
International Journal of Computer Applications (0975 – 8887)

Volume 117 – No. 4, May 2015

11

A Perspective Study of Intelligent System for

Component based Development

Asif Irshad Khan
Dept. of Computer Science,

FCIT,
King Abdulaziz University,

Jeddah, KSA

Mohammad Shariq
Dept. of Computer Science,

FCIT,
King Abdulaziz University,

Jeddah, KSA

Md. Mottahir Alam
Faculty of Engineering,

King Abdulaziz University,
Jeddah, KSA

ABSTRACT

Recent developments in the industry show strong inclination

of Architects towards agent based software development and

component based development. Both these approaches help

organizations to utilize the older and experienced programs

and interfaces into new products without having to reinvent

the wheel; thereby reducing cost and time of production and

ensuring high quality with already tested components and

interfaces.

Nowadays, researchers envisage an Intelligent Component-

Oriented Software Development methodology which is an

amalgam of the two approaches resulting in more flexible,

reusable and customizable agent components. This helps in

pushing forward the development timelines and quality

expectations to newer heights. In this paper we mainly

analyzed various states of art intelligent component-oriented

software development techniques and studied the research gap

in the component selection processes. Recommendations for

future research direction for Intelligent Component-Oriented

Software Development are also highlighted in this paper.

Keywords:
Multi-agent control, Component Based Development, Agent-

based modeling, Self-adaptive systems

1. INTRODUCTION
Software Industry in the present Information Technology era,

has enormous pressure of meeting the product deadlines with

minimum development time and minimum development cost.

Reusability of software is an important prerequisite for cost

and time-optimized software development.

More and more software companies are adopting Component-

based Development (CBD) methodologies to meet the

demands of customers to deliver, change faster and at a lower

cost. Component-based software engineering (CBSE) is used

to develop/assemble software from existing components.

Some of the advantages that a company may avail by opting

CBD for the SW development are cost effective and meets

the tight deadlines[1].

CBD is time saving and productive as software are built by

integrating already developed components instead of writing

from scratch by using state of art tools.

CBD technologies comprised of implementing a component

into a system through its well defined interfaces

[2]. Using well-defined interfaces, a component interact with

other components to accomplish a partial function of

the system. The inner structure of the component and the

implementation of the interfaces are hidden to the outside.

Therefore, CBSE enables a distributed and independent

development of components as well as a straightforward

replacement of a component by a different component in

large-scale systems [3].

Lego, as shown in fig 1, is often taken as an example of a

component-based approach. Lego provides a set of building

blocks in a large variety of shapes and colors. Lego is sold in

boxes that contain a number of blocks that can be composed

to make up toys such as cars, trains and airplanes [4].

The paper is organized as follows: Section 1 Describes

Introduction of the paper, Sections 2 Discuss Open problems

in Interoperability for Component Based Systems, Section 3

Discuss Software Agent and Multi-agent system, Section 4

Multi-agent System Engineering (MaSE) methodology,

Section 5 Highlighted related work in this area, Section 6

Discusses challenges related to modeling multi-agent system,

Section 7 Conclusion and Future Work.

Fig 1: Concept of Component-based software engineering

[5]

2. OPEN PROBLEMS IN

INTEROPERABILITY FOR

COMPONENT BASED SYSTEMS [6]
It is very difficult to guess how the components behave under

different conditions and environments as mostly COTS

software comes up as a black box with limited access.

It is also difficult to map user requirement to the component

based architecture and generally there is a need for a process

which fully customized the component as per the customer

requirement.

In order to developed application from components or tailor

components to a new situation, efforts are required to build

wrappers and the glue between components, since most of the

COTS software lacks in plug and play technique and

developer has to build wrappers for component integration.

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No. 4, May 2015

12

Further, wrappers need to be maintained as the system

evolves.

Components are packaged and delivered in many different

forms (example: function libraries, off-the shelf applications

and frameworks). [6]

Component framework offer varying features (example:

component granularity, tailorability, platform support,

distributed system support, interoperability). [6]

Most component integration processes suffer from

inflexibility by a lack of component evaluation schemes. This

problem is often compounded by a lack of interoperability

standards between component frameworks and adequate

vendor support.

