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ABSTRACT 

Empirical Wavelet Transform is a new adaptive signal 

decomposition technique. In signal processing, adaptive 

representation of signal is very important. This is very useful 

for denoising, decompression etc. This paper presents an 

adaptive denoising technique using Empirical wavelet 

transform. Experiments presented showing the effectiveness 

of this method based on their signal to noise ratio. 
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1. INTRODUCTION 
In signal processing, time frequency analysis means analyze a 

signal in both time and frequency domain simultaneously. 

Signal analysis in adaptive manner is very useful for signal 

processing. Generally we can represent a signal as a linear 

combination of basis functions. In methods like wavelet and 

Fourier transform these basis functions are derived 

independently, but in adaptive techniques these functions are 

derived from the information contained in the signal. Jerome 

Gilles proposed a new approach to build adaptive wavelets 

that is known as Empirical Wavelet Transform. This method 

is able to separate the Nonlinear and Non-stationary part of 

the signal. These components have a compact support Fourier 

spectrum. 

These techniques are applicable for signal denoising. 

Denoising is a technique that is used to remove noise content 

from the signal and to reconstruct the original signal. In the 

field of signal processing denoising is still a challenging 

problem. So many methods are there to remove noise content 

from the signal and to recover the original signal. Each of 

these methods has their own advantages and limitations. 

Wavelet transform analysis has been widely used for the 

purpose of denoising. Traditional denoising schemes are 

based on linear methods. That is not suitable for nonlinear and 

non-stationary signals. To perform signal denoising in 

nonlinear and non-stationary signals an adaptive signal 

denoising method using Empirical wavelet transform is 

proposed in this paper 

2. EMPIRICAL WAVELET 

TRANSFORM 

2.1 Empirical Wavelet 
It is a type of wavelet that is adapted to the processed signal. 

The construction of this wavelet is equivalent to the 

construction of Band-pass filters. Empirical wavelets provide 

adaptability to the signals.  Using this wavelet we can separate 

a given signal as a number of modes known as Amplitude 

Modulated-Frequency Modulated components that is AM-FM 

components. This AM-FM components have a compactly 

supported Fourier spectrum. Here, segmentation of Different 

modes is equivalent to the segmentation of Fourier spectrum.  

Assume that the Fourier spectrum is divided into N segments.  

There is a limit between each segment ωn. Segmentation of 

the spectrum is an important task, because, this segmentation 

provides adaptability. Our aim is to separate different portions 

of the spectrum that corresponds to different modes. In order 

to divide the spectrum into N segments, we need a total of 

N+1 boundaries, but the limit of Fourier spectrum is in 

between 0 and π we need a total of n-1 extra boundaries. To 

find such boundaries first detect the local maxima in the 

spectrum and arrange them in the decreasing order. Assume 

that the algorithm found M maxima, two cases can appear:[1] 

M≥N: The algorithm found enough maxima to define the 

required number of segments, then we keep only the first N-1 

maxima. 

M<N: The signal has less modes than expected, then we keep 

all the detected maxima than expected, then we keep all the 

detected maxima and reset N to appropriate value. 

With this set of maxima plus 0 and π we define the boundaries 

ωn of each segment. This is the centre between two 

consecutive maxima.(ω0=0 and ωn=π). 

The Empirical scaling function and Empirical wavelet can be 

expressed as follows.[1] 

                    1                                               if |ω|≤ωn-τn 

Φ2͡  (ω)=       cos[
𝜋

2
β(
1

2𝜏
(|ω|-ωn+τn))]      if ωn-τn≤|ω|≤ ωn+τn 

0                                     

otherwise 

 

 
                     1                             if |ω|≤ωn-τn 

Ψ͡n (ω )=       sin[
𝜋

2
β(

1

2𝜏
(|ω|-ωn+1+τn+1))]   

                                                   if ωn+1-τn+1≤|ω|≤ ωn+1+τn+1 

                     sin[
𝜋

2
β(
1

2𝜏
(|ω|-ωn+τn))]    if ωn-τn≤|ω|≤ ωn+τn 

                      0                           otherwise 

 

