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ABSTRACT  
In today’s highly interconnected world users are increasingly 

dependent on high end smartphones and mobile devices. Users 

arrange and plan their daily routines using such high end 

devices. These applications often rely on current locations of 

individual users or a group of users to provide the desired 

service. By means of such applications and services, majority of 

such user population reveal their current location details to the 

third party service providers. Knowingly or unknowingly 

mobile users compromise their privacy. Without efficient 

protection, even sharing location information has been shown to 

provide reliable information about a users’ private globe, which 

could have severe consequences on the users’ personal, social, 

and financial life 

Users, who are cautious about their whereabouts, do not 

necessarily want to reveal their current locations to the service 

provider or to untrusted users. This paper, proposes algorithms 

for location privacy preserving of mobile users. This is to 

provide practical privacy-preserving techniques to solve this 

problem, such that neither an untrusted user, nor participating 

users, can learn other users’ locations, legitimate users only 

learn the optimal location. 

Keywords 
Location determination server, homomorphism, location 

privacy. 

1. INTRODUCTION 
The fast abundance of smartphone technology in urban 

communities has enabled mobile users to utilize context aware 

services on their devices. Service providers take benefit of this 

dynamic and ever-growing technology landscape by proposing 

innovative context-dependent services for mobile subscribers. 

Location based Services (LBS), for instance, are employed by 

several mobile subscribers each day to get location-specific 

information [1].  

Location privacy preservation in mobile surroundings is 

difficult for two reasons. First off wireless communications are 

simple to intercept e.g. eavesdropper can collect transmitted 

data of mobile users at certain public place. Besides, since 

individuals are in public discernible, context data will simply be 

obtained from their conversation or behaviors. As a result, 

partial flight related to user’s real identity is inevitably exposed 

to the eavesdropper. Second, the limited resources of mobile 

devices greatly limit Privacy Enhancing Technologies one may 

apply and deploy in wireless network. Current solutions rely on 

simple schemes to hide the real identity of a mobile user from a 

passive adversary, rather than complex cryptographic 

technologies. 

Two popular features of location-based services are location 

check-ins and location sharing. By checking into a locality, 

users can disclose their current location with family and friends 

or obtain location-specific services from third-party providers. 

The obtained service doesn’t rely on locations of different user. 

The other types of location-based services, that have confidence 

on sharing of locations by a cluster of users so as to get some 

service for the whole group, are also becoming popular. Privacy 

of a user’s location or location preferences, with relevance 

different users and therefore the third-party service provider, 

may be an essential concern in such location-sharing-based 

applications [2]. For instance, such information can be used to 

de-anonymize users and their availabilities [3], to track their 

preferences [4] or to identify their social networks [5]. In the 

taxi-sharing application, a third-party supplier could easily 

deduce home/work location pairs of users who regularly use 

their service. Without effective protection, if the collected data 

is leaked in an unauthorized fashion or improperly shared with 

corporate partners, which could have severe consequences on 

the users’ social, financial and private life [6], [7].  

Service providers who legitimately track users’ location 

information in order to improve the offered service can 

unintentionally harm users’ privacy. Recent user studies [8] 

show that end-users are extremely sensitive about sharing their 

location information. Thus, the disclosure of private location in 

any Location-Sharing-Based Service (LSBS) is a major concern 

and must be addressed. 

The problem of privacy preserving location has received little 

or no attention in the literature. Although considering aspects 

such as user preferences and constraints, their work does not 

address any security or privacy issues. All private information 

about users is public. Privacy of a user’s location or location 

preferences, with connectedness totally different users and thus 

third-party service provider, could also be a vital concern in 

such location-sharing-based applications. As an example, such 

data can be used to de-anonymize users and their availabilities, 

to trace their preferences or to discover their communal 

networks. 

The problem of finding a rendezvous point among a set of user-

proposed locations, such that (i) The Rendez-Vous point is fair 

with respect to the given input locations, (ii) each user learns 

only the final Rendez-Vous location and (iii) no participating 

user or third-party server learns private location preference of 

any other user involved in the computation. The algorithm 

termed as Privacy-Preserving Fair Rendez-Vous Point 

(PPFRVP) algorithm. 