3. SOFTWARE AGENT (SA)
Software agents are a software component mainly built to

interact with its environment and other agents if needed to

accomplish assigned task. For example agent can be used to

know the best air fare for a particular route, the job of the

agent is to travel to different airlines sever and bring the best

price for a particular route.

Software agents offer greater flexibility and adaptability than

traditional components, rapid integration of distributed agents

provides opportunities to build software systems. Developers

can easily develop High-level, flexible enterprise application

with the help of agent-oriented software engineering [7].

A software component can be act as an agent if it contains a

combination of several of the following characteristics, as

shown in Fig 2: [7]

• Adaptable: Agent changes his behavior after its

deployment based on certain condition, it may be its own

learning, user customization, or download new capabilities.

• Autonomous: They can act on its user’s behalf, mainly

independent of messages other agents send, it has its own

thread of control.

• Knowledgeable: The agent should be smart enough to

acquired information, and knowledge about other agents and

users to accomplish its goal.

• Mobile: The agent should have ability to move from

one network to other or among the same network from

one PC to other to accomplish his assigned goal.

• Collaborative: The agent should interact with other

agent to form multi agent societies or work

cooperatively with other agents to perform a task.

• Persistent: To adopt robustness and retain knowledge

in case of any possible runtime failures.

Fig 2: Components as an agent [7]

4. MULTI-AGENT SYSTEM (MAS)
MAS comprises of several intelligent autonomous software

agents who can communicate, cooperate and interact with

each other in their environment to solve problems or common

goal or common target that are beyond the individual

capacities .

Agents are sited in an environment and possibly have

knowledge of other agents. The RoboCup challenge is an

example of the current state-of-the-art of multivalent systems,

in which teams of autonomous agents compete in a simulated

soccer tournament. [8]

AGENTS COMMUNICATION

In Multi-agent system (MAS) communication among the

agent is a key to success in many scenarios as communication

ability of agents let them share knowledge or request for

knowledge from other agent for example an agent may ask

another agent for a particular arrival of a vehicle at that agent

location so as to dispatched other vehicle from his location.

Communication may be direct with one another or through an

interpreter, communicate is usually took place through a

language, Knowledge Query and Manipulation Language

(KQML) is the most widely used agent communication

language (ACL) [22]. Shared vocabularies of words are used

in communication which is also known as Ontology. To

ensure that two agents are communicating in the same

language KQML uses ontologies.

KQML provides a framework for a set of independent agents

to communicate and cooperate on a problem using messages

called per formatives [8].

– Directives: commands or requests

– Representatives: facts or beliefs

– Commissives: promises or threats

AGENTS CO-OPERATION

In Multi-agent system (MAS) co-operation among agents is

another key factor for success. Individual agent objective is

irrelevant in MAS as agent may not cooperate to other agent

to achieve the target. It is assumed that agents co-operate each

other since all agents want to achieve the same objective. Co-

operation among agents allows a community of specialized

agents to pool their capabilities to solve large problems [22].

Dividing a problems into sub-problems is also possible in

many cases, since every agent have his ability and problem

solving capability, a agent cannot solve any problem given to

him, he can solve the problem which he is specialized, so, it is

always better to divide the problem into sub-problems which

further divide into smaller problems so that single agent can

solve the assigned problem according to their specific ability

in solving large problems.

Co-operation also known as co-operating agents have been

applied in the areas of Distributed systems management,

electronic commerce and multi agent design systems [22].

Dividing problems into sub-problems so as to specific the

problem according to the agent ability raises the following

questions [22].

Question: how to choose an agent which is appropriate or

suitable to a sub-problem or sub-take? [22]

Question: how to know when the agent completed the task

and share the result/

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No. 4, May 2015

13

Contract Net Protocol (CNP) is used for assigning the task to

agents in Multi-agent system. There are two types of agents in

CNP, Agents how has a problem and wish to take the help of

other agents, and Participants agents who wish to solve the

problem of the above agent, and usually following steps are

required in CNP algorithm:

(1) The staring agent who has a problem publicize the

problem to all the agents

(2) The participant agents bid for the task

(3) Finally, the starting agents award the task to one of

the bidding agent based on his knowledge,

suitability and qualification as per the problem.

