝑑𝑦) can be written 

𝑔 𝑥 ,𝑦 (𝑑𝑙    , 𝑑𝑙    )
1

2 

The Riemannian geometry was already used in the context of the 

deformable models, in particular to define the active contour or 

the geodesic active surfaces [2][5] as the minimal paths in space 

deformed by the image. 

3.1 Calculus of the metric 
We present a method for detecting free space on the catadioptric 

images, taking into consideration mirror geometry of the sensor 

while remaining in the image plane, which is to work in 

Cartesian coordinates on image plane without making a priori 

projections for changed space [5]. 

Let (𝑥, 𝑦)  and (𝑥0 , 𝑥1 , 𝑥2)  label coordinates in the image 

plane, here an open subset Ω ⊆ ℝ2, and on the mirror surface 

ℳon ℝ3, respectively. The whole catadioptric image formation 

process depicted above induces a mapping between manifolds 

from the surface of the mirror to the camera plane: 

𝜙: ℳ → Ω 

 𝑥0, 𝑥1 , 𝑥2 → (𝑥, 𝑦) 

In this paper we focus only on parabolic mirrors, the steps are 

similar for the other types of the mirror. The reader interested in 

details can be referred to [3]. 

[5] Showed that the calculation of the metrics via the polar 

coordinates gives a non-diagonal metric which will be a source 

of complication, so we will use the spherical coordinates to 

move from the mirror surface to the image plane. 
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Consider a sphere of radius r as depicted in figure 2, a point on 

the sphere is identified with the vector:  𝑥0, 𝑥1 , 𝑥2 =
 𝑟𝑐𝑜𝑠𝜃, 𝑟𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑, 𝑟𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑 , 𝜃 ∈  0, 𝜋 𝑒𝑡𝜑 ∈  0,2𝜋  

 

 

Fig 2: Geometry of the sphere, (a) spherical polar 

coordinates and (b) stereographic projection. 

By using a system of spherical coordinate (𝑟, 𝜑) (figure 2), the 

elementary Euclidian movement is given by: 

𝑑𝑙2 = 𝑑𝑥0
2 + 𝑑𝑥1

2 + 𝑑𝑥2
2 = 𝑑𝜌2 + 𝜌2 𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜑2 (5) 

On the surface 𝜌 = 𝑟 and the differential 𝑑𝜌 = 0, so the metric 

induced on the sphere is given by the well-known expression: 

𝑑𝑙2 = 𝑟2 𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜑2    (6) 

The stereographic projection sends a point on the sphere 

(𝜃, 𝜑)on the sphere to the point with polar coordinates to the 

point with polar coordinates (𝑅, 𝜑) in the plane, for which we 

have𝑅 =
𝑟

2
tan 

𝜃

2
 . It is shown in figure 3. Interms of these new 

coordinates, the equation (6) becomes: 

𝑑𝑙2 =
4𝑟2

 𝑟2+𝑅2 2
 𝑑𝑅2 + 𝑅2𝑑𝜑2   (7) 

Let us pass toward coordinates on the disk  𝑥1 , 𝑥2 ≡  𝑥, 𝑦 ∈
ℝ2,with 𝑅2 = 𝑥2 + 𝑦2. We obtain: 

𝑑𝑙2 =
4𝑟2

 𝑟2+𝑥2+𝑦2 2
 𝑑𝑥2 + 𝑑𝑦2   (8) 

We notice well that in this case, the metric on the sphere is 

obtained by multiplying the Euclidian metrics by the 

function
4𝑟2

 𝑟2+𝑥2+𝑦2 2 

𝑑𝑙𝕊2
2 =

4𝑟2

 𝑟2+𝑥2+𝑦2 2 𝑑𝑙ℝ2
2   (9) 

Accordingly, the metric induced on ℝ2 when 𝑟 = 1 is direved 

as: 

𝑔𝑖𝑗  𝑥, 𝑦 =  

4

 1+𝑥2+𝑦2 2 0

0
4

 1+𝑥2+𝑦2 2

  (10) 

And, consequently, the inverse metric is as follows: 

𝑔𝑖𝑗  𝑥, 𝑦 =  

 1+𝑥2+𝑦2 2

4
0

0
 1+𝑥2+𝑦2 2

4

  (11) 

It is this metric which we are going to use to define our model of 

parametric active contour in Riemannian metric adapted to 

approximate the omnidirectional free space. 

 

Fig 3: Graphical representation of the metric tensor hij 

We notice clearly on the figure 3 that the appropriate values of 

the metric are so important at the image center which allows to 

enlarge the zone of the center of the image and to reduce the 

zone to the periphery. 

