
International Journal of Computer Applications (0975 – 8887)

Volume 117 – No. 3, May 2015

14

Optimizing the Turning Velocity in a Line Follower Robot

A.B.M. Khalid Hassan
EEE Department

American International University-Bangladesh

Ebad Zahir
EEE Department

American International University-Bangladesh

ABSTRACT

In this paper, the analysis for data collected for two different

line follower robots vehicles are presented. Keeping the

hardware identical, the two vehicles were programmed with

two different algorithms. When taking a turn, a correlation

between its turning angle and the angle of line turn was

observed. To find that correlation, experimental data was

collected after varying critical parameters. After that, a

mathematical representation was derived to calculate the

required turning angle for any line angle.

Keywords

Robotics, Algorithm, Turning Angle, Line Follower.

1. INTRODUCTION
When a robot wants to take a turn, the turning angle depends

on angle of line turn. It does not depend on other parameters.

But, other parameters should have to fulfill a minimum

requirement. Like, the turning angle does not depend on

torque of the motor or robot body weight. But, motor torque

should have to be equal to or more than robot body weight.

Again, the turning angle does not depend on the distance

between wheels in a single axel. But, it should maintain a

minimum distance to prevent capsizing at the time of taking

turns. Also, the turning angle does not depend on the moving

speed of a robot. It depends on the distance between sensor

and front wheel/axel and distance between sensor and rear

wheel/axel of a robot. This turning algorithm represents the

relation between angle of line turn and angle of robot turn

using these two parameters [1].

2. EXPERIMENTAL METHODOLOGY
The required turning angle of a robot for different line angle

with varying the distance between sensor array and rear

wheel/axel and the distance between sensor array and front

wheel/axel was observed [2]. Some of the observations have

been given in the data tables (see table 1 and table 2). For

simplicity, Name of the different parameters have been

symbolized. Let,

L = Distance between sensor array and rear

wheel/axel (for example, see figure 1),

r = Distance between sensor array and front

wheel/axel (for example, see figure 1),

ϴL = Angle of line turn,

ϴ = Required angle for a robot to take turn at ϴL.

Fig 1: L and r of a robot.

2.1 Data Collected for Specific Variables
Data collected ϴ for different L, r and ϴL are given below (see

table 1 and table 2). Here, all the distances are in centimeter

(cm) and all the angles are in degrees (˚).

Table 1. For L = 32

ϴL

ϴ

for

r=6

ϴ

for

r=8

ϴ

for

r=10

ϴ

for

r=12

ϴ

for

r=14

ϴ

for

r=16

18 14 10 8 7 6 5

36 28 20 16 14 12 10

54 41 31 25 20 18 16

72 55 41 33 28 24 21

90 70 52 41 34 29 26

Table 2. For L = 28

ϴL

ϴ

for

r=6

ϴ

for

r=8

ϴ

for

r=10

ϴ

for

r=12

ϴ

for

r=14

ϴ

for

r=16

18 12 9 7 6 5 5

36 24 18 14 12 10 9

54 36 27 22 18 15 13

72 48 36 29 24 20 18

90 60 45 36 30 26 22

2.2 Graphical Correlations
All the observations, given in table 1 and table 2, have been

plotted (see figure 2 and figure 3). To plot the graph, the x-

axis is taken as distance between sensor array and front

wheel/axel (r) and y-axis is taken as required angle for a robot

to take turn at particular angle of line turn (ϴ). Each figure

has five different graphs where each graph stands for different

angle of line turns (ϴL). And different figures stand for

different distances between sensor array and rear wheel/axel

(L).

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No. 3, May 2015

15

Fig 2: Correlation of Distance between Sensor Array and

Front Wheel with Angle of Line Turn for L=32cm.

Fig 3: Correlation of Distance between Sensor Array and

Front Wheel with Angle of Line Turn for L=28cm.

From the data tables as well as the graphs it is observed that,

if distance between sensor array and front wheel/axel (r)

increases with keeping distance between sensor array and rear

wheel/axel (L) unchanged, the required angle to take

necessary turns (ϴ) decreases. And if distance between sensor

array and rear wheel/axel (L) increases with keeping distance

between sensor array and front wheel/axel (r) unchanged, the

required angle (ϴ) increases.

3. MATHEMATICAL MODEL
It is an interesting observation (from the tables) that if any

arbitrary data is taken and the ratio of L and r is multiplied

with the ratio of ϴL and ϴ, the result is always approximately

equal to 7. For example, one arbitrary data from each table is

taken,

For, L =32; r = 16; ϴL = 18; ϴ = 5.

𝐿

𝑟
×

𝜃𝐿

ϴ
 =

32

16
×

18

5
= 7.2 ≈ 7

For, L =32; r = 8; ϴL = 54; ϴ = 31.