Result sharing- since the problem is divided into sub-

problems it is necessary for agents to share the result, as,

some agent depends on the result of other agent to

accomplished their assigned task. Usually sharing results is

based on two ways

(a) Proactive: In this result sharing agent share the

result when he believes that other agents may

required the result

(b) Reactive: In this result sharing agent only share

the result when he is asked to share the result.

AGENTS COORDINATION
Sometime two or more than two agents in a multi-agent

environment depends on each other to accomplished a given

task, in such cases coordination relationship is a key to

success.

 In most of the solutions multi agent based system required

agents to coordinate among themselves to reach to the

solution of a given task, successful coordination among the

agents may result in improve system efficiency, assigned

tasks completed in time and proper usage of resources, while

on the other hand lack of coordination may result in reduce

system efficiency, incomplete assigned tasks and improper

usage of resources and system failure [22].

It is very clear that in some situations coordination among the

agents is unavoidable, if we consider game Basketball which

is a team sport, A team sport is an activity in which a group of

individuals, on the same team, work together to accomplish an

ultimate goal which is usually to win.

The objective being to shoot a ball through a basket

horizontally positioned to score points while following a set

of rules. Usually, two teams of five players play on a marked

rectangular court with a basket at each width end. A team of

basketball players is more likely to win the game with better

coordination. [22]

Coordination relationship may be positive as well as negative.

Positive coordination relationship benefits both the agent by

working together to reach to their assigned goals for example

suppose agents are coordinating to switched on a machine if

they found machine is off any one agent can switch on the

machine to accomplished the common goal (to switched on

the machine) , while negative coordination relationship agents

cannot complete their assigned task at the same time, for

example agents are coordinating to print some assigned job,

both of them issue print command but one agent command

will be accepted others put in the printer queue.

It is very important from the research point of view to explore

this area so as to understand:

What are the possible general coordination problems among

the agents in a multi agent based systems?

What are the possible strategies of selecting best coordination

mechanisms in dynamically changing environments?

4.1 Challenges Of Multi-Agent System

(MAS)
Sycara et al. [10] described the following six challenges of

multi agent systems

1. How to decomposing problems (Sub task) and allocate

tasks to individual agents according to their ability?

2. How to control agent Coordination and communications?

3. How multiple agents act in a coherent manner?

4. How to share result to other agents and the state of

coordination?

5. How to reconcile conflicting goals between agents?

6. How to engineering realistic multi agent systems?

5. RELATED WORKS
The main objective of component based software is to reduce

development costs and efforts, component based software

development (CBSD) brings flexibility, reliability, and

reusability in software development as components use to

build the system already tested and validated in other

systems[24]. CBSD approach moves software industry from

developing application from scratch to application assembly.

Interoperability is one of the key issues of building

applications from reusable components is interoperability [6].

Interoperability means ability of two or more entities to

cooperate and communicate despite of their different

execution environment and implementation language.

System can be model using mathematical constructs such as

sets and functions and Model-based techniques are usually

used for these purposes. The formal specification of the

system can be expressed in term of model-based specification.

The use of formal methods for proving ―semantic correctness‖

of components in complex applications remains an active area

of research. [6]

Component customization, Selection and integration are the

areas of component based software development (CBSD)[23],

in the implementation phase of CBSD wrappers are used as a

glue to integrate components to make a cohesive system

rather than coding from scratch. For greater flexibility

and adaptability within this context Software Agents is right

choice. High reliable distributed application can be

represented and customized with the use of Agent-oriented SE

as it provides developers high-level flexible abstractions. [12]

To store and manage reusable components in the Enterprise

Java Beans (EJB) architecture, the author [13] proposed a

component-based Repository model. [13] Listed many

benefits of their component-based Repository model. For

example component requirement viewing, adaptation, testing

and deploying.

Hutchinson et al. [13] did not mentioned about component

version control i.e. Effect of Component Version Releases on

System and how to overcome issues related to changes in new

release and how to integrate new release taking into

consideration of risk analysis of component failure in new

release, which is very important function of the repository.

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No. 4, May 2015

14

A four-stage component-based development process model

was proposed by the Lee et al. [14]. Lee et al. [14]

Introduced a new technique to integrate off-the-shelf

components with the newly developed components in the then

existing CBD process models. However, less rather no

attention is paid to integrate the internally developed

components. The same motivates the author to propose an

improved CBD model.