3.2 Gradient Corrected with the 

Riemannian Metric 
The gradient of a scalar function I is defined by: 

𝐷𝑣𝐼 = ∇𝐼. 𝑉 

In Riemannian variety  𝑀, 𝑔𝑖𝑗   the directional derivative is 

replaced by a vector𝑣tangent with plane of 𝑀at a point p, the 

scalar product at this point is defined by the following metric: 

𝑉 𝐼 =  ∇𝐼. 𝑉 𝑝  

In a system of coordinates 𝑥𝑖  on 𝑀 , the component of the 

gradient is written as follows: 

∇𝑖= 𝑔𝑖𝑗 𝜕

𝜕𝑥 𝑖    (12) 

By using the metric (11) and the equation (12), we deduct the 

expression of the parabolic gradient which is expressed by the 

following formula: 

∇𝐷=
 1+𝑥2+𝑦2 2

4
∇ℝ2  (13) 

The figure 4, shows the detector of Canny normalized with the 

Riemannian metric applied to an omnidirectional image. The 

obtained result is a map of gradient in the grey level, of which 

the intensity varied according to the position in the image, 

contrary to the classic detector of Canny which gives a uniform 

gradient onto the entire image. In this way by using adapted 

thresholding we can eliminate the false positives which appear 

on the image, or to detect the lost false negatives. 
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Fig 4: (a) catadioptric image ; (b) classic Canny detector; (c) 

corrected Canny detector. 

3.3 Riemannian Distance 
The exact calculation of Riemannian distance is a difficult 

problem and numerical algorithms of approximation are 

expensive. However, in our case we do not generally need to 

calculate the exact distance between two points since the points 

of the snake are quite close so it is reasonable to approximate the 

geodesic by a straight, that is why we adopted Lachaud’s 

approach [2]; if we assume that the metrics varies linearly along 

this path, we obtain an approximation of the Riemannian 

distance between two points p and q such as: 

𝑑𝑅 𝑝, 𝑞 =
2 𝑛𝑝

2 +𝑛𝑝𝑛𝑞 +𝑛𝑞
2 

3 𝑛𝑝 +𝑛𝑞 
  (14) 

Where 𝑛𝑝  and 𝑛𝑞  are the Riemannian norms of the vector 𝑝𝑞 

taken respectively in points 𝑝 and 𝑞. 

4. RESULTS AND CONCLUSION 

4.1  Discussion of Results 
In this section we discuss the results of segmentation of free 

space obtained with our approach of active contour on synthetic 

images and real catadioptric images. We compare the 

performances of our active model of parametric contour in 

Riemannian metric with the classic model. Two criteria of 

comparison are used: (i) the number of the iterations is made by 

the snake algorithm to arrive at the convergence and (ii) the final 

shape of the snake is estimated visually and it describes the 

capacity of the active outline to correspond to the free space in 

the image. 

At first we are going to present the results of the tests on 

synthetic images, of resolution 960 * 720 pixels and format JPG, 

with deferential form of space to be segmented. We pass later to 

the results of test on catadioptric images, of resolution 1280 * 

960 pixels and format PNG, acquired by a mobile robot during 

an exploration guided in internal environments. 

The figure 5 shows the results of approximation of the 

omnidirectional free space on synthetic images with the 

Euclidian model on the left and with our model of parametric 

active contour in Riemannian metrics on the right. 
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Fig 5: segmentation of free space in the synthetic images 

with classical Euclidean model (left column) and our 

Riemannian parametric model (right column). 

In the figure 5 both models finish by converged after 350 

iterations maximum, we notice well the large difference 

between the Euclidian classic model and our parametric model 

in Riemannian geometry, with our approach, we obtained a very 

good result of approximation of omnidirectional free space with 

a total stability of 150 points of the snake in all the synthetic 

images. The effect of the Riemannian metrics is very clear in the 

results: the equidistance between 150 points is well respected; in 

turn we notice the grouping of the points of the snake in the 

classical model. This is due to that our model evolves in a 

non-uniform space and that the Riemannian geometry is not 

isotropic. 

The figure 6 shows the results of approximation of the 

omnidirectional free space, on catadioptric images taken in a 

real environment, with the Euclidian model to the left and with 

our model of parametric active contour in Riemannian metrics 

to the right. 

  

  

Fig 6: segmentation of omnidirectional free space in a real 

environment with classical Euclidian model (left column) 

and our Riemannian parametric model (right column). 

Visually the results presented in the figure 6 seem coherent and 

correct for both models, they are able to adequately model an 

approximation of the omnidirectional free space. We tried to 

validate this visual impression through the comparison of our 

model with the initial model. For this reason, we used the 

criteria presented in the following board, 

Table 1: execution time and the number of iteration of each 

method. 

 

Classical Euclidian 

model 

our Riemannian 

parametric model 

Run 

time (s) 

number 

of 

iterations 

Run 

time 

(s) 

number 

of 

iterations 

Fig.6 (a) 
11.825

76 
129 

23.845

61 
95 

Fig.6 (b) 
15.158

42 
204 

26.686

84 
196 

We can well notice that we have obtained a good segmentation 

of the free space as shown in fig. 6 by a little number of 

iterations made with our model than the iterations made with the 

initial model. 

