
International Journal of Computer Applications (0975 – 8887)

Volume 117 – No. 22, May 2015

18

A Novel Approach for Developing a Secure and

Optimized Algorithm for Implementation of Digital

Signature

Shivanshu Rastogi
Asst. Professor,

Department of CS&E
Moradabad Institute of Technology

Moradabad, India

Zubair Iqbal
Asst. Professor,

Department of CS&E
Moradabad Institute of Technology

Moradabad, India

Prabal Bhatnagar
Asst. Professor,

Department of CS&E
Moradabad Institute of Technology

Moradabad, India

Priyanka Saxena

Asst. Professor,
Department of ECE

Moradabad Institute of Technology
Moradabad, India

ABSTRACT

Digital signatures can be treated as a digital code that can be

embedded with an electronically transmitted data and its

property is that it uniquely identifies the sender and ensures

that the data has not been modified after the process of digital

signing of that data. There are various algorithms that have

been proposed for the generation of digital Signature. In this

paper we are proposing a novel approach for making secure

and optimize algorithm than any other existing algorithm.

Keywords

Digital Signature, DES, Security.

1. INTRODUCTION
The algorithm we have designed uses the concept of private

key cryptography for key generation because Public-key

cryptography is relatively slow and is only suitable for

encrypting small amounts of information while private key

cryptography is much faster and is suitable for encrypting

large amounts of information. Also we used hexadecimal S-

box which implements a much faster processing while

encryption and all the work are done in two-dimension rather

than one-dimension.

The concept of digital signature starts by taking a

mathematical sample from the data usually known as hash

code of that message that is to be transmitted. It is a uniquely

identifiable digital sample or fingerprint of the data having the

property to change itself exponentially even on minute

changes in the message. It means that there is a dramatic

change in the hash code on change in even a single bit of data.

Than we have to create digital signatures by signing the hash

code with the help of a private key and embedding that to the

original message to be transmitted.

After designing of the algorithm in the best possible manner

we came out with many positive results. By our algorithm the

time for digitally signing the document has been reduced to

60% than that of earlier used digital signature algorithms [1]

which uses SHA for hash creation and DES [2] for encryption

and decryption.

2. DIGITAL SIGNATURE
A digital signature or a digital signature scheme is used for

authentication of a document or a digital message based on

some mathematical approaches. When a digital signature is

attached with a message the recent has reason to believe that

the message has been created by a known sender and is not

modified during the transmission. Digital signatures are

generally used in financial transactions where it is necessary

to rely on digital documents for commercial activities. The

digital signatures are not much different from the paper

signatures.

The basic motive behind using digital signatures is to provide

authenticity of sender and receiver and security from

modifications and non repudiation.

It confirms the origin of the document and also verifies that

no modification has been done to the document after signing

of the document.

PURPOSE OF DIGITAL SIGNATURE

1. Signer Authentication: A signer is verified by

comparing the key of the sender associated with that

of a intended receiver. If a match is found the

message is attributed to the signer. Thus a signature

cannot be duplicated unless the sender compromises

his private key of loses it or divulging it.

2. Message Authentication: the digital signature also

verify the signed message by comparing the hash

values calculated during the signing and verification

process. They are able to authenticate the messages

with greater accuracy than the paper signature.

3. Non-Repudiation: it is a affirmative act on part of

the sender. It also ensures the receiver that the

document received by him is sent by an

authenticated sender and the sender cannot

legitimately deny on sending of the document. This

also alerts the signer that he is making a transaction

which may result in legal consequences.

4. Integrity: the creation and verification of digital

signature is highly accurate and still provides a high

level of assurance that the digital signature is

genuinely the signer.

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No. 22, May 2015

19

3. WORKING OF DIGITAL

SIGNATURE

3.1 Signing Process
Private Key cryptography gives a reliable method for digital

signing and signature verification based on private key. A

person can sign a given digital message (file, document, e-

mail, and so forth) with his private key as shown in figure 1.

From a technical point of view, the digital signing of a

message is performed in two steps:

Figure 1 Digital Signing

STEP 1: CALCULATE THE MESSAGE DIGEST

In this step a hash-value of the message (often called the

message digest) is calculated by applying some cryptographic

hashing algorithm (for example, MD2, MD4, MD5, SHA1, or

other). The calculated hash-value of a message is a sequence

of bits, usually with a fixed length, extracted in some manner

from the message. It is almost impossible, from a given hash-

value of a given message, to find the message itself. This

impossibility for retrieval of the input message is pretty

logical if we take into account that a hash-value of a message

could have a hundred times smaller size than the input

message. Actually, the computing resources needed to find a

message by its digest are so huge that, practically, it is

unfeasible to do it.