Anurag et al. [15] proposed Umbrella Model for Component-

based Software Development in 2011, This model focused

more on testing strategies, How to select the best candidate

component based on the requirements and design is not

mentioned, Repository is not been used in the Umbrella model

which is a very important for CBD [24]. Also, there is a lack

to management between design, component selection and

testing.

Kung-Kiu et al. [16] Proposed the W Model for Component-

based Software Development in 2011, this model life cycle is

similar to that Of the Y Model [16]

Using off-the-shelf (OTS) components such as COTS or open

source software (OSS) promises to reduce development time

and cost while increasing software quality, but it also

complicates composition and requires a lot of skills for the

selection of development model, component selection

procedures, component selection timing, effort estimation,

OSS and COTS components modification, defect location,

and OTS component knowledge management [17].

It is found that the traditional waterfall model and the

evolutionary development model are unsuitable for COTS-

based development.2These models can be used with some

adaptations (such as RCPEP and V-Model XT) to integrate

OTS components .Also, sufficient knowledge of OTS

candidates can make using these adapted processes

superfluous.

Integrators should follow formal selection procedures

deciding the suitable OTS components. A candidate

component should fulfill several quality requirements and

follows strict industrial standards. Unfortunately, due to lack

of evidence on the possible benefits, integrators are reluctant

to use a formal process, which is supposed to be complex and

time consuming.

Although researchers have empirically evaluated formal

processes for selecting OTS components, the cost benefits and

preconditions of using a formal process are often unclear and

future research can be based on J.Lie et al. [17].

There’s no specific development process phase in which

integrators select OTS components. But One important

strategy proposed to avoid mismatches between the system

requirements and the OTS components’ functionalities is to

identify and evaluate the component as early as possible [17].

However, integrators must consider certain pitfalls if they

wish to select OTS components in a project’s early phases.

It is advisable to prefer a formal effort estimation tool over

personal experience when estimating the effort required to

integrate the components as estimations based on personal

experience are usually inaccurate. Some estimation tools, such

as COCOTS, 8 account for both the components’ technical

nature and several of the issues we’ve identified, including

component understandability and vendor response time.

Investigation shows that estimation tools should also account

for possible requirements changes and component evolution,

especially for large projects with long durations [17].

Integrators usually use OSS components in the same way as

commercial components—that is, without modification,

because changing the source code of OSS components might

not be feasible, especially for a long-term commercial system

with a possibly long evolution path ahead. Thus, developers

must consider application contexts, such as commercial versus

noncommercial applications and long-term versus short-term

applications, when deciding to choose between OSS and

COTS components.

Although problems with OTS components are rare, the cost of

locating and debugging defects in OTS-based systems is

substantial. Investigation shows that the integrators faced

tough time in locating defects in 80 percent of the projects

that has been investigated [17]. Results show that

organizations have partly managed implicit and explicit

knowledge about OTS components via component uncles.

However, few centralized external channels exist for OTS

users to share experiences between organizations.

External experiences of using certain OTS components are

scattered in several COTS or OSS portals, bulletin boards, or

mailing lists. Search engines usually yield huge, unwieldy sets

of results. A centralized experience portal for sharing OTS

component-related knowledge between organizations,

probably using a global OTS wiki, 12 could be a solution.

In CBSE approach it is often seen that based on the

requirements there might be several COTS products that

satisfy the requirements with different degrees, but in few

cases most likely none of the several candidates would

completely match the user requirements, This high chances of

occurrences of mismatches between COTS products and

system requirements is very communal and to address this

issues A. Mohamed et al. [18] developed a decision support

approach known as Mismatch-Handling aware COTS

Selection (MiHOS).

Linear programming technique is used to identify near

optimal solutions. MiHOS suggests substitute strategy for

resolving the most suitable mismatches using appropriate

actions, such that the most important risk, technical, and

resource constraints are met.

For efficient software development, Thomson et al. [19] uses

intelligent agents, to examine the design implementation and

runtime algorithms are used with specific input and output.

Agents are used to examine algorithms or each other and

broadcast the best algorithm among themselves, this was

increases accuracy, efficiency and robustness in the system

[19].