𝐿

𝑟
×

𝜃𝐿

ϴ
 =

32

8
×

54

31
= 6.97 ≈ 7

For, L =28; r = 12; ϴL = 90; ϴ = 30.

𝐿

𝑟
×

𝜃𝐿

ϴ
 =

28

12
×

90

30
= 7

For, L =28; r = 8; ϴL = 90; ϴ = 45.

𝐿

𝑟
×

𝜃𝐿

ϴ
 =

28

8
×

90

45
= 7

So, if it is taken,

𝐿

𝑟
×

𝜃𝐿

ϴ
 = 7 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

Then,

𝜃𝐿

ϴ
 =

7𝑟

𝐿

Or,

ϴ

𝜃𝐿
 =

𝐿

7𝑟

So,

ϴ =
𝐿

7𝑟
× 𝜃𝐿

From this equation, it can be possible to find out the value of

required turning angle (ϴ) of any robot by providing the value

of L and r manually and ϴL from the sensor. Then the

intelligence unit of the robot will be able to calculate the

required turning angle by itself and then it will rotate itself at

that particular angle [3,4].

At the time of turning, when ϴL decreases gradually, ϴ will

also decrease gradually when using this equation. And when

again ϴL will come to 0° (that means, the robot has already

completed rotating and now it needs to move forward), ϴ will

also come to 0° and the robot will again start moving forward

[5,6].

4. ALGORITHM
In the second model, sensors have to be placed at the very

front of the robot, which was not mandatory earlier. And also

in previous algorithms, rear wheels were not meant for

continuous rotation. That’s why the robots built with the

previous algorithm did not maintain a continuous speed. But,

in this algorithm, rear wheels will be rotated at continuous

rpm (rotation per minute). So, the speed of robot will remain

same at all the times [7,8].

4.1 Steps
Step 1: Place the sensor at very front of robot.

Step 2: Detect line by sensor.

Step 3: Send sensor inputs to processor unit.

Step 4: Calculate turning angle by using equation.

Step 5: Rotate the robot at turning angle.

Step 6: Keep continuous speed.

4.2 Flow Chart
The flow chart of the algorithm is given below (figure 4) to

help explain the process. Here, ϴR is the angle of robot turn.

This can be used to represent the automation units of robot.

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No. 3, May 2015

16

Fig 4: Flow Chart of This Algorithm.

At first the sensor unit will detect the line turn and will give

necessary information to the processor unit of the robot. Then,

the processor unit will calculate the value of ϴ by the

equation using the value of ϴL. The processor unit will accept

the value of ϴL from the information given by the sensor unit.

Then the control unit will give necessary commands to the

automation parts of the robot to rotate at ϴ degree angle either

right or left [9,10].

5. RESULTS
The time required to complete two paths where one is a

straight line and the other is a turn was compared between two

identical line follower robots (figure 5).

Fig 5: Two Identical Robots Made With Different

Algorithms.

5.1 For a Straight Line
Here,

 Length of the line = 190 cm.

 Angle of line turn = 0°.

Table 3. Forward Direction Data

Observation

No.

New

algorithm

(sec)

Previous

algorithm

(sec)

1 13.5 15.2

2 13.9 15.8

3 13.8 15.3

4 13.8 15.6

5 13.9 15.4

6 13.1 15.6

Average 13.7 15.5

Table 4. Reverse Direction Data

Observation

No.

New

algorithm

(sec)

Previous

algorithm

(sec)

1 13.7 15.6

2 13.6 15.8

3 13.5 15.7

4 13.6 15.4

5 13.4 15.7

6 13.4 15.8

Average 13.5 15.7

Comparison of average time of both forward and reverse

directions:

 New algorithm = 13.6 seconds.

 Old algorithm = 15.6 seconds.

So to cover a 190 cm straight line distance, the previous

algorithm takes 2.0 seconds more than the new algorithm.

5.2 For a Turning Line
Here,

 Length of the line = 625 cm.

 Angle of line turn = 0˚ for 196 cm, 5˚ for 60 cm, 13˚

for 39 cm, 23˚ for 95 cm, 27˚ for 72 cm, 30˚ for 163 cm.

Table 5. Forward Direction Data

Observation

No.

New

algorithm

(sec)

Previous

algorithm

(sec)

1 37.2 44.2

2 37.6 46.4

3 37.8 45.9

4 37.5 48.8

5 37.4 48.4

6 36.9 48.5

Average 37.6 47.0

Table 6. Reverse Direction Data

Observation

No.