It is also interesting to know that, theoretically, it is possible

for two entirely different messages to have the same hash-

value calculated by some hashing algorithm, but the

probability for this to happen is so small that in practice it is

ignored.

STEP 2: CALCULATE THE DIGITAL SIGNATURE

In the second step of digitally signing a message, the

information obtained in the first step hash-value of the

message (the message digest) is encrypted with the private

key of the person who signs the message and thus an

encrypted hash-value, also called digital signature, is

obtained. For this purpose, some mathematical cryptographic

encrypting algorithm for calculating digital signatures from

given message digest is used .Often, obtained digital signature

is attached to the message in a special format to be verified

later if it is necessary.

3.2 Verification Process
Digital signature technology allows the recipient of given

signed message to verify its real origin and its integrity. The

digital signature verification cannot ascertain whether the

given message has been signed by a given person. If we need

to check whether some person has signed a given message, we

need to obtain his real private key. This is possible by getting

the private key in a secure way. From a technical point of

view, the verification of a digital signature is performed in

three steps:

STEP 1: CALCULATE THE CURRENT HASH-VALUE

In the first step, a hash-value of the signed message is

calculated. For this calculation, the same hashing algorithm is

used as was used during the signing process. The obtained

hash-value is called the current hash-value because it is

calculated from the current state of the message.

Figure 2 Verification of Digital Signing

STEP 2: CALCULATE THE ORIGINAL HASH-VALUE

In the second step of the digital signature verification process,

the digital signature is decrypted with the same encryption

algorithm that was used during the signing process. The

decryption is done by the public key that corresponds to the

private key used during the signing of the message. As a

result, we obtain the original hash-value that was calculated

from the original message during the first step of the signing

process (the original message digests). This whole process is

shown in figure 2.

STEP 3: COMPARE THE CURRENT AND THE

ORIGINAL HASH-VALUES

In the third step, we compare the current hash-value obtained

in the first step with the original hash-value obtained in the

second step. If the two values are identical, the verification if

successful and proves that the message has been signed with

the private key that corresponds to the public key used in the

verification process. If the two values differ from one another,

this means that the digital signature is invalid and the

verification is unsuccessful.

4. PROPOSED ALGORITHM
The algorithm that we are proposing specifies a symmetric

block cipher [3] that can process data blocks of 128 bits, using

cipher key with length of 128 bits. The algorithm consists of

ten rounds of encryption, as can be seen in Figure 3. First the

128-bit key is expanded into eleven so-called round keys,

each of them 128 bits in size. Each round includes a

transformation using the corresponding cipher key to ensure

the security of the encryption.

After an initial round, during which the first round key is

XORed to the plain text (Per Round key operation), ten

equally structured rounds follow. Each round consists of the

following operations:

 Replace bytes

 Reallocate rows

 Per round key

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No. 22, May 2015

20

Figure 3 Algorithm Structure

Algorithm Specification

For this algorithm, the length of the input block, the output

block and the State is 128 bits. And the number of 32-bit

words (number of columns) in the State. For this algorithm,

the length of the Cipher Key, K, is 128 bits. The key length

reflects the number of 32-bit words (number of columns) in

the Cipher Key.

Inputs And Outputs

The input and output for the algorithm each consist of

sequences of 128 bits (digits with values of 0 or 1). These

sequences will sometimes be referred to as blocks and the

number of bits they contain will be referred to as their length.

The Cipher Key for the algorithm is a sequence of 128 bits.

Other input, output and Cipher Key lengths are not permitted

by this standard. The bits within such sequences will be

numbered starting at zero and ending at one less than the

sequence length (block length or key length). Words(number

of columns) in the State. For this algorithm, the length of the

Cipher Key, K, is 128 bits. The key length reflects the number

of 32-bit words (number of columns) in the Cipher Key.

The State

Internally, the algorithm’s operations are performed on a two-

dimensional array of bytes called the State. The State consists

of four rows of bytes (block length divided by 32). In the

State array denoted by the symbol s shown in figure 4, each

individual byte has two indices, with its row number r in the

range 0 ≤ r ≤ 4 and its column number c in the range 0 ≤ c ≤ 4.