The key issues in developing any open multi-agent systems

are:

(a) How to design a flexible interchangeable system

structure that has the ability to reconfigure itself at

runtime.

(b) How to provides agents selection mechanism from

a vast range of agents each possessing different

capability (services)

(c) How to provides coordination or an execution plan

model to allow agents working together to achieve a

common goal.

Guo et al. [20] developed architecture for Component based

software integration that uses multi agent system for

integrating the distributed COTS software through a

distributed scripting mechanism. This architecture is three

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No. 4, May 2015

15

layered architecture and is represented using the agent UML

(AUML).

Guo et al. [20] proposed solutions for the following issues in

integrating COTS software

a) How to successfully integrate the distributed COTS

software [20] Used wrapper to successfully

integrate the distributed COTS software application

under windows and UNIX platform.

 b) How to demonstrate the feasibility of integrating

 software.

Multi-Agent distributed scripting system (MADSS) [1]

successfully demonstration the feasibility of integration of the

system using Mobile agents.

Fig 4: Conceptual Model of MADSS [20]

Multi-Agent distributed scripting system (MADSS) is a three

tier system in which Agents cooperation is the key for

software integration as shown is fig 4. Several distributed

wrapped COTS software application exists at the server sides

which are wrapped and services are achieved using a service

agent.

The role of the Service agent is to maintain the interface of the

wrapped COTS software application. Also, when ever news

component is added to the server its services and features are

also advertised by the service agent to the software agent

responsible for elucidation of MDASS agents [20].

While on the other hand to support a user interface to interact

with the user to receive jobs written in MADss scripting

language client side MADSS uses a client software agent.

Client agents do the integration job by generating another

mobile slave agents, usually KQML (Knowledge Query and

Manipulation Language] is used by agents to communicate

with service agent.

6. MODELING MULTI-AGENT

SYSTEM
Modeling Multi-Agent System from concept to software

development brings challenges that have not been studied and

traditional ways of analyzing and designing software do not

fit the multi agent paradigm, it is quite difficult to consider

requirements extract matching with agent properties like

autonomy, cooperation, sociability and pro-activeness. Agent

dependencies on one another and sociability aspects have to

be analyzed in the early stages of the software development

process [9].

 It is very difficult to select the best modeling method or to

evaluate the available modeling methods for MAS project

from the several available modeling methodologies applying

agent-oriented concepts to software development. MaSE

methodology is one such modeling technique for Multi-Agent

System.

6.1 Multi-Agent System Engineering

(MASE) Methodology
The Multi-agent System Engineering (MaSE) methodology

helps the designer to set up the initial requirements, analyze

models and implement a multi-agent system (MAS), this

methodology is independent of any agent’s architecture,

programming language, or communication framework.

Deloach et al. [11] developed a complete-lifecycle

methodology and a complimentary environment for

analyzing, designing, and developing heterogeneous multi

agent systems. Analysis and design are the two important

phases in MaSE.

 In Analysis consist of three steps: capturing goals, applying

use cases, and refining roles, while the design phase consist of

four steps: creating agent classes, constructing conversations,

assembling agent classes, and system design as shown in fig

3.

The first step in MaSE analysis is to capture goals and divide

them in sub goals or task in hierarchy which generally remain

stable throughout the SDLC (software development life

Cycle) that state about the system ultimate aim in other words

why we are building the system, what system is trying to

achieve.

After the goals were defined, use cases are used to identify

and represent the functional requirements. Using Use Cases

behavior of agents for each situation in MAS is described.

Sequences of events of the desired system behavior are

represented using Sequence Diagrams.

To support and enforce MaSE, agent Tool system is

developed, agent Tool is helpful in implementing all seven

steps of MaSE as well as automated support for transforming

analysis models into design models [11].

 6.2 Advantages of Mase
Multi-agent systems has a significant advantage of having

capabilities to solve complex distributed problems, earlier by

and large these complex problems were normally solved by

single applications on single machines, can now be divided

and distributed to multiple applications running on multiple

machines.

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No. 4, May 2015

16

Fig 3: MaSE Methodology [11]

Different agents can be used to assigned task in parallel to

reach the goal. Another advantage to using multi-agent

systems is that it is simple to add a new agent to a multi agent

system in order to address new problems without rewriting or

redesigning the whole system.