2. ANALYSIS OF LITERATURE 

SURVEY 

In 2004, Frikken and Atallah proposed Secure Multiparty 

Computation (SMC) protocols for securely computing the 

distance between a point and a line segment, the distance 

between two moving points and the distance between two line 

segments. One difficulty with route planning protocols is the 

requirement that the device know where it is at, which would 

seem to require some form of query to a GPS system, but this 

would reveal the location of the device [9].  

In 2007, Santos and Vaughn presented a survey of existing 

literature on meeting-location algorithms and propose a more 

comprehensive solution for such a problem.  The list of 



International Journal of Computer Applications (0975 – 8887)  

Volume 117 – No. 3, May 2015 

10 

participants, the proposed meeting time, likely start locations 

and possible travel methods are known. The “cost” function 

(time, distance, social constraints, etc.) for each person to travel 

to locations are calculated. Although considering aspects such 

as user preferences and constraints, their work does not address 

any security or privacy issues. The system, while useful, may be 

complicated for some users. Automating system defaults when 

users provide insufficient data from calendars or start points can 

help, but preferences about times, venues, and travel methods 

can be complicated even when known. An organizer, or 

participants who vote, need to evaluate choices and fine-tune 

results to suit group criteria [10].  

Zhong design and implement three distributed privacy-

preserving protocols for nearby friend discovery, and they show 

how to cryptographically compute the distance between a pair 

of users. However, due to the fully distributed nature of the 

above mentioned approaches, the computational and 

communication complexities increase significantly with the size 

of the participants and inputs. Moreover, all parties involved in 

the computations need to be online and synchronized [11].  

In 2009, Berger proposed an efficient meeting-location 

algorithm that considers the time in-between two consecutive 

meetings. However, all private information about users is public 

[12].  

In 2010, Jaiswal and Nandi suggest a novel approach to deploy 

location-based services in which user privacy is guaranteed 

without any entity having knowledge of both pieces of sensitive 

user information i) location ii) queries (interests + social 

relationships). Inspite of operating on encoded information got 

from the operator and the LBS; it is able to trigger updates to 

the mobile user whenever the user is in the same location of its 

interested services [13].  

In 2012, Guha proposed a privacy-preserving location based 

matching as a fundamental platform primitive and as an 

alternative to exposing low-level, latitude-longitude coordinates 

to applications. Applications set rich location-based triggers and 

have these be fired based on location updates either from the 

local device or from a remote device. But issue pertains to 

malicious applications registering a large number of triggers at 

sensitive locations, and reverse-engineering a victim user’s 

location based on triggers matched. A weak defense against this 

attack would be rate-limit to the number of trigger registrations 

from an application [14].  

Carbunar also propose a set of privacy-preserving protocols, 

using well-known cryptographic constructs, which 

anonymously proves to a venue that a user checked-in a certain 

number of times [15].  

In 2013, in the direction of anonymous location sharing, 

Pidcock proposed to disassociate user identity information from 

user location information in our privacy-friendly location hub. 

No entity should know both a user’s identity and user’s 

location. The foundation of location hub, ZeroSquare, is two 

noncolluding entities, one that stores information about users 

and another that stores information about locations. ZeroSquare 

also provides a callback framework to support scenarios where 

a user wishes to be notified when a condition is met. However, 

by having only users (but not locations) become first-class 

citizens in the architecture, the applicability of these 

architectures to geosocial applications remains limited because 

storing or retrieving information about locations is difficult 

[16]. 

Importantly, the principle of “Location Privacy Preserving” 

suggests to proactively embed privacy into the design of any 

service. We want to demonstrate that location-based services 

can be built in more privacy-friendly ways; this in turn may 

shift people’s thinking about and expectations of the inner 

workings of location-based services 

3. PROPOSED SYSTEM 
Proposed system have two algorithms for solving the Fair 

Rendez-Vous Point (FRVP) problem in a privacy-preserving 

way, wherever every user participates by providing solely one 

location preference to the FRVP solver or the service provider. 