At the start of the Cipher and Inverse Cipher, the input the

array of bytes in0, in1… in15 – is copied into the State array.

The Cipher or inverse Cipher operations are then conducted

on this State array, after which its final value is copied to the

output.

Figure 4 State Array Input And Output

Hence, at the beginning of the Cipher or Inverse Cipher, the

input array, in, is copied to the State array according to the

scheme and at the end of the Cipher and Inverse Cipher, the

State is copied to the output array.

Cipher

At the start of the Cipher, the input is copied to the State array

using the conventions described above. After an initial Round

Key addition, the State array is transformed by implementing

a round function 10 times. The final State is then copied to the

output .The round function is parameterized using a key

schedule that consists of a one-dimensional array of four-byte

words derived using the Key Expansion routine described

below. The individual transformations – Rep_Bytes(),

Realloc_Rows(), PerRound_Key() process the State and are

described in the following subsections.

REP_BYTES () TRANSFORMATION

The Rep_Bytes() transformation is a non-linear byte

substitution that operates independently on each byte of the

State using a substitution table (S-box). This S-box (Fig.5),

which is invertible, is constructed by composing two

transformations:

Take the multiplicative inverse; the element {00} is mapped

to itself.

Apply the following affine transformation. In matrix form, the

affine transformation element of the S-box can be expressed
as:

Figure 5 Affine Transformation Element of S-box

Figure 6 Rep_Bytes() applies the S-box to each byte of the

State.

The S-box used in the Rep_Bytes() transformation is

presented in hexadecimal form in Fig. For example, if a1, 1 =

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No. 22, May 2015

21

{53}, then the substitution value would be determined by the

intersection of the row with index „5‟ and the column with

index „3‟ in Figure 7. This would result in b1, 1 having a

value of {ed}.

Figure 7 S-Box: Substitution Values For The Byte (In

Hexadecimal Format)

REALLOC_ROWS() TRANSFORMATION

As implied by its name, the Reallocate rows operation

processes different rows. A simple rotate with a different

rotate width is performed. The second row of the 4x4 byte

input data (the state) is shifted one byte position to the left in

the matrix, the third row is shifted two byte positions to the

left, and the fourth row is shifted three byte positions to the

left. The first row is not changed. This operation is shown in

the figure 8.

Figure 8 Realloc_rows() Cyclically shifts The Last Three

Rows In The State.

PERROUND_KEY() TRANSFORMATION

In the PerRound_Key() transformation, a Round Key is added

to the State by a simple bitwise XOR operation. Each Round

Key consists of 4 words from the key schedule. Those 4

words are each added into the columns of the State, the

application of the PerRound_Key() transformation to the 10

rounds of the Cipher occurs. The action of this transformation

is illustrated in Figure 9.

Figure 9 PerRound_Key() XORs each column of the State

with a word from key schedule

KEY EXPANSION

As previously mentioned, Key expansion refers to the process

in which the 128 bits of the original key are expanded into

eleven 128-bit round keys. To compute round key (n+1) from

round key (n) these steps are performed:

A) Compute the new first column of the next round key

as shown in Figure. First all the bytes of the old

fourth column have to be substituted using the

Repbytes operation. These four bytes are shifted

vertically by one byte position and then XORed to

the old first column. The result of these operations
is the new first column. This is shown in figure 10.

Figure 10 Expanding First Column of Next Round Key

B) Columns 2 to 4 of the new round key are calculated
as shown:

 [new second column] = [new first column] XOR

[old second column]

 [new third column] = [new second column] XOR

[old third column]

 [new fourth column] = [new third column] XOR
[old fourth column]

 Illustrates the calculation of columns 2-4 of the new round

key.

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No. 22, May 2015

22

Figure 11 Expanding Other Columns of Next Round Key.

5. POSITIVE IMPACT OF THE

ALGORITHM
 Multiple encryptions, such as triple-DES[4], will

become unnecessary with this proposed algorithm.

Since multiple encryption uses a plural number of

keys, the avoidance of using multiple encryption

will mean a reduction on the number of

cryptographic keys that an application has to

manage, and hence will simplify the design of

security protocols and systems.

 Use of proposed algorithm will lead to the

emergence of new hash functions of compatible

security strengths. In several ways, block cipher

encryption algorithms are closely related to hash

functions. It can be a standard practice as block

cipher encryption algorithms are often used to play

the role of one-way hash functions. We have seen a

typical "one-way transformation" usage of the DES

function in the realization of the UNIX password

scheme[5]. Another example is to use block cipher

encryption algorithms to realize (keyed) one-way

hash functions.