6.3 Some General Application Areas of

MAS
1. Industrial applications

a) manufacturing

b) process control

c) telecommunications

d) transportation systems

2. Electronic Commerce

a) Electronic markets / auctions

b) Buying agents (e.g. Jango, shopbot, etc.)

3. Business Process Management

4. Information Management

a) information gathering

b) information filtering

Present Complex Software Systems require a flexible and

powerful framework for developing and managing application

dynamically, distributed computing brings challenges of

changing requirement at run time, interaction within different

networks and different environment. Now a day’s researchers

focuses their research in the area of software engineering on

issues such as automated assembly, adaptively and dynamic

reconfiguration[21].

A multi agent based approach which is based on Agent

Oriented Software Engineering (AOSE), and component

based software engineering (CBSE) address the above issues

[21].

7. CONCLUSIONS AND FUTURE

RESEARCH SCOPES
Our analysis of intelligent component-oriented development

strategies shows that majority of the techniques currently in

use are hypothetical and speculative without being practically

tested. The component selection methods proposed are mostly

manual and time consuming which are hard to be automated.

As a result, implementing them in large and complex

enterprise systems is not practically cost-effective.

Research studies further show that the intelligent techniques

fail to adapt to situations where none of the pre-existing

components in the repository satisfies a particular business

case or when it is more expensive to implement a particular

feature using pre-existing components. Our analysis

demonstrates that the real enterprise environments encounter

multiple such scenarios during its development phases and the

issues are mostly left unaddressed by these automatic

methods.

Moreover, it was found that most of the techniques do not

provide any component integration compliances and

regression testing procedures to facilitate the development and

integration process. In large enterprise systems, such lack of

integration information creates enormous burden on the

testing procedures and leads to multiple failures due to

missing gaps. Such lacuna in implementation techniques

creates more issues when the newly introduced components

affect the existing data layer, which other existing

components had been utilizing. It is more time consuming and

expensive for an external system to determine beforehand

whether the ―to be introduced‖ component behavior would

affect the functionality of pre-existing components in the

target system.

It is therefore concluded that it is practically difficult to map

the functional and non-functional attributes of the components

with the target system requirements without the presence of

facilitating documents.

Considering the above challenges, future component selection

frameworks should address the following areas:

• The component selection procedure in the framework should

be automatic.

• It should have the functionality to notify the integrator with

missing gaps between the requirements and the configurable

behavior of the retrieved component.

• It should be able to provide with the integration instructions

and ways to configure and control the behavior of the

component.

• It should be able to notify on how the retrieved component

would be affecting the behavior of the pre-existing

components in the system. Further, it should suggest ways to

configure the effect on the behavior of other components.

Apart from all these above, the selected component should

meet the quality expectations of the target software system.

Our future research will deal with using multi-agent systems

to help CBSE in solving some of the unresolved issues such

as automation of selection procedure, suggestion of the most

suitable component based on the target specification, COTS

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No. 4, May 2015

17

component plug and play integration support using scripting

tools, automated assembly and dynamic configuration.

8. REFERENCES
[1] M. R. Qureshi and S. A. Hussain, 2008. A Reusable

Software Component-Based Development Process

Model. Ad. Sof. Eng. 39. 2 88-94

[2] H. Hansson, M. Åkerholm, I. Crnkovic, M.Törngren,

2004. SaveCCM – a Component Model for Safety-

Critical Real-Time Systems. In: The 30th

EUROMICRO Conference (EUROMICRO’04), France.

[3] Research Areas of the Software Engineering Group,

Retrieved on November 18th 2011 from

http://www.cs.uni- paderborn.de/en/research-

group/software-engineering/research/research-areas.html

[4] Basic Concepts of Component-based software,

Retrieved on November 20th 2011 from

http://www.idt.mdh.se/kurser/cdt501/2008/lectures/book

%20Basic%20Concepts%20of %20CBSE.pdf

[5] M.R.V. Chaudron, 2012. Component Models,

Technische Universiteit Eindhoven, retrieved on

22nd marches 2012 from

http://www.win.tue.nl/~mchaudro/cbse/02_Intro%20CB

D_Component%20Models.pdf

[6] M. Madiajagan, B. Vijayakumar, 2006. Interoperability

in Component Based Software Development by

World Academy of Science, Engineering and

Technology

[7] M.L. Griss, G. Pour. 2001. Accelerating development

with agent components, In: IEEE Comput. Mag., 34 (5),

37–43

[8] Rafea, A. 2012 Agents and Multi-agent Systems.