It has multi-preference cases, where every user might have 

multiple prioritized location preferences. 

Goal is to offer realistic privacy preserving techniques to 

resolve the FRVP hitch, specified neither a third-party, nor 

participating users will learn other users’ locations; 

participating users only learn the optimal location. The privacy 

issue within the FRVP problem is representative of the relevant 

privacy threats in LSBSs. 

4. PROPOSED TECHNIQUE 
It addresses the privacy issue in Location-Sharing-Based 

Services (LSBS) by focusing on a specific problem called the 

Fair Rendez-Vous Point (FRVP) problem. Given a group of 

user location preferences, the FRVP problem is to settle on a 

location among the proposed ones such that the maximum 

distance between this location and all other users’ locations is 

minimized, i.e. it is fair to all users. We first formulate the 

FRVP problem as k-center optimization problem, and then 

analytically outline the privacy requirements of the participants 

with respect to each other and with respect to the third-party 

service provider.  We have two algorithms for solving the above 

formulation of the FRVP problem in a privacy-preserving way, 

where each user participates by providing only a sole location 

preference to the FRVP service provider. The proposed 

algorithms take advantage of the homomorphic properties of 

well-known cryptosystems, like BGN, ElGamal and Paillier, so 

as to secretly compute an optimally fair Rendez-Vous point 

from a set of user location preferences 

Apart from that, the multi-preference case, where each user may 

have multiple prioritized location preferences can be 

considered. 

5. ARCHITECTURAL DESIGN 
It addresses the privacy issue in Location-Sharing-Based 

Services (LSBS) by focusing on a specific problem called the 

Fair Rendez-Vous Point (FRVP) problem. For a set of user 

location preferences, the FRVP problem is to settle on a 

location amongst the proposed ones such that the maximum 

distance between this location and all other users’ locations is 

minimum, i.e. fair to all users. 

The mobile devices are able to perform public-key 

cryptographic operations. Each of the N users has his own 

public/private key pair ( 𝐾𝑃
𝑢 𝑖 , 𝐾𝑆

𝑢 𝑖  ), certified by a trusted CA, 

which is used to digitally sign/verify the messages that are sent 

to the LDS. Furthermore, N users share a common secret that is 

utilized to generate a shared public/private key pair 

  𝐾𝑃
𝐼𝑛 , 𝐾𝑆

𝐼𝑛     in an online fashion for each meeting setup 

instance 𝑛. The private key 𝐾𝑆
𝐼𝑛  generated in this way is known 

only to all meeting participants, whereas the public key 𝐾𝑃
𝐼𝑛  is 

known to everyone including the LDS. The LDS executes the 

FRVP algorithm on the inputs it receives from the users in order 

to compute the FRV point. The LDS is also proficient to do 

public-key cryptographic functions. A common public-key 

infrastructure using the RSA cryptosystem [17] could be 
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employed. Let 𝐾𝑃
𝐿𝐷𝑆  be the public key, certified by a trusted 

CA, and  𝐾𝑆
𝐿𝐷𝑆   the corresponding private key of the LDS. 

𝐾𝑃
𝐿𝐷𝑆   is publicly known and users encrypt their input to the 

FRVP algorithm using this key; the encrypted input can be 

decrypted by the LDS using its private key  𝐾𝑆
𝐿𝐷𝑆 . This ensures 

message confidentiality and integrity.  

5.1.1 Location Determination Server 
The primary type of LDS adversarial behavior that we want to 

protect against is an honest-but-curious or semi-honest 

adversary, where LDS is assumed to execute the algorithms 

correctly. It may try to learn information about the users’ 

location preferences from the usual inputs, the intermediary 

results and the produced outputs. Service providers have a 

commercial interest in providing a faithful service to their 

customers, the assumption of a semi-honest LDS is generally 

sufficient. We will later also analyze how our proposed 

solutions fair against certain active attacks, including collusion 

with users and fake user generation. 