New

algorithm

(sec)

Previous

algorithm

(sec)

1 38.6 50.5

2 38.8 50.2

3 38.1 49.1

4 38.1 48.5

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No. 3, May 2015

17

5 38.0 48.9

6 38.4 50.6

Average 38.3 49.6

Comparison of average time of both forward and reverse

directions:

 New algorithm = 38.0 seconds.

 Previous algorithm = 48.3 seconds.

So to complete a 625 cm turn, the previous algorithm takes

10.3 seconds more than new algorithm.

6. DISCUSSION
To measure the difference of times, the rpm (rotation per

minute) of motors for both robots was kept very low but

exactly same. Result shows that, a robot made with this

algorithm is faster than the robot made with previous

algorithms. The main reason behind this is the continuous

speed of the new method. If the rotation of wheels is

controlled to take necessary turns, the speed will decrease at

the time of turning. In this algorithm the moving speed of the

robot remains the same at all times. So it moves faster than a

robot built with the previous method. Moreover, at the time of

turning, the required turning angle decreases with time.

Because, as the robot starts turning, the line angle starts

decreasing. So the required turning angle is not always the

same while taking a single turn. That’s why to get a better

performance, the rotation angle is needed to be changed every

time while taking a single turn. As well as, it also saves time

[11]. In this algorithm, at the time of taking a single turn, the

required turning angle is changing all the time. But in the

previous algorithm, there was no such feature. Thus making

the second algorithm faster than the previous one. It has

further been suggested that this algorithm is compatible with

any control system [12]. This algorithm can be developed for

optimizing turning velocity of any kind of part movement in

any kind of robot. Which will increase the speed of any kind

of movement in robotics.

7. ACKNOWLEDGMENT
Special thanks to Mr. Anadinath Mondol, Assistant professor,

Mathematics department, Dhaka Residential Model College,

for his motivational words.

8. REFERENCES
[1] Frazzoli, E., Lozano-Perez, T., Roy, N., Rus, D. (Eds.),

2013. Algorithmic Foundations of Robotics X. Springer

Tracts in Advanced Robotics, Vol. 86, Proceedings of

the Tenth Workshop on the Algorithmic Foundations of

Robotics.

[2] Kober, Jens, Peters, Jan, 2014. Learning Motor Skills.

Springer Tracts in Advanced Robotics, Vol. 97, From

Algorithms to Robot Experiments.

[3] T. Hongo, H. Arakawa, G. Sugimoto, K. Tange, Y.

Yamamoto, 1987. An automatic guidance system of a

self-controlled vehicle. IEEE Trans. Ind. Electronics,

Vol. IE-34.

[4] Szewczyk, Roman, Zieliński, Cezary, Kaliczyńska,

Małgorzata (Eds.), 2014. Recent Advances in

Automation, Robotics and Measuring Techniques.

Advances in Intelligent Systems and Computing, Vol.

267.

[5] Nonami, K., Kartidjo, M., Yoon, K.-J., Budiyono, A.

(Eds.), 2013. Autonomous Control Systems and

Vehicles. Intelligent Systems, Control and Automation:

Science and Engineering, Vol. 65.

[6] N. Ayache, O. Faugeras, 1989. Maintaining

representations of the environment of a mobile robot.

IEEE Trans. Robotics Automat., vol.5.

[7] T. Hongo, H. Arakawa, G. Sugimoto, K. Tange, Y.

Yamamoto, 1987. An automatic guidance system of a

self-controlled vehicle. IEEE Trans. Ind. Electronics,

Vol. IE-34.

[8] Becerra, Héctor. M, Sagüés, Carlos, 2014. Visual

Control of Wheeled Mobile Robots. Springer Tracts in

Advanced Robotics, Vol. 103, Unifying Vision and

Control in Generic Approaches.

[9] Ani Hsieh, M., Chirikjian, Gregory (Eds.), 2014.

Distributed Autonomous Robotic Systems. Springer

Tracts in Advanced Robotics, Vol. 104, The 11th

International Symposium.

[10] Ferrier, J.-L., Bernard, A., Gusikhin, O., Madani, K.

(Eds.), 2014. Informatics in Control, Automation and

Robotics. Lecture Notes in Electrical Engineering, Vol.

283, 9th International Conference, ICINCO 2012 Rome,

Italy, July 28-31, 2012 Revised Selected Papers.

[11] B. Krogh, C. Thorpe, 1986. Integrated path planning and

dynamic steering control for autonomous vehicles. IEEE

Conf. Robotics Automat.

[12] Yoshida, Kazuya, Tadokoro, Satoshi (Eds.), 2014. Field

and Service Robotics. Springer Tracts in Advanced

Robotics, Vol. 92, Results of the 8th International

Conference.

IJCATM : www.ijcaonline.org