Retrieved on March 25th 2012 from

http://www.cse.aucegypt.edu/~rafea/CSCE485IA/slides/c

hapter6-mod.pdf

[9] Wooldridge, M. & Jennings, N. 1997. Intelligent

Agents: Theory and Practice, Retrieved on March

23rd 2012 from

http://www.doc.mmu.ac.uk/STAFF/mike/ker95/ker95-

html.html.

[10] K. P. Sycara, 1998. Multiagent Systems. In: AI

Magazine vol. 19(2) 79-92.

[11] Deloach, Scott A., 2001. Analysis and Design

using MaSE and agentTool. In: 12th Midwest

Artificial Intelligence and Cognitive Science

Conference , Miami University, Oxford, Ohio.

[12] Frederick S., Thomas P. Krishna K., 2004. Multi-Agent

System Case Studies in Command and Control,

Information Fusion and Data Management, U.S.

Government (USG), Informatica 28:2 999–999

[13] Hutchinson, J. Kotonya, G. Sommerville, I. Hall, S.

2004. A Service Model for Component-Based

Development. In: Proceding of 30th EUROMICRO

Conf., Rennes- France, 162-169

[14] J. Lee, J. Kim, G. Shin. 2003. Facilitating reuse of

software components using repository technology,

In: Proceeding of 10th Asia–Pacific software

engineering conference.

[15] Anurag D. P.C. Saxena . 2011. Umbrella: A New

Component-Based Software Development Model,

In: International Conference on Computer

Engineering and Applications IPCSIT vol.2 IACSIT

Press, Singapore.

[16] Kung-Kiu L., F. M. Taweel and C. M. Tran. 2011. The

W Model for Component-based Software

Development In: Proceeding of 37th EUROMICRO

Conference on Software Engineering and Advanced

Applications, IEEE

[17] J.Li, R.Conradi,O.P.N.Slyngstad,C.Bunse, M.Torchiano,

and M.Morisio. 2009. Development with Off-the-Shelf

Components: 10 Facts, IEEE Software, 26- 2, 80 - 87

[18] A. Mohamed, G. Ruhe, and A. Eberlein. 2007. Decision

Support for Handling Mismatches between COTS

Products and System Requirements, ICCBSS'07, Banff,

 Canada.

[19] Ke. Thompson. 2011. Improving software development

and robustness though multi agent systems In:

proceeding of the 49th Annual Southeast regional

Conference, ACM, New York, USA

[20] Guo-M. F.; Zeng-W. H. ; Jim-M. L. 2005. An

architecture for multi-agent COTS software

integration systems. In: Parallel and Distributed

Systems

[21] M Dragone, David L., Rem C., Gmp O'H. 2009.

SoSAA: A Framework for Integrating Components

& Agents. In: Proceedings of the ACM symposium

on Applied Computing, ACM New York, NY, USA

722–72

[22] Andreas S. J. 2010. Multi-Agent Systems: An

Investigation of the Advantages of Making

Organizations Explicit. MSc Thesis, Department

of Informatics and Mathematical Modeling, Technical

 University of Denmark.

[23] A. I. Khan and et. al., "A Comprehensive Study of

Commonly Practiced Heavy and Light Weight Software

Methodologies", IJCSI International Journal of

Computer Science Issues, Vol. 8, Issue 4, No 2,

July 2011, ISSN (Online): 1694-0814,

www.IJCSI.org.

[24] A. I. Khan and et. al., "An Improved Model for

Component Based Software Development", Software

Engineering, Vol. 2 No. 4, 2012, pp. 138-146. doi:

10.5923/j.se.20120204.07

IJCATM : www.ijcaonline.org

http://www.win.tue.nl/~mchaudro/cbse/02_Intro%20CBD_Component%20Models.pdf
http://www.win.tue.nl/~mchaudro/cbse/02_Intro%20CBD_Component%20Models.pdf
http://www.mendeley.com/profiles/rem-collier/