Besides, we underline that the difference between the time of 

execution of our Riemannian algorithm and the Euclidian 

classical algorithm is reasonable; this is due to a supplementary 

operation of correction. 

4.2 Conclusion 
In this work, we presented our approach of detection of contour 

and approximation of free space in the omnidirectional images 

and we compared it with the classic model of active contour. For 

this we tested our approach on real images and synthetic images 

with more complex forms, which contain concave or convex 

parts or obstacles. The results show the interest of our approach, 

which considers the geometry of the omnidirectional images. By 

replacing the Euclidian metrics with our Riemannian metric 

which is calculated from the geometry of the mirror, the zone of 

the center of the image is artificially enlarged in a way that 

allows our model to detect the contour of the present objects in 

this zone. This work is not finished yet, as perspective, we 

intend to reduce the time of segmentation of free space and to 

solve the problem of detection of falsely classified obstacles 

resultant of the light projection on the ground, and to face the 

problem of the obstacles in movement and allow the active 

contour to follow such an object in a sequence of 

omnidirectional image with robustness, the future work is to 

make the tracking of objects by active contour in a sequence of 

omnidirectional image 

5. REFERENCES 
[1] Fekir, N. Benamrane, and A. Taleb-Ahmed, "Détection et 

Suivi d'Objets dans une Séquence d'Images par Contours 

Actifs." CIIA. 2009. 

[2] Taton, and J. O. Lachaud "Modèle Déformable en 

Métrique non-euclidienne." Actes du 13ème Congrès 

Francophone de Reconnaissance des Formes et 

Intelligence Artificielle (RFIA02) pp. 425-434, 2002. 

[3] Geyer, and K. Daniilidis, "Catadioptric projective 

geometry." International Journal of Computer Vision vol. 

45 no. 3, pp 223-243, 2001. 

[4] E-M. Mouaddib. "La Vision Omnidirectionnelle, " In 

Journées nationales de la recherche en robotique, JNRR'05, 

Guidel, France, Octobre 2005. 

[5] I. Bogdanova, X. Bresson, J. P. Thiran, and P. 

Vandergheynst, "Scale space analysis and active contours 

for omnidirectional images." Image Processing, IEEE 

Transactions on, vol. 16 no. 7, pp. 1888-1901, 2007. 

100 200 300 400 500 600 700 800 900

100

200

300

400

500

600

100 200 300 400 500 600 700 800 900

100

200

300

400

500

600

200 400 600 800 1000 1200

100

200

300

400

500

600

700

800

900

200 400 600 800 1000 1200

100

200

300

400

500

600

700

800

900

200 400 600 800 1000 1200

100

200

300

400

500

600

700

800

900

200 400 600 800 1000 1200

100

200

300

400

500

600

700

800

900



International Journal of Computer Applications (0975 – 8887)  

Volume 117 – No. 4, May 2015 

32 

[6] J. Denzler, and H. Niemann, "Evaluating the performance 

of active contour models for real-time object tracking." 

Asian Conference on Computer Vision. Vol. 2. 1995. 

[7] J. Santos-Victor and G. Sandini, "Uncalibrated obstacle 

detection using normal flow", Machine Vision and 

Applications, vol. 9, pp. 130-137, 1996. 

[8] L. D. Cohen, "On active contour models and balloons." 

CVGIP: Image understanding vol. 53, no 2,pp 211-218, 

1991. 

[9] M. Kass, A. Witkin, and D. Terzopoulos, "Snakes: Active 

contour models." International journal of computer vision, 

vol. 55, pp. 321-331, 1988. 

[10] N. Ohnishi and A. Imiya, "Dominant plane detection from 

optical flow for the robot navigation", Pattern Recognition 

Let-ters, vol. 27, pp. 1009-1021, 2006. 

[11] P. Merveilleux, O. Labbani-Igbida, and E-M. Mouaddib, 

"Real-time free space detection and navigation using 

omnidirectional vision and parametric and geometric 

active contours." Robotics and Automation (ICRA), 2011 

IEEE International Conference on. IEEE, 2011. 

[12] P. Merveilleux, O. Labbani-Igbida, and E-M. Mouaddib, 

"Robust free space segmentation using active contours and 

monocular omnidirectional vision." Image Processing 

(ICIP), 2011 18th IEEE International Conference on. 

IEEE, 2011 

[13] T. F. Cootes, C. J. Taylor, D. H. Cooper and J. Graham 

"Active shape models-their training and application." 

Computer vision and image understanding Vol. 61 no 1, 

pp. 38-59, 1995. 

[14] Y. EL OMARY, "Modeles deformables et multiresolution 

pour la détection de contours en traitement d'images. Thèse 

de doctorat." Université Joseph-Fourier-Grenoble I, 1994.  

 

IJCATM : www.ijcaonline.org 