 

2.2 Empirical Wavelet Transform 
Empirical wavelet transform can be defined in the same way 

as that of classical wavelet transform. 
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The detail coefficients are given by the inner product with the 

Empirical wavelets[1] 

Wf
ᵋ (n, t) = ‹f, ψn › = ∫ f(τ) ψn(τ-t)dτ = (f͡  (ω) ψ͡  n(ω))ᵛ 

And the approximation coefficients by the inner product with 

the scaling function[1] 

Wf
ᵋ (0, t) = ‹f, φ1 › = ∫ f(τ) φ1 (τ-t)dτ = (f͡  (ω) φ͡  1(ω))ᵛ 

Where ψ͡n(ω) and φ1͡(ω) are defined by  
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The reconstruction is obtained by, 

f(t) = Wf
ᵋ (0, t) * φ1(t) + ∑N

n=1Wf
ᵋ (n, t) * ψn(t)  

= (W͡f
ᵋ (0, ω) φ͡1 (ω)+ ∑N

n=1Wf
ᵋ (n, ω) ψn͡  (ω)) ᵛ 

3. ALGORITHM FOR EWT 
Step 1: Take an ECG signal. 

Step 2: Apply some Noise and consider this as the input 

signal. 

Step 3: Find spectrum of that signal by applying Fourier 

Transform. 

Step 3: Find out all the local maxima’s. 

Step 4: Find out all mid points between adjacent local 

maxima’s. 

 Step 4: Apply window function. Multiplies these midpoints 

with this window function.  

Step 5: Take inverse Fourier transform. 

4. EXPERIMENTAL RESULTS 

Table 1. SNR Values for Different Iterations 

ITERATION 

NUMBER 

SNR BEFORE 

DENOISING 

SNR AFTER 

DENOISING 

1 19.8681 26.7961 

2 16.8578 25.3499 

3 15.0969 24.0939 

4 13.8475 23.1047 

5 12.8784 22.3402 

 

The above table shows the Signal to Noise Ratio values for an 

ECG signal for different iterations. Signal to Noise Ratio 

values are calculated before and after iteration. For analysis 

five iterations are used. From the table it is clear that the  

Signal to Noise Ratio values are higher for Empirical wavelet 

transform method. Fig 1 shows a graph that plotted the SNR 

before and after iteration. 

 

Fig 1. SNR value comparison Before and After Denoising 

 

Fig 2. Input Noisy ECG signal 

 

Fig 3. Cosine Tapered Filter 

 

Fig 4. Spectrum of the Signal 
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Fig 5a 

 

Fig 5b 

 

Fig 5c 

 

Fig 5d 

 

Fig 5e 

 

Fig 5f 

 

Fig 5g 

Fig 5(a-g). Modes Extracted by EWT 

 

Fig 6. Noisy Signal with Baseline Wandering and Denoised 

signal using EWT 

Fig 2-6 shows output of different stages involved in the 

empirical wavelet transform Decompsition process. Fig 2 

shows the noisy ECG signal. This noisy signal consists of two 

types of noises, baseline wander noise and powerline 

interference. Here we multiply the spectrum of the signal with 

a cosine tapered filter, that is shown in figure 3. Fig 5 shows 

difeerent modes extracted using EWT. Fig 6 is the denoised 

signal after applying the EWT. 

5. CONCLUSION 
Experiments were performed on ECG signal. ECG signal is 

one of the nonlinear biological signal. This ECG signal 

contains baseline wandernoise and random noise. Table 1 

shows the SNR values obtained Before and after Denoising. 

Denoising using EWT gives better results. In future we can 

extend this concept to images also. The procedure used for 1D 

signal is also applicable for 2D signals. This method is self 

adaptive and using this method it is able to seperate nonlinear 

and non-stationary parts of the signals. In future this method 

can be used for deconvolution. Here IMFs are not orthogonal, 

to make it orthogonal different orthogonalisation procedures 

can be used. 
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