5.1.2 Users 
Similar to the LDS assumption, our main goal is to protect 

against semi-honest participating users who may want to learn 

the private location preferences of other users from the 

intermediate results and the output of the FRVP algorithm, 

referred as passive attacks. As user inputs are encrypted with 

the LDS’s public key 𝐾𝑃
𝐿𝐷𝑆 , there is a confidentiality guarantee 

against basic eavesdropping by participants and non-

participants. The goal is of protecting against semi-honest users. 

6. IMPLEMENTATION 

6.1 Algorithms 
Proposed algorithms receive advantage of the homomorphic 

properties of well-known cryptosystems, like BGN, ElGamal 

and Paillier, in order to privately compute an optimally fair 

Rendez-Vous point from a set of user location preferences. 

6.2 Implementation Modules 
In this section, we outline the details of proposed protocol for 

solving the PPFRVP problem. In order to separate the 

optimization aspect from the implementation, we first formally 

outline the fairness and transformation functions and then 

discuss the construction of the PPFRVP protocol. In general 

any PPFRVP algorithm should accept the inputs and generate 

the outputs, as described below. 

Input: Transformation function 𝑓 of private locations 𝐿𝑖 . Where 

𝑓 is a secret-key based encryption function which determines 

the input 𝐿𝑖  without knowing the secret key. 

Output: An output is 𝑓 (𝐿𝑓𝑎𝑖𝑟 ), where g is a fairness function 

and 𝐿𝑓𝑎𝑖𝑟 =   𝑥𝑙  , 𝑦𝑙    is the fair rendez-vous location such that 

it is hard for the LDS to determine 𝐿𝑓𝑎𝑖𝑟   by just 

observing 𝑓(𝐿𝑓𝑎𝑖𝑟 ).  

 

Fig. 1 Functional diagram of the PPFRVP protocol 

Fig. 1 shows a functional diagram of the PPFRVP protocol, 

wherein the PPFRVP algorithm A is executed by an LDS. The 

fairness function g can be defined in several ways, depending 

on the preferences of users or policies.  

 

Fig. 2 PPFRVP scenario 

Fig. 2 shows one such fairness function that minimizes the 

maximum displacement of any user to all other locations. This 

function is globally fair and can be easily extended to include 

additional constraints and parameters. 

6.2.1 Fairness Function g 
To determine a Rendez-Vous location that is fair to each and 

every user, the fairness function needs to optimize based on the 

spatial constraints set by the users’ preferred locations. A 

Rendez-Vous location 𝐿𝑓𝑎𝑖𝑟 =   𝑥𝑙  , 𝑦𝑙    among 𝑁 users 

𝕌 =  {𝑢𝑖}𝑖=1
𝑁  will be fair to all users if everyone can reach 𝐿𝑓𝑎𝑖𝑟  

in a “reasonable" amount of time. Another criterion is to 

minimize the total displacement of all users in order to 

reach 𝐿𝑓𝑎𝑖𝑟  , or making sure that no user is “too far" from 

𝐿𝑓𝑎𝑖𝑟   as compared to further users. We model the fairness 

criteria of the PPFRVP problem by using a formulation of the k-

center problem. In the k-center problem, the goal is to 

determine k locations (𝐿1 , . . . , 𝐿𝑘  ) for placing facilities, among 

𝑁 possible candidates, such that the maximum distance from 

any place to its closest facility is minimized. For a two 

dimensional coordinate scheme, the Euclidean distance metric 

is usually employed. Fig. 2 shows a PPFRVP scenario modeled 

as a k-center problem. It should be noted that the current k-

center formulation does not encompass other fairness 

parameters, for instance accessibility of a place and the means 

of transportation. Let 𝑑𝑖𝑗 ≥  0 be the Euclidean distance 

between two points  𝐿𝑖  , 𝐿𝑗  and 𝐷𝑖
𝑀 =  𝑚𝑎𝑥𝑗≠𝑖  𝑑𝑖𝑗  be the 

maximum distance from  𝐿𝑖  to any other point 𝐿𝑗 . LDS privately 

compute the fair Rendez-Vous location; the fairness function g 

would be required to operate without having access to the 

location preferences 𝐿𝑖 . This can be accomplished using 

cryptographic techniques with homomorphic encryption 

properties. 