 As in the case that the DES's standard position had

attracted much cryptanalysis attention trying to

break the algorithm, and that these efforts have

contributed to the advance of knowledge in block

cipher cryptanalysis, the proposed algorithm as the

new block cipher standard will also give rise to a

new resurgence of high research interest in block

cipher cryptanalysis which will certainly further

advance the knowledge in the area.

6. EXPERIMENTAL RESULTS
Earlier algorithms takes huge amount of time for

implementing digital signature, our algorithm implements

digital signature in almost one-fourth time as taken by the

DES and this is shown in following tables. We have shown

the result considering 4 types of files for creation of digital

signature and same amount of time is also taken at the

receiver end for verification. In these tables we have shown

time corresponding to various size files.

1. PDF

S.NO SIZE OF FILE

(KB/MB)

TIME TAKEN

(min: sec: hund)

1. 824KB 0:09:99

2. 6.87MB 1:31:01

3. 19.1MB 4:22:87

4. 54.3MB 9:07:44

2. Image Files

S.NO SIZE OF FILE

(KB/MB)

TIME TAKEN

(min: sec: hund)

1. 566KB 0:05:11

2. 1.42MB 0:13:18

3. 4.56MB 0:42:30

4. 6.92MB 1:07:06

3. Audio Files

S.NO SIZE OF FILE

(KB/MB)

TIME TAKEN

(min: sec: hund)

1. 1.38MB 0:13:68

2. 9.93MB 1:45:18

3. 22.1MB 4:11:50

4. 41.3MB 7:14:95

4. Video Files

S.NO SIZE OF FILE

(KB/MB)

TIME TAKEN

(min: sec: hund)

1. 3.85MB 0:38:79

2. 21.7MB 3:39:82

3. 33.1MB 5:11:91

4. 77.3MB 16:37:45

7. CONCLUSION
The widespread adoption of Internet as a secure medium for

communication and e-commerce has made digital signature

implementation to play a vital part of today's information

systems. Now-a-days we need we have very large size

documents that need to be transferred from one place to

another with high security and with minimum time

considerations for securing it by the use of digital signature.

So, the demand of present scenario is that to develop a secure

and efficient implementation of digital signature.

We have developed a digital signature implementation

algorithm which exhibits processing power of high

performance, efficiency and in minimum amount of time. In

this we used private key cryptography for key generation

because Public-key cryptography is relatively slow and is only

suitable for encrypting small amounts of information while

private key cryptography is much faster and is suitable for

encrypting large amounts of information. Also we used

hexadecimal S-box which implements a much faster

processing while encryption and all the work are done in two-

dimension rather than one-dimension.

We have applied the most efficient way for providing the

highest security but we can further increase by taking larger

key size and by using the concept of certificate authority for

the distribution of keys. And for the concept of multiuser we

can use the concept of different keys at sender’s or receiver’s

end but we have to compromise with the confidentiality.

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No. 22, May 2015

23

8. REFRENCES
[1] Chen Hai-peng, Shen Xuan-Jing, Wei Wei, “Digital

Signature Algorithm Based on Hash Round Function and

Self-Certified Public Key System”, Education

Technology and Computer Science, 2009.

[2] Sombir Singh, Sunil K. Maakar, Dr.Sudesh Kumar,

“Enhancing the Security of DES Algorithm Using

Transposition Cryptography Techniques”, IJARCSSE

Volume 3, Issue 6, June 2013.

[3] Cse.iitkgp.ac.in/~deepdeep/courses_iitkgp/crypto/slides/s

ymmetricciphers.pdf.

[4] Mandeep Singh, Narula Simarpreet Singh,

“Implementation of Triple Data Encryption Standard

using Verilog” ”, IJARCSSE Volume 4, Issue 1, January

2014.

[5] www.ee.usyd.edu.au/people/philip.leong/userfiles/files/p

apers/crypt_usenix91.pdf.

IJCATM : www.ijcaonline.org

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Chen%20Hai-peng.QT.&searchWithin=p_Author_Ids:37644244700&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Shen%20Xuan-jing.QT.&searchWithin=p_Author_Ids:37644244500&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Wei%20Wei.QT.&searchWithin=p_Author_Ids:37629647100&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4958702
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4958702
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4958702