6.2.2 Transformation Function f 
We are interested in using cryptographic schemes that allow us 

to compute the Euclidean distance between two points and the 

maximization/minimization functions. We utilize cryptographic 

schemes with homomorphic properties, specifically, Boneh-

Goh-Nissim (BGN) [18], ElGamal [19] and Paillier [20] 

cryptosystems, as the transformation function 𝑓 in our PPFRVP 

protocol. Given two plain text  𝑚1,  𝑚2  with their respective 
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encryptions 𝐸( 𝑚1), 𝐸( 𝑚2), the multiplicative homomorphic 

property (ElGamal and partial BGN ciphers) states 

that 𝐸  𝑚1  ⨀ 𝐸( 𝑚2) = 𝐸( 𝑚1  .  𝑚2) where ⨀ is an arithmetic 

operation in the encrypted domain that is equivalent to the usual 

multiplication operation in the plain text. The additive 

homomorphic property (BGN and Paillier schemes) states that 
  𝑚1  ⊕  𝐸  𝑚2  =𝐸( 𝑚1  +  𝑚2), where ⊕ is an arithmetic 

operation in the encrypted domain which is equivalent to the 

usual sum operation in the plain text domain. 

6.2.3 Distance Computations 
The fair Rendez-Vous point  𝐿𝑓𝑎𝑖𝑟   is the location preference 

that minimizes the maximum distance between any other 

location preference and  𝐿𝑓𝑎𝑖𝑟  . In these algorithms, we 

minimize with respect to the square of the distances, because 

distance squares are much easier to compute in an oblivious 

fashion with the help of homomorphic encryptions than simple 

distances. 

6.2.3.1 BGN-Distance 
First distance computation algorithm is based on the BGN 

encryption technique. This novel protocol requires only one 

round of communication between each user and the LDS, and it 

efficiently uses both the multiplicative and additive 

homomorphic properties of the BGN scheme. The BGN-

distance protocol works as follows.  

i. Every user  𝑢𝑖  creates the vectors 𝐸𝑖(𝑎) and 𝐸𝑖(𝑏), where 

the encryption is done using the BGN scheme with the fresh 

session key 𝐾𝑃
𝐼𝑛 , 𝐿𝑖 = (𝑥𝑖  , 𝑦𝑖  ) is the desired Rendez-Vous 

location of user 𝑢𝑖 . 

ii. Each user sends the two vectors  𝐸𝑖(𝑎), 𝐸𝑖 𝑏  over a secure 

channel to the LDS. 

iii. LDS computes the scalar product  𝐸𝑖 𝑎  . 𝐸𝑖 𝑏  of the 

received vectors, which produces the encrypted pairwise 

distances 𝐸(𝑑𝑖𝑗
2 ) by first applying the multiplicative and 

then the additive homomorphic property of BGN. 

6.2.3.2 Paillier-ElGamal-Distance 
In addition to the multiplicative homomorphic property of 

ElGamal, we rely on the two following properties of the Paillier 

encryption 

𝐸(𝑚1) · 𝐸(𝑚2)  =  𝐸( 𝑚1 + 𝑚2  𝑚𝑜𝑑 𝑛) 

                    𝐸(𝑚1)𝑟  =  𝐸  𝑟 .  𝑚1   𝑚𝑜𝑑 𝑛  

As neither Paillier nor ElGamal possess both multiplicative and 

additive properties, the resulting algorithm requires one extra 

step in order to obliviously compute the pairwise squared 

distances  𝑑𝑖𝑗  
2 . In this scheme the participating users derive two 

pairs of public/private session keys {(𝐾𝑃
𝐼𝑛1 , 𝐾𝑆

𝐼𝑛1 ), (𝐾𝑃
𝐼𝑛2 , 𝐾𝑆

𝐼𝑛2 )} 

from the shared secret, where the pair 𝑛1  is used with the 

ElGamal encryption scheme and 𝑛2 with the Paillier one. The 

distances are computed as follows.  

i. Each user  𝑢𝑖   creates the vectors 𝐸𝑖(𝑎).                

ii. Each user  𝑢𝑖   sends the vector 𝐸𝑖(𝑎) to the LDS, 

encrypted with LDS’s public key. 

iii. LDS computes the scalar product of the second and fourth 

element. To hide result from the users, the LDS 

obliviously randomizes these results with random values. 

iv. After choosing random values, the LDS computes their 

inverses.  

v. LDS permutes randomized scalar product element with its 

private element-permutation function and sends N such 

distinct elements to each use𝑟 𝑢𝑖 . 

vi. Each user simply decrypts the received elements with the 

ElGamal private key 𝐾𝑆
𝐼𝑛1  and re-encrypts them with the 

Paillier public key 𝐾𝑃
𝐼𝑛2 . Then, each user sends the re-

encrypted elements to the LDS in the same order as he 

received it. 

vii. LDS reverts the element permutation function. 

viii. Finally LDS computes the 𝑑𝑖𝑗   
2 for all 𝑖, 𝑗, after having 

removed the randomizing factors with their inverses 

At this point, the LDS compute 𝐸( 𝑑𝑖𝑗  
2 ), the encrypted square of 

the pairwise distances between all pairs of user-desired 

locations  𝐿𝑖 ≠ 𝐿𝑗 . 

6.2.4 PPFRVP Protocol 
The PPFRVP protocol has three main modules  

6.2.4.1 Distance Computation 
The distance computation module uses either the BGN-distance 

or the Paillier-ElGamal distance protocols. 𝐸(. ) refer to 

encryption using either the BGN or the Paillier encryption 

scheme. 

6.2.4.2 MAX Computation 
LDS hide the values within the encrypted elements before 

sending them to the users. This is done to avoid disclosing 

private information, such as the pairwise distances or location 

preferences to users and carried out as: 

i. For each index 𝑖, LDS generates two random values; those 

are used to scale and shift the encrypted square distance 

between 𝐿𝑖  and 𝐿𝑗 , obtaining. This is done in order to (i) 

ensure privacy of real pairwise distances, (ii) preserve the 

internal order among the pairwise distance from each user 

to all other users. 

ii. LDS chooses two private element-permutation functions 

one for  𝑖  and another for  𝑗  and permutes  𝑑𝑖𝑗  
∗ . LDS sends 

𝑁 such distinct elements to each user.  

iii. Each user decrypts the received values, determines their 

maximum and sends the index of the maximum value to 

the LDS. 

iv. LDS reverses the permutation functions and removes the 

masking from the received indexes corresponding to the 

maximum distance values. 

6.2.4.3 ARGMIN MAX Computation 
The ARGMIN MAX computation carried out as: 

i. LDS masks the true maximum distances by scaling and 

shifting them by the same random amount such that their 

order is preserved. Then, the LDS sends to each user all 

the masked maximum distances.  

ii. Each user decrypts the received masked (scaled and 

shifted) maximum values, and determines the minimum 

among all.  

iii. Each user knows which identifier corresponds to him and 

the user whose preferred location has the minimum 

distance sends to all other users the fair rendezvous 

location in an anonymous way.  
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After the last step, every user receives the final fair Rendez-

Vous location, but no other information regarding non-fair 

locations or distances is leaked. 

7. CONCLUSION  
This paper proposes a new method for providing the users of 

LBS with location privacy. Our method is based on the 

homomorphic properties of well-known cryptosystems to 

privately compute an optimally fair Rendez-Vous point from a 

set of user location preferences. The scheme relies on a basic 

method, consists of calculations of the average location of a set 

of users, and improves it in the sense that it guarantees the 

location privacy of the users and the location exchange among 

them by using a public-key privacy homomorphism. Proposed 

solutions will preserve user preference privacy and have 

acceptable performance in a real implementation. Moreover, in 

proposed algorithms, users will have several prioritized 

locations preferences. In particular, it may encourage users to 

stop revealing sensitive information to third-parties and 

untrusted users, such as their home and work locations, and 

agree to privacy-preserving mechanisms. 
